Remote Sensing Assessment of Forest Disturbance across Complex Mountainous Terrain: The Pattern and Severity of Impacts of Tropical Cyclone Yasi on Australian Rainforests
<p>Hurricane Yasi track (dashed red line) and wind field (yellow isotachs). Wind classification follows the Saffir–Simpson Hurricane Scale: tropical storm (TS: 63–118 km/h (18–32 m/s)), hurricane category one (H1: 119–153 km/h (33–42 m/s)), hurricane category two (H2: 154–177 km/h (43–49 m/s)), hurricane category three (H3: 178–208 km/h (50–58 m/s)). The map also shows the tropical forested areas (Evergreen Broadleaf), in dark green, obtained using yearly land cover type data (L3 Global 500 m SIM Grid V051, MCD12Q1, Section 2.2). Ocean and water bodies are shown in black and land cover types other than tropical forests are shown in gray. The inlet shows the location of the study area.</p> ">
<p>(<b>a</b>) Relationship between field-measured mortality and ΔNPV. The linear regression (blue line), and the 95% confidence (solid red line) and prediction (dashed red line) bands are shown; (<b>b</b>) Forest disturbance severity (ΔNPV) for the Vexcel, Landsat and MODIS data used. The location of the 400 m × 10 m transect which covered the full range of disturbance values is shown in white in the inset in Vexcel image. Landsat ΔNPV and MODIS ΔNPV show the impact across the whole forested area affected by Yasi. ΔNPV was not calculated over forested areas affected by cloud cover (dark grey in Landsat and dark green in MODIS) in either pre or post Yasi images. In the MODIS scene, ocean and water bodies are shown in black and land cover types other than tropical forests are shown in intensities of gray obtained using MCD12Q1. Yasi wind intensities (<a href="#f1-remotesensing-06-05633" class="html-fig">Figure 1</a>) are shown in dashed lines. For a comparison of the regional impact of Yasi on tropical forested areas, see <a href="#f1-remotesensing-06-05633" class="html-fig">Figure 1</a>. Data in (<b>b</b>) partially after [<a href="#b18-remotesensing-06-05633" class="html-bibr">18</a>].</p> ">
<p>MODIS-ΔNPV was used to analyze the effect of wind direction and topography across the whole forested area impacted by Yasi’s winds ≥18 m/s. (<b>a</b>) Winds from the NE to SW impacted forests with maximum forest disturbances (maximum ΔNPV) produced by NE winds; (<b>b</b>) Both wind speed and direction influence the severity of disturbance (ΔNPV); (<b>c</b>) The effect of surface orientation (aspect) and slope angle on disturbance. ΔNPV and slope angle were binned into 30°-aspect intervals between 0 and 360 (12 bins). For each interval the average was taken and multiplied by a weight value (number of pixel in the bin divided by the number of total pixels) and centered at each aspect bin interval. ΔNPV was finally normalized. (<b>d</b>) Association between ΔNPV, surface height and cyclones wind speeds (H*Wind, m/s). Data in (a), (c) and partially (d) are from [<a href="#b18-remotesensing-06-05633" class="html-bibr">18</a>].</p> ">
<p>Scaling up from local (<b>a</b>) to regional (<b>b</b>) derived disturbance. The scaling up was performed by aggregating pixels to the respective pixel size of comparison. The linear regression (blue line), and the 95% confidence (solid red line) and prediction (dashed red line) bands are shown. Data in (b) are from [<a href="#b18-remotesensing-06-05633" class="html-bibr">18</a>].</p> ">
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Yasi’s Surface Wind Data
2.3. Multispectral Data
2.4. Topography Data and Carbon Map
3. Method
4. Results
5. Discussion
5.1. Patterns of Forest Disturbance Associated with Topography
5.2. Disturbance Severity and Forests Type
5.3. Assessment of tree Mortality and Committed Carbon
5.4. Uncertainties, Errors, and Accuracy Issues
6. Conclusions
Supplementary Information
remotesensing-06-05633-s001.pdfAcknowledgments
Conflicts of Interest
- Author ContributionsAll authors contributed extensively to the work. Robinson Negrón-Juárez, Jeffrey Chambers and George Hurtt designed and performed the experiment. Bachir Annane, Stephen Cocke, and Mark Powell produced the H*wind data and contributed significantly to the analysis, interpretation and discussion of results. Stephen Goosem, Michael Stott, Daniel J. Metcalfe and Sassan S. Saatchi provided the ecological data and contributed significantly to the analysis, interpretation and discussion of results. Robinson Negrón-Juárez wrote the manuscript. Stephen Goosem edited the manuscript.
References
- World Meteorological Organization. Available online: http://www.wmo.int,tropicalcyclones (accessed on 5 December 2013).
- Foster, D.; Boose, E. Patterns of forest damage resulting from catastrophic wind in central New England, U.S.A. J. Ecol 1992, 80, 79–98. [Google Scholar]
- Metcalfe, D.; Bradford, M.; Ford, A. Cyclone damage to tropical rain forests: Species- and community-level impacts. Austral Ecol 2008, 33, 432–441. [Google Scholar]
- Lugo, A. Visible and invisible effects of hurricanes on forest ecosystems: An international review. Austral Ecol 2008, 33, 369–398. [Google Scholar]
- Everham, E.; Brokaw, N.V. Forest damage and recovery from catastrophic wind. Bot. Rev 1996, 62, 113–185. [Google Scholar]
- Van Bloem, S.; Murphy, P.; Lugo, A.; Ostertag, R.; Costa, M.; Bernard, I.; Colon, S.; Mora, M. The influence of hurricane winds on Caribbean dry forest structure and nutrient pools. Biotropica 2005, 37, 571–583. [Google Scholar]
- Turton, S. Landscape-scale impacts of Cyclone Larry on the forest of northern Australia, including comparisons with previous cyclones impacting the region between 1858 and 2006. Austral Ecol 2008, 33, 409–416. [Google Scholar]
- Chambers, J.; Fisher, J.; Zeng, H.; Chapman, E.; Baker, D.; Hurtt, G. Hurricane Katrina’s carbon footprint on U.S. Gulf Coast forest. Science 2007, 318. [Google Scholar] [CrossRef]
- Negrón-Juárez, R.; Chambers, J.; Zeng, H.; Baker, D. Hurricane driven changes in land cover create biogeophysical climate feedbacks. Geophys. Res. Lett 2008, 35. [Google Scholar] [CrossRef]
- Boose, E.; Serrano, M.; Foster, D. Landscape and regional impacts of hurricanes in Puerto Rico. Ecol. Monogr 2004, 74, 335–352. [Google Scholar]
- Xi, W.; Peet, R.; Decoster, J.; Urban, D. Tree damage risk factors associated with large, infrequent wind disturbances of Carolina forests. Forestry 2008, 81, 317–334. [Google Scholar]
- Masek, J.; Huang, C.; Wolfe, R.; Cohen, W.; Hall, F.; Kutler, J.; Nelson, P. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ 2008, 112, 2914–2926. [Google Scholar]
- Frolking, S.; Palace, M.; Clark, D.; Chambers, J.; Shugart, H.; Hurtt, G. Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J. Geophys. Res 2009, 114, 1–27. [Google Scholar]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ 2010, 114, 183–198. [Google Scholar]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ 2010, 114, 2897–2910. [Google Scholar]
- Zhu, Z.; Woodcock, C.E.; Olofsson, P. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens. Environ 2012, 122, 75–91. [Google Scholar]
- Negrón-Juárez, R.; Baker, D.; Zeng, H.; Henkel, T.; Chambers, J. Assessing hurricane-induced tree mortality in U.S. Gulf Coast forest ecosystems. J. Geophys. Res. Biogeo 2010, 115. [Google Scholar] [CrossRef]
- Negrón-Juárez, R.; Baker, D.; Chambers, J.; Hurtt, G.; Goosem, S. Multi-scale sensitivity of Landsat and MODIS to forest disturbance associated with tropical cyclones. Remote Sens. Environ 2014, 140, 679–689. [Google Scholar]
- Boose, E.; Foster, D.; Fluet, M. Hurricane impacts to tropical and temperate forest landscapes. Ecol. Monogr 1994, 64, 369–400. [Google Scholar]
- Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (Eds.) Cambridge University Press: New York, NY, USA, 2007.
- Saatchi, S.; Harrys, N.; Brown, S.; Lefsky, M.; Mitchard, E.; Salas, W.; Zutta, B.; Buemann, W.; Lewis, S.; Hagen, S.; et al. Benchmark map of forest carbon stock in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar]
- The Saffir-Simpson Hurricane Wind Scale. Available online: http://www.nhc.noaa.gov/pdf/sshws.pdf (accessed on 5 December 2013).
- Severe Tropical Cyclone Yasi—Bureau of Meteorology. Available online: http://www.bom.gov.au/cyclone/history/yasi.shtml (accessed on 5 December 2013).
- Webb, L. Cyclones as an ecological factor in tropical lowland rainforest, North Queensland. Aust. J. Bot 1958, 6, 220–228. [Google Scholar]
- Wet Tropics Management Authority—Wet Tropics World Heritage Area. Available online: http://www.wettropics.gov.au (accessed on 5 December 2013).
- Metcalfe, D.; Ford, A. Floristic Biodiversity in the Wet Tropics. In Chapter 7 in Living in a Dynamic Tropical Forest Landscape; Stork, N., Turton, S., Eds.; Blackwell: Oxford, UK, 2008; pp. 123–132. [Google Scholar]
- Metcalfe, D.; Ford, A. A re-evaluation of Queensland’s Wet Tropics based on primitive plants. Pac. Conserv. Biol 2009, 15, 80–86. [Google Scholar]
- Goosem, S.; Morgan, G.; Kemp, J. Wet Tropics. In The Conservation Status of Queensland’s Bioregional Ecosystems; Sattler, P.S., Williams, R.D., Eds.; Environmental Protection Agency: Brisbane, Australia, 1999; pp. 7/1–7/73. [Google Scholar]
- Powell, M.D.; Houston, S.; Amat, L.; Morisseau-Leroy, N. The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn 1998, 77–78, 53–64. [Google Scholar]
- Powell, M.D.; Murillo, S.; Dodge, P.; Uhlhorn, E.; Gamache, J.; Cardone, V.; Cox, A.; Otero, S.; Carrasco, N.; Annane, B.; Fleur, R. Reconstruction of Hurricane Katrina’s wind fields for storm surge and wave hindcasting. Ocean Eng 2010, 37, 26–36. [Google Scholar]
- Yasi H*Wind Data. Available online: ftp://ftp.aoml.noaa.gov/hrd/pub/annane/Yasi (accessed on 5 December 2013).
- AEROmetrex. Available online: http://aerometrex.com.au (accessed on 5 December 2013).
- Dimap Australia. Available online: http://www.dimap.com.au (accessed on 5 December 2013).
- U.S. Geological Survey. Available online: http://calval.cr.usgs.gov (accessed on 5 December 2013).
- Vermote, E.; Kotchenva, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res 2008, 113. [Google Scholar] [CrossRef]
- Souza, C.; Roberts, D.; Cochrane, M. Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sens. Environ 2005, 98, 329–343. [Google Scholar]
- NASA Land Data Products and Services-U.S. Geological Survey. Available online: https://lpdaac.usgs.gov (accessed on 5 December 2013).
- Adams, J.; Sabol, D.; Kapos, V.; Almeida Filho, R.; Roberts, D.; Smith, M.; Gillespie, A. Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon. Remote Sens. Environ 1995, 53, 137–154. [Google Scholar]
- Adams, J.B.; Gillespie, A.R. Remote Sensing of Landscapes with Spectral Images. In A Physical Modeling Approach; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Boardman, J.; Kruse, F.; Green, R. Mapping Target Signatures via Partial Unmixing of AVIRIS Data. Proceedings of Fifth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 23–26 January 1995; pp. 23–26.
- Chambers, J.Q.; Higuchi, C.; Schimel, J.; Fererira, L.; Melack, J. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 2000, 122, 380–388. [Google Scholar]
- Eisenhauer, J. Regression through the Origin. Teach. Stat 2003, 25, 76–80. [Google Scholar]
- Houze, R. Clouds in tropical cyclones. Mon. Weather Rev 2010, 138, 293–344. [Google Scholar]
- Commonwealth of Australia, National Inventory Report-NIR 2010. Available online: http://climatechange.gov.au/sites/climatechange/files/documents/03_2013/national-inventory-report-2010-2.pdf (accessed on 29 January 2014).
- Brokaw, N.; Walker, L. Summary of the effects of Caribbean hurricanes on vegetation. Biotropica 1991, 23, 442–447. [Google Scholar]
- Ramsay, H.; Leslie, L. The effects of complex terrain on severe landfalling tropical Cyclone Larry (2006) over Northeast Australia. Mon. Weather Rev 2008, 136, 4334–4354. [Google Scholar]
- Asner, G.P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens 2001, 22, 3855–3862. [Google Scholar]
- Knapp, K.; Kruk, M.; Levinson, D.; Diamond, H.; Neumann, C. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. B. Am. Meteorol. Soc 2010, 91, 363–376. [Google Scholar]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens 2006, 44, 2207–2218. [Google Scholar]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ 2002, 83, 3–15. [Google Scholar]
- Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ 2008, 112, 3112–3130. [Google Scholar]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Seitz, N.; White, J.C.; Gao, F.; Masek, J.G.; Stenhouse, G. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sens. Environ 2009, 113, 1988–1999. [Google Scholar]
- Hubert, S.; Schwarzer, S.; Jaquet, J.M. Spatial degradation of classified satellite images. Open Remote Sens. J 2012, 5, 64–72. [Google Scholar]
- Arun, P.V.; Katiyar, S.K. Intelligent adaptive resampling technique for the processing of remotely sensed imagery. Ann. GIS 2014, 20, 53–60. [Google Scholar]
- Gupta, R.; Prassad, T.; Rao, P.; Manikavelu, B. Problems in upscaling of high resolution remote sensing data to coarse spatial resolution over land surface. Adv. Space Res 2000, 27, 1111–1121. [Google Scholar]
- Fisher, J.; Mustard, J. Cross-scalar satellite phenology from ground, Landsat and MODIS data. Remote Sens. Environ 2007, 109, 261–273. [Google Scholar]
- Roman, M.; Gateve, C.; Shuai, Y.; Wang, Z.; Gao, F.; Masek, J.; He, T.; Liang, S.; Schaaf, C. Use of in situ and airborne multiangle data to assess MODIS- and Landsat-based estimates of directional reflectance and albedo. IEEE Trans. Geosci. Remote Sens 2013, 51, 1393–1404. [Google Scholar]
- Turton, S. Securing landscape resilience to tropical cyclones in Australia’s wet tropics under a changing climate: lessons from cyclones Larry (and Yasi). Geogr. Res 2012, 50, 15–30. [Google Scholar]
- Aster GEM-NASA. Available online: http://asterweb.jpl.nasa.gov/gdem.asp (accessed on 5 December 2013).
- Roberts, D.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ 1998, 65, 267–279. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Negrón-Juárez, R.I.; Chambers, J.Q.; Hurtt, G.C.; Annane, B.; Cocke, S.; Powell, M.; Stott, M.; Goosem, S.; Metcalfe, D.J.; Saatchi, S.S. Remote Sensing Assessment of Forest Disturbance across Complex Mountainous Terrain: The Pattern and Severity of Impacts of Tropical Cyclone Yasi on Australian Rainforests. Remote Sens. 2014, 6, 5633-5649. https://doi.org/10.3390/rs6065633
Negrón-Juárez RI, Chambers JQ, Hurtt GC, Annane B, Cocke S, Powell M, Stott M, Goosem S, Metcalfe DJ, Saatchi SS. Remote Sensing Assessment of Forest Disturbance across Complex Mountainous Terrain: The Pattern and Severity of Impacts of Tropical Cyclone Yasi on Australian Rainforests. Remote Sensing. 2014; 6(6):5633-5649. https://doi.org/10.3390/rs6065633
Chicago/Turabian StyleNegrón-Juárez, Robinson I., Jeffrey Q. Chambers, George C. Hurtt, Bachir Annane, Stephen Cocke, Mark Powell, Michael Stott, Stephen Goosem, Daniel J. Metcalfe, and Sassan S. Saatchi. 2014. "Remote Sensing Assessment of Forest Disturbance across Complex Mountainous Terrain: The Pattern and Severity of Impacts of Tropical Cyclone Yasi on Australian Rainforests" Remote Sensing 6, no. 6: 5633-5649. https://doi.org/10.3390/rs6065633
APA StyleNegrón-Juárez, R. I., Chambers, J. Q., Hurtt, G. C., Annane, B., Cocke, S., Powell, M., Stott, M., Goosem, S., Metcalfe, D. J., & Saatchi, S. S. (2014). Remote Sensing Assessment of Forest Disturbance across Complex Mountainous Terrain: The Pattern and Severity of Impacts of Tropical Cyclone Yasi on Australian Rainforests. Remote Sensing, 6(6), 5633-5649. https://doi.org/10.3390/rs6065633