Assessment of MODIS, MERIS, GEOV1 FPAR Products over Northern China with Ground Measured Data and by Analyzing Residential Effect in Mixed Pixel
<p>The cultivated land area in study area and fraction of photosynthetically active radiation (FPAR) ground measurements.</p> ">
<p>Validation of maize FPAR products based on ground measured (<b>a</b>) MODIS FPAR; (<b>b</b>) MERIS FPAR; (<b>c</b>) GEOV1 FPAR.Notes: <b>**</b> indicate the predicted parameter values (slope and intercept) are significantly different from <span class="html-italic">y</span> = <span class="html-italic">x</span> (slope = 1 and intercept = 0) separately at the 0.01 probability level, <b>**</b> also indicates the regressions <span class="html-italic">R</span><sup>2</sup> are significant at the 0.01 probability level.</p> ">
<p>Validation of winter wheat FPAR products based on ground-measured (<b>a</b>) MODIS FPAR; (<b>b</b>) MERIS FPAR; (<b>c</b>) GEOV1 FPAR.Notes: <b>**</b> and <b>*</b> indicate the predicted parameter values (slope and intercept) are significantly different from <span class="html-italic">y</span> = <span class="html-italic">x</span> (slope = 1 and intercept = 0) separately at the 0.01 and 0.05 probability level, <b>**</b> also indicates the regressions <span class="html-italic">R</span><sup>2</sup> are significant at the 0.01 probability level.</p> ">
<p>Maize and winter wheat FPAR frequencies of MODIS, MERIS and GEOV1 in different growth stages. (<b>a</b>) Maize MODIS FPAR; (<b>b</b>) Maize MERIS FPAR; (<b>c</b>) Maize GEOV1 FPAR; (<b>d</b>) Winter wheat MODIS FPAR; (<b>e</b>) Winter wheat MERIS FPAR; (<b>f</b>) Winter wheat GEOV1 FPAR.Note: <span class="html-italic">x</span>-axis is the FPAR interval for statistical analysis, <span class="html-italic">y</span>-axis is the FPAR value frequency.</p> ">
<p>Maize and winter wheat FPAR frequencies of MODIS, MERIS and GEOV1 in different growth stages. (<b>a</b>) Maize MODIS FPAR; (<b>b</b>) Maize MERIS FPAR; (<b>c</b>) Maize GEOV1 FPAR; (<b>d</b>) Winter wheat MODIS FPAR; (<b>e</b>) Winter wheat MERIS FPAR; (<b>f</b>) Winter wheat GEOV1 FPAR.Note: <span class="html-italic">x</span>-axis is the FPAR interval for statistical analysis, <span class="html-italic">y</span>-axis is the FPAR value frequency.</p> ">
<p>The regression <span class="html-italic">R</span><sup>2</sup> and RMSE among three FPAR products for maize (<b>a</b>) Regression <span class="html-italic">R</span><sup>2</sup>; (<b>b</b>) RMSE and winter wheat (<b>c</b>) Regression <span class="html-italic">R</span><sup>2</sup>; (<b>d</b>) RMSE.Note: MODIS-MERIS indicates that MODIS FPAR is the independent variable and meris FPAR is the dependent variable in the regression. The similar indications for MODIS-GEOV1 and MERIS-GEOV1.</p> ">
<p>The regression <span class="html-italic">R</span><sup>2</sup> and RMSE among three FPAR products for maize (<b>a</b>) Regression <span class="html-italic">R</span><sup>2</sup>; (<b>b</b>) RMSE and winter wheat (<b>c</b>) Regression <span class="html-italic">R</span><sup>2</sup>; (<b>d</b>) RMSE.Note: MODIS-MERIS indicates that MODIS FPAR is the independent variable and meris FPAR is the dependent variable in the regression. The similar indications for MODIS-GEOV1 and MERIS-GEOV1.</p> ">
<p>The changes of maize (<b>a</b>) MODIS; (<b>b</b>) MERIS; (<b>c</b>) GEOV1 FPAR in mixed pixel with residential area at different growth stages.</p> ">
<p>The changes of winter wheat (<b>a</b>) MODIS; (<b>b</b>) MERIS; (<b>c</b>) GEOV1 FPAR in mixed pixel with residential area at different growth stages.</p> ">
<p>The changing trend of FPAR in the mixed pixels affected by residential area percent.</p> ">
Abstract
:1. Introduction
2. Study Area and Methodology
2.1. Study Area
2.2. Data Collection
2.2.1. Field Measured Data
2.2.2. MODIS, MERIS and GEOV1 FPAR Products
2.2.3. Residential Area Percentage Data
2.3. Methodology
3. Results and Analysis
3.1. FPAR Validation of MODIS, MERIS and GEOV1 Products Based on Ground-Measured FPAR Data
3.2. Inter-Comparison among MODIS, MERIS and GEOV1 FPAR Products
3.2.1. Comparison of FPAR Frequency Distributions of MODIS, MERIS and GEOV1 at Different Growth Stages
3.2.2. Inter-Relationships of MODIS, MERIS and GEOV1 FPAR Data
3.3. Effect of Residential Areas in Mixed Pixels on the Accuracy of the Crop FPAR Product
3.3.1. Maize MODIS, MERIS, GEOV1 FPAR
3.3.2. Winter Wheat MODIS, MERIS, GEOV1 FPAR
4. Discussion
5. Conclusions
Acknowledgments
Appendix
Year | Sensors | R2 | RMSE | Slope | Intercept |
---|---|---|---|---|---|
2006 | MODIS-MERIS | 0.249 | 0.038 | 0.514 | 0.246 |
MODIS-GEOV1 | 0.338 | 0.033 | 0.505 | 0.212 | |
MERIS-GEOV1 | 0.656 | 0.016 | 0.682 | 0.128 | |
2007 | MODIS-MERIS | 0.767 | 0.009 | 0.710 | 0.186 |
MODIS-GEOV1 | 0.724 | 0.010 | 0.693 | 0.109 | |
MERIS-GEOV1 | 0.831 | 0.010 | 0.916 | −0.067 | |
2008 | MODIS-MERIS | 0.792 | 0.009 | 0.756 | 0.151 |
MODIS-GEOV1 | 0.764 | 0.010 | 0.709 | 0.110 | |
MERIS-GEOV1 | 0.831 | 0.010 | 0.871 | −0.007 | |
2009 | MODIS-MERIS | 0.741 | 0.012 | 0.744 | 0.140 |
MODIS-GEOV1 | 0.754 | 0.011 | 0.851 | −0.028 | |
MERIS-GEOV1 | 0.787 | 0.013 | 1.005 | −0.131 | |
2010 | MODIS-MERIS | 0.542 | 0.017 | 0.659 | 0.168 |
MODIS-GEOV1 | 0.572 | 0.016 | 0.594 | 0.154 | |
MERIS-GEOV1 | 0.642 | 0.017 | 0.704 | 0.104 |
Year | Sensors | R2 | RMSE | Slope | Intercept |
---|---|---|---|---|---|
2006 | MODIS-MERIS | 0.775 | 0.006 | 0.826 | 0.096 |
MODIS-GEOV1 | 0.832 | 0.004 | 0.702 | 0.072 | |
MERIS-GEOV1 | 0.849 | 0.004 | 0.755 | 0.014 | |
2007 | MODIS-MERIS | 0.650 | 0.010 | 0.873 | 0.101 |
MODIS-GEOV1 | 0.592 | 0.011 | 0.753 | 0.022 | |
MERIS-GEOV1 | 0.740 | 0.006 | 0.777 | −0.049 | |
2008 | MODIS-MERIS | 0.811 | 0.007 | 0.843 | 0.089 |
MODIS-GEOV1 | 0.740 | 0.010 | 0.813 | 0.061 | |
MERIS-GEOV1 | 0.851 | 0.007 | 0.932 | −0.023 | |
2009 | MODIS-MERIS | 0.691 | 0.008 | 0.808 | 0.111 |
MODIS-GEOV1 | 0.792 | 0.006 | 0.788 | 0.014 | |
MERIS-GEOV1 | 0.822 | 0.005 | 0.825 | −0.054 | |
2010 | MODIS-MERIS | 0.752 | 0.008 | 0.858 | 0.114 |
MODIS-GEOV1 | 0.791 | 0.006 | 0.753 | 0.055 | |
MERIS-GEOV1 | 0.807 | 0.006 | 0.769 | −0.025 |
Conflicts of Interest
- Author ContributionsIn this manuscript, Fei Yang provided the main ideas and ground measured FPAR data and also wrote the whole manuscript, Xiaoyu Li provided the main ideas and made much revision on English editing, Hongyan Ren and Maogui Hu helped much on processing MODIS and GEOV1 FPAR and Land use data, Yaping Yang provided the MODIS and GEOV1 FPAR products.
References
- Churkina, G.; Running, S.W. Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1998, 1, 206–215. [Google Scholar]
- Sellers, P.; Dickinson, R.; Randall, D.; Betts, A.; Hall, F.; Berry, J.; Collatz, G.; Denning, A.; Mooney, H.; Nobre, C. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar]
- Lobell, D.B.; Field, C.B. Global scale climate-crop yield relationships and the impacts of recent warming. Environ. Res. Lett 2007, 2, 014002. [Google Scholar]
- Gobron, N.; Belward, A.; Pinty, B.; Knorr, W. Monitoring biosphere vegetation 1998–2009. Geophys. Res. Lett 2010, 37. [Google Scholar] [CrossRef]
- Nunes, E.L.; Costa, M.H.; Malhado, A.C.M.; Dias, L.C.P.; Vieira, S.A.; Pinto, L.B. Monitoring carbon assimilation in South America’s tropical forests: Model specification and application to the Amazonian droughts of 2005 and 2010. Remote Sens. Environ 2012, 117, 449–463. [Google Scholar]
- FAPAR-Fraction of Absorbed Photosynthetically Active Radiation. Global Terrestrial Oberving System (GTOS), Assessment of the Status of the Development of the Standards for the Terrestrial Essential Climate Variables (Rome: FAO). Available online: http://www.fao.org/gtos/ECV-T10.html (accessed on 4 June 2014).
- Pickett-Heaps, C.A.; Canadell, J.G.; Briggs, P.R.; Gobron, N.; Haverd, V.; Paget, M.J.; Pinty, B.; Raupach, M.R. Evaluation of six satellite-derived Fraction of Absorbed Photosynthetic Active Radiation (FAPAR) products across the Australian continent. Remote Sens. Environ 2014, 140, 241–256. [Google Scholar]
- Veroustraete, F.; Patyn, J.; Myneni, R. Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model. Remote Sens. Environ 1996, 58, 115–130. [Google Scholar]
- Hall, F.; Masek, J.G.; Collatz, G.J. Evaluation of ISLSCP Initiative II FASIR and GIMMS NDVI products and implications for carbon cycle science. J. Geophys. Res. Atmos 2006, 111, D22S08. [Google Scholar]
- Connolly, J.; Roulet, N.T.; Seaquist, J.W.; Holden, N.M.; Lafleur, P.M.; Humphreys, E.R.; Heumann, B.W.; Ward, S.M. Using MODIS derived fPAR with ground based flux tower measurements to derive the light use efficiency for two Canadian peatlands. Biogeosciences 2009, 6, 225–234. [Google Scholar]
- Nightingale, J.; Morisette, J.; Wolfe, R.; Tan, B.; Gao, F.; Ederer, G.; Collatz, G.; Turner, D. Temporally smoothed and gap-filled MODIS land products for carbon modelling: Application of the fPAR product. Int. J. Remote Sens 2009, 30, 1083–1090. [Google Scholar]
- Seixas, J.; Carvalhais, N.; Nunes, C.; Benali, A. Comparative analysis of MODIS-FAPAR and MERIS-MGVI datasets: Potential impacts on ecosystem modeling. Remote Sens. Environ 2009, 113, 2547–2559. [Google Scholar]
- Haverd, V.; Raupach, M.R.; Briggs, P.R.; Canadell, J.G.; Isaac, P.; Pickett-Heaps, C.; Roxburgh, S.H.; van Gorsel, E.; Viscarra Rossel, R.A.; Wang, Z. Multiple observation types reduce uncertainty in Australia’s terrestrial carbon and water cycles. Biogeosciences 2013, 10, 2011–2040. [Google Scholar]
- McCallum, I.; Wagner, W.; Schmullius, C.; Shvidenko, A.; Obersteiner, M.; Fritz, S.; Nilsson, S. Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000. Remote Sens. Environ 2010, 114, 941–949. [Google Scholar]
- Steinberg, D.C.; Goetz, S. Assessment and extension of the MODIS FPAR products in temperate forests of the eastern United States. Int. J. Remote Sens 2009, 30, 169–187. [Google Scholar]
- Weiss, M.; Baret, F.; Garrigues, S.; Lacaze, R. LAI and fAPAR CYCLOPES global products derived from VEGETATION. Part 2: Validation and comparison with MODIS collection 4 products. Remote Sens. Environ 2007, 110, 317–331. [Google Scholar]
- Pinty, B.; Lavergne, T.; Voßbeck, M.; Kaminski, T.; Aussedat, O.; Giering, R.; Gobron, N.; Taberner, M.; Verstraete, M.; Widlowski, J.L. Retrieving surface parameters for climate models from Moderate Resolution Imaging Spectroradiometer (MODIS)-Multiangle Imaging Spectroradiometer (MISR) albedo products. J. Geophys. Res 2007, 112. [Google Scholar] [CrossRef]
- Martínez, B.; Camacho, F.; Verger, A.; García-Haro, F.; Gilabert, M. Intercomparison and quality assessment of MERIS, MODIS and SEVIRI FAPAR products over the Iberian Peninsula. Int. J. Appl. Earth Obs 2013, 21, 463–476. [Google Scholar]
- Serbin, S.P.; Ahl, D.E.; Gower, S.T. Spatial and temporal validation of the MODIS LAI and FPAR products across a boreal forest wildfire chronosequence. Remote Sens. Environ 2013, 133, 71–84. [Google Scholar]
- Huemmrich, K.; Privette, J.; Mukelabai, M.; Myneni, R.; Knyazikhin, Y. Time-series validation of MODIS land biophysical products in a Kalahari woodland, Africa. Int. J. Remote Sens 2005, 26, 4381–4398. [Google Scholar]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ 2004, 91, 490–507. [Google Scholar]
- Steinberg, D.C.; Goetz, S.J.; Hyer, E.J. Validation of MODIS F/sub PAR/products in boreal forests of Alaska. IEEE Trans. Geosci. Remote Sens. Lett 2006, 44, 1818–1828. [Google Scholar]
- Fritsch, S.; Machwitz, M.; Ehammer, A.; Conrad, C.; Dech, S. Validation of the collection 5 MODIS FPAR product in a heterogeneous agricultural landscape in arid Uzbekistan using multitemporal RapidEye imagery. Int. J. Remote Sens 2012, 33, 6818–6837. [Google Scholar]
- Chen, F.; Weber, K.T.; Anderson, J.; Gokhale, B. Comparison of MODIS fPAR products with Landsat-5 TM-Derived fPAR over semiarid rangelands of Idaho. GISci. Remote Sens 2010, 47, 360–378. [Google Scholar]
- Gobron, N.; Pinty, B.; Aussedat, O.; Taberner, M.; Faber, O.; Mélin, F.; Lavergne, T.; Robustelli, M.; Snoeij, P. Uncertainty estimates for the FAPAR operational products derived from MERIS—Impact of top-of-atmosphere radiance uncertainties and validation with field data. Remote Sens. Environ 2008, 112, 1871–1883. [Google Scholar]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 1: Principles of development and production. Remote Sens. Environ 2013, 137, 299–309. [Google Scholar]
- Meroni, M.; Atzberger, C.; Vancutsem, C.; Gobron, N.; Baret, F.; Lacaze, R.; Eerens, H.; Leo, O. Evaluation of agreement between space remote sensing SPOT-VEGETATION fAPAR time series. IEEE Int. Geosci. Remote Sens 2012, 51, 1951–1962. [Google Scholar]
- Camacho, F.; Cernicharo, J.; Lacaze, R.; Baret, F.; Weiss, M. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference product. Remote Sens. Environ 2013, 137, 310–329. [Google Scholar]
- D’Odorico, P.; Gonsamo, A.; Pinty, B.; Gobron, N.; Coops, N.; Mendez, E.; Schaepman, M.E. Intercomparison of fraction of absorbed photosynthetically active radiation products derived from satellite data over Europe. Remote Sens. Environ 2014, 142, 141–154. [Google Scholar]
- Chen, J.; Pavlic, G.; Brown, L.; Cihlar, J.; Leblanc, S.; White, H.; Hall, R.; Peddle, D. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sens. Environ 2002, 80, 165–184. [Google Scholar]
- Tian, Y.; Zhang, Y.; Knyazikhin, Y.; Myneni, R.B.; Glassy, J.M.; Dedieu, G.; Running, S.W. Prototyping of MODIS LAI and FPAR algorithm with LASUR and LANDSAT data. IEEE Trans. Geosci. Remote Sens 2000, 38, 2387–2401. [Google Scholar]
- Yang, P.; Shibasaki, R.; Wu, W.B.; Zhou, Q.B.; Chen, Z.X.; Zha, Y.; Shi, Y.; Tang, H.J. Evaluation of MODIS land cover and LAI products in cropland of North China plain using in situ measurements and landsat TM images. IEEE Trans. Geosci. Remote Sens 2007, 45, 3087–3097. [Google Scholar]
- Fang, H.; Li, W.; Myneni, R.B. The impact of potential land cover misclassification on MODIS leaf area index (LAI) estimation: A statistical perspective. Remote Sens 2013, 5, 830–844. [Google Scholar]
- Di Bella, C.M.; Paruelo, J.M.; Becerra, J.; Bacour, C.; Baret, F. Effect of senescent leaves on NDVI-based estimates of fAPAR: Experimental and modeling evidences. Int. J. Remote Sens 2004, 25, 5415–5427. [Google Scholar]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Maeirsperger, T.K.; Gower, S.T.; Kirschbaum, A.A.; Running, S.W.; Zhao, M.; Wofsy, S.C.; Dunn, A.L. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Glob. Chang. Biol 2005, 11, 666–684. [Google Scholar]
- Gallo, K.; Daughtry, C. Techniques for measuring intercepted and absorbed photosynthetically active radiation in corn canopies. Agron. J. (USA) 1986, 78, 752–756. [Google Scholar]
- NASA’s Earth Observing System Data and Information System. Available online: http://reverb.echo.nasa.gov/reverb (assessed on 18 September 2013).
- Meris ENVISAT 1km-10 Daily Synthesis. Available online: http://meriss10.vgt.vito.be/ (assessed on 29 September 2013).
- Geoland2. Available online: http://www.geoland2.eu/index.jsp/ (assessed on 14 October 2013).
- Knyazikhin, Y.; Martonchik, J.; Myneni, R.; Diner, D.; Running, S. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res 1998, 103, 32257–32276. [Google Scholar]
- Myneni, R.; Hoffman, S.; Knyazikhin, Y.; Privette, J.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ 2002, 83, 214–231. [Google Scholar]
- Baret, F.; Pavageau, K.; Béal, D.; Weiss, M.; Berthelot, B.; Regner, P. Algorithm Theoretical Basis Document for MERIS Top of Atmosphere Land Products (TOA_VEG); INRA-CSE: Avignon, France, 2006. [Google Scholar]
- Gobron, N. Envisat’s Medium Resolution Imaging Spectrometer (MERIS)-ESA, Algorithm Theoretical Basis Document: FAPAR and Rectified Channels over Terrestrial Surfaces; European Commission Joint Research Center: Ispra, Italy, 2011. [Google Scholar]
- Tang, X. Research on the Geo-Spatial Data Fusion; Chinese Academy of Sciences: Beijing, China, 2000. (In Chinese) [Google Scholar]
- De Kauwe, M.G.; Disney, M.I.; Quaife, T.; Lewis, P.; Williams, M. An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sens. Environ 2011, 115, 767–780. [Google Scholar]
- Wang, K.; Mao, J.; Dickinson, R.E.; Shi, X.; Post, W.M.; Zhu, Z.; Myneni, R.B. Evaluation of CLM4 solar radiation partitioning scheme using remote sensing and site level FPAR datasets. Remote Sens 2013, 5, 2857–2882. [Google Scholar]
- Hwang, T.; Song, C.; Bolstad, P.V.; Band, L.E. Downscaling real-time vegetation dynamics by fusing multi-temporal MODIS and Landsat NDVI in topographically complex terrain. Remote Sens. Environ 2011, 115, 2499–2512. [Google Scholar]
- Yang, F.; Zhu, Y.; Zhang, J.; Yao, Z. Estimating fraction of photosynthetically active radiation of corn with vegetation indices and neural network from hyperspectral data. Chin. Geogr. Sci 2012, 22, 63–74. [Google Scholar]
- Cristiano, P.M.; Posse, G.; Di Bella, C.M.; Jaimes, F.R. Uncertainties in fPAR estimation of grass canopies under different stress situations and differences in architecture. Int. J. Remote Sens 2010, 31, 4095–4109. [Google Scholar]
- Wu, W.B.; Yang, P.; Zhang, L.; Tang, H.J.; Zhou, Q.B.; Shibasaki, R. Accuracy assessment of four global land cover datasets in China. Trans. Chin. Soc. Agric. Eng 2009, 25, 167–173. [Google Scholar]
Crops | Growth Stages | |||||||
---|---|---|---|---|---|---|---|---|
Maize | Seeding | Three-leaf | Seven-leaf | Jounting | Tasseling | Silking | Milking | Mature |
Last dekad in May | first dekad in June | last dekad in June | middle dekad in July | last dekad in July | first dekad in August | last dekad in August | middle dekad in September | |
Winter wheat | Seeding | Tillering | Reviving | Jointing | Heading | Milking | Mature | |
First dekad in November | middle dekad in November | first dekad in March | first dekad in April | middle dekad in April | middle dekad in May | last dekad in May |
Biome | Study Area | Date | Samples Number | Repeat Times |
---|---|---|---|---|
Maize | Changchun, Jilin province | 26 June 2007 | 20 | 3 |
6 August 2007 | 21 | 3 | ||
15 August 2008 | 12 | 9 | ||
Winter wheat | Dezhou and Liaocheng, Shandong province | 13 April 2010 | 17 | 3 |
12 May 2010 | 40 | 3 |
FPAR Product | MODIS | MERIS | GEOV1 |
---|---|---|---|
Initiative | NASA | ESA | Geoland2 |
Sensor | MODIS/TERRA, MODIS/AUQA | MERIS/ENVISAT | MODIS/TERRA, MODIS/AUQA, VEGETATION/SPOT |
Spatial and temporal resolution | 1 km 8 days | 1 km 10 days | 1/112° 10 days |
Retrieval Model | 3-Dimension Radiative Transfer Model (Look up table), VI-FPAR | semi-discrete model of biodirectional reflectance factor model with atmospheric model 6S | 3-Dimension Radiative Transfer Model, Scattering by Arbitrarily Inclined Leaves radiative transfer model, Neural Networks |
Valid range, scale | 0–100, 0.01 | 0–250, 0.005 | 0–235, 0.004 |
Period | 2000 until now | 2002 to 2012 | 1999 until now |
Product distribution website | [37] | [38] | [39] |
Reference | [40,41] | [42,43] | [28] |
Maize Growth Stage | Sensors | Function | R2 | RMSE | Sig. | F |
---|---|---|---|---|---|---|
Seeding stage | MODIS | y = −0.021 x2 + 0.065 x + 0.150 | 0.862 | 0.007 | 0.000 | 25.055 |
MERIS | y = 0.009 x2 + 0.010 x + 0.090 | 0.757 | 0.004 | 0.004 | 12.432 | |
GEOV1 | y = −0.003 x2 + 0.013 x + 0.082 | 0.744 | 0.002 | 0.004 | 11.624 | |
Three-leaf stage | MODIS | y = −0.080 x2 + 0.067 x + 0.237 | 0.746 | 0.006 | 0.004 | 11.741 |
MERIS | y = −0.014 x2 + 0.037 x + 0.098 | 0.775 | 0.005 | 0.003 | 13.798 | |
GEOV1 | y = −0.013 x2 + 0.033 x + 0.092 | 0.903 | 0.003 | 0.000 | 37.394 | |
Seven-leaf stage | MODIS | y = −0.142 x2 + 0.006 x + 0.437 | 0.965 | 0.010 | 0.000 | 109.479 |
MERIS | y = −0.096 x2 + 0.057 x + 0.214 | 0.871 | 0.007 | 0.000 | 27.007 | |
GEOV1 | y = −0.175 x2 + 0.093 x + 0.248 | 0.985 | 0.004 | 0.000 | 266.447 | |
Jointing stage | MODIS | y = −0.210 x2 − 0.163 x + 0.745 | 0.991 | 0.013 | 0.000 | 445.632 |
MERIS | y = −0.339 x2 + 0.025 x + 0.556 | 0.981 | 0.017 | 0.000 | 205.108 | |
GEOV1 | y = −0.445 x2 + 0.083 x + 0.599 | 0.997 | 0.008 | 0.000 | 1180.000 | |
Tasseling stage | MODIS | y = −0.244 x2 − 0.121 x + 0.777 | 0.991 | 0.013 | 0.000 | 426.978 |
MERIS | y = −0.485 x2 + 0.005 x + 0.759 | 0.989 | 0.019 | 0.000 | 368.565 | |
GEOV1 | y = −0.609 x2 + 0.116 x + 0.797 | 0.996 | 0.012 | 0.000 | 1125.000 | |
Silking stage | MODIS | y = −0.210 x2 − 0.121 x + 0.741 | 0.987 | 0.014 | 0.000 | 312.315 |
MERIS | y = −0.492 x2 − 0.035 x + 0.795 | 0.995 | 0.014 | 0.000 | 806.723 | |
GEOV1 | y = −0.690 x2 + 0.177 x + 0.866 | 0.995 | 0.014 | 0.000 | 812.672 | |
Milking stage | MODIS | y = −0.191 x2 − 0.122 x + 0.680 | 0.987 | 0.014 | 0.000 | 294.201 |
MERIS | y = −0.439 x2 − 0.021 x + 0.679 | 0.997 | 0.009 | 0.000 | 1430 | |
GEOV1 | y = −0.587 x2 + 0.058 x + 0.844 | 0.997 | 0.011 | 0.000 | 1512.000 | |
Mature stage | MODIS | y = −0.162 x2 − 0.053 x + 0.522 | 0.974 | 0.013 | 0.000 | 147.172 |
MERIS | y = −0.326 x2 + 0.020 x + 0.482 | 0.995 | 0.008 | 0.000 | 838.504 | |
GEOV1 | y = −0.494 x2 + 0.024 x + 0.725 | 0.997 | 0.010 | 0.000 | 1426.000 |
Winter Wheat Growth Stage | Sensors | Function | R2 | RMSE | Sig. | F |
---|---|---|---|---|---|---|
Seeding stage | MODIS | y = −0.070 x2 + 0.061 x + 0.221 | 0.501 | 0.008 | 0.062 | 4.022 |
MERIS | y = −0.055 x2 + 0.032 x + 0.164 | 0.693 | 0.007 | 0.009 | 9.041 | |
GEOV1 | y = −0.290 x2 + 0.159 x + 0.219 | 0.904 | 0.019 | 0.000 | 37.569 | |
Tillering stage | MODIS | y = −0.225 x2 + 0.100 x + 0.274 | 0.928 | 0.014 | 0.000 | 51.31 |
MERIS | y = −0.115 x2 + 0.066 x + 0.158 | 0.975 | 0.003 | 0.000 | 155.313 | |
GEOV1 | y = −0.441 x2 + 0.241 x + 0.279 | 0.967 | 0.016 | 0.000 | 118.046 | |
Reviving stage | MODIS | y = −0.114 x2 + 0.067 x + 0.155 | 0.903 | 0.007 | 0.000 | 37.063 |
MERIS | y = −0.075 x2 + 0.048 x + 0.115 | 0.945 | 0.003 | 0.000 | 69.283 | |
GEOV1 | y = −0.267 x2 + 0.138 x + 0.163 | 0.988 | 0.006 | 0.000 | 332.654 | |
Jointing stage | MODIS | y = −0.340 x2 + 0.151 x + 0.410 | 0.936 | 0.021 | 0.000 | 58.201 |
MERIS | y = −0.274 x2 + 0.131 x + 0.303 | 0.981 | 0.008 | 0.000 | 209.818 | |
GEOV1 | y = −0.600 x2 + 0.293 x + 0.369 | 0.989 | 0.014 | 0.000 | 347.61 | |
Heading stage | MODIS | y = −0.416 x2 + 0.197 x + 0.502 | 0.936 | 0.024 | 0.000 | 58.606 |
MERIS | y = −0.417 x2 + 0.217 x + 0.418 | 0.962 | 0.017 | 0.000 | 100.91 | |
GEOV1 | y = −0.785 x2 + 0.404 x + 0.477 | 0.982 | 0.022 | 0.000 | 212.955 | |
Milking stage | MODIS | y = −0.350 x2 + 0.184 x + 0.477 | 0.934 | 0.019 | 0.000 | 56.939 |
MERIS | y = −0.438 x2 + 0.247 x + 0.445 | 0.956 | 0.018 | 0.000 | 87.81 | |
GEOV1 | y = −0.904 x2 + 0.488 x + 0.561 | 0.971 | 0.031 | 0.000 | 132.687 | |
Mature stage | MODIS | y = −0.303 x2 + 0.158 x + 0.429 | 0.923 | 0.018 | 0.000 | 47.703 |
MERIS | y = −0.215 x2 + 0.127 x + 0.309 | 0.916 | 0.012 | 0.000 | 43.813 | |
GEOV1 | y = −0.672 x2 + 0.357 x + 0.445 | 0.964 | 0.026 | 0.000 | 107.842 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yang, F.; Ren, H.; Li, X.; Hu, M.; Yang, Y. Assessment of MODIS, MERIS, GEOV1 FPAR Products over Northern China with Ground Measured Data and by Analyzing Residential Effect in Mixed Pixel. Remote Sens. 2014, 6, 5428-5451. https://doi.org/10.3390/rs6065428
Yang F, Ren H, Li X, Hu M, Yang Y. Assessment of MODIS, MERIS, GEOV1 FPAR Products over Northern China with Ground Measured Data and by Analyzing Residential Effect in Mixed Pixel. Remote Sensing. 2014; 6(6):5428-5451. https://doi.org/10.3390/rs6065428
Chicago/Turabian StyleYang, Fei, Hongyan Ren, Xiaoyu Li, Maogui Hu, and Yaping Yang. 2014. "Assessment of MODIS, MERIS, GEOV1 FPAR Products over Northern China with Ground Measured Data and by Analyzing Residential Effect in Mixed Pixel" Remote Sensing 6, no. 6: 5428-5451. https://doi.org/10.3390/rs6065428
APA StyleYang, F., Ren, H., Li, X., Hu, M., & Yang, Y. (2014). Assessment of MODIS, MERIS, GEOV1 FPAR Products over Northern China with Ground Measured Data and by Analyzing Residential Effect in Mixed Pixel. Remote Sensing, 6(6), 5428-5451. https://doi.org/10.3390/rs6065428