Estimating Canopy Characteristics of Inner Mongolia’s Grasslands from Field Spectrometry
<p>Spatial locations of 61 sampling sites in the study area overlaid on land cover types in Inner Mongolia, China. The land cover types were from the 1:4,000,000 Vegetation Atlas of China compiled by the Editorial Board of Vegetation Maps of China, 2001.</p> ">
<p>Changes in spectral reflectance of (<b>a</b>) 2006 and 2007; and (<b>b</b>) Class I, Class II, and Class III in Inner Mongolia.</p> ">
<p>The relationships between transformed canopy features and selected spectral drivers for (<b>a</b>) <span class="html-italic">PGC</span> (%); (<b>b</b>) <span class="html-italic">H</span> (cm); (<b>c</b>) <span class="html-italic">GBM</span> (g·m<sup>−2</sup>); and (<b>d</b>) <span class="html-italic">TBM</span> (g·m<sup>−2</sup>) in Inner Mongolia. The driving factors were selected with stepwise linear regression with <span class="html-italic">p <</span> 0.05.</p> ">
<p>The relationships between transformed canopy features and selected spectral drivers for (<b>a</b>) <span class="html-italic">PGC</span> (%); (<b>b</b>) <span class="html-italic">H</span> (cm); (<b>c</b>) <span class="html-italic">GBM</span> (g·m<sup>−2</sup>); and (<b>d</b>) <span class="html-italic">TBM</span> (g·m<sup>−2</sup>) in Inner Mongolia. The driving factors were selected with stepwise linear regression with <span class="html-italic">p <</span> 0.05.</p> ">
<p>Variations of correlation coefficients of determination (R<sup>2</sup>) with wavelength, showing the important wavelengths needed for estimating <span class="html-italic">PGC</span> (%), <span class="html-italic">H</span> (cm), <span class="html-italic">GBM</span> (g·m<sup>−2</sup>), and <span class="html-italic">TBM</span> (g·m<sup>−2</sup>) in Inner Mongolia.</p> ">
<p>The empirical relationships between transformed (<b>a</b>) <span class="html-italic">PGC</span> (%); (<b>b</b>) <span class="html-italic">H</span> (cm); (<b>c</b>) <span class="html-italic">GBM</span> (g·m<sup>−2</sup>); and (<b>d</b>) <span class="html-italic">TBM</span> (g·m<sup>−2</sup>) and canopy reflectance in Inner Mongolia. The significant driving variables were selected with stepwise linear regression with <span class="html-italic">p <</span> 0.05.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Field Spectral Measurement
2.3. Vegetation Sampling
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Variation in the Canopy Properties and Reflectance Spectrum
3.2. Estimations from VIs
3.3. Estimations from Reflectance Spectra
3.4. Estimations from Continuum-Removal Spectra and drre
3.5. Estimations Using All Independent Variables
3.6. Estimations by Disturbances and Ecosystem Type
4. Discussions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cy 1993, 7, 811–841. [Google Scholar]
- Sellers, P.J.; Randall, D.A.; Collatz, G.J.; Berry, J.A.; Field, C.B.; Dazlich, D.A.; Zhang, C.; Collelo, G.D.; Bounoua, L. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Clim 1996, 9, 676–705. [Google Scholar]
- Privette, J.L.; Tian, Y.; Roberts, G.; Scholes, R.J.; Wang, Y.; Caylor, K.K.; Frost, P.; Mukelabai, M. Vegetation structure characteristics and relationships of Kalahari woodlands and savannas. Glob. Chang. Biol 2004, 10, 281–291. [Google Scholar]
- Hall, F.G.; Townshend, J.R.; Eegman, E.T. Status of remote sensing algorithms for estimation of land-surface state parameters. Remote Sens. Environ 1995, 51, 138–156. [Google Scholar]
- Okin, G.S.; Roberts, D.A.; Murray, B.; Okin, W.J. Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments. Remote Sens. Environ 2001, 77, 212–225. [Google Scholar]
- Goetz, A.F.H. Imaging spectrometry for remote sensing: Vision to reality in 15 Years. Proc. SPIE 1995, 2480. [Google Scholar] [CrossRef]
- Schmidt, K.S.; Skidmore, A.K. Spectral discrimination of vegetation types in a coastal wetland. Remote Sens. Environ 2003, 85, 92–108. [Google Scholar]
- Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ 1998, 64, 234–253. [Google Scholar]
- Knipling, E.B. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens. Environ 1970, 1, 155–159. [Google Scholar]
- Martin, M.E.; Newman, S.D.; Aber, J.D.; Congalton, R.G. Determining forest species composition using high spectral resolution remote sensing data. Remote Sens. Environ 1998, 65, 249–254. [Google Scholar]
- Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens 2004, 25, 3999–4014. [Google Scholar]
- Rollin, E.M.; Millton, E.J. Processing of high spectral resolution reflectance data for the retrieval of canopy water content information. Remote Sens. Environ 1998, 65, 86–92. [Google Scholar]
- Asner, G.P.; Wessman, C.A.; Bateson, C.A.; Privette, J.L. Impact of tissue, canopy, and landscape factors on the hyperspectral reflectance variability of arid ecosystems. Remote Sens. Environ 2000, 74, 69–84. [Google Scholar]
- Mutanga, O.; Skidmore, A.K.; Prins, H.H.T. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sens. Environ 2004, 89, 393–408. [Google Scholar]
- Ren, H.; Zhou, G. Estimating senesced biomass of desert steppe in Inner Mongolia using field spectrometric data. Agric. For. Meteorol 2012, 161, 66–71. [Google Scholar]
- Ren, H.; Zhou, G.; Zhang, F.; Zhang, X. Evaluating cellulose absorption index (CAI) for non-photosynthetic biomass estimation in the desert steppe of Inner Mongolia. Chin. Sci. Bull 2012, 57. [Google Scholar] [CrossRef]
- Gausman, H.W. Plant Leaf Optical Properties in Visible and Near Infrared Light; Graduate Studies, Texas Tech University (No. 29); Texas Technical Press: Lubbock, TX, USA, 1985. [Google Scholar]
- Carter, G.A. Responses of leaf spectral reflectance to plant stress. Am. J. Bot 1993, 80, 239–243. [Google Scholar]
- Carter, G.A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int. J. Remote Sens 1994, 15, 697–703. [Google Scholar]
- Roberts, D.A.; Nelson, B.W.; Adams, J.B.; Palmer, F. Spectral changes with leaf aging in Amazon caatinga. Trees 1998, 12, 315–325. [Google Scholar]
- Garcia, M.; Ustin, S.L. Detection of interannual vegetation responses to climatic variability using AVIRIS data in a coastal savanna in California. IEEE Trans. Geosci. Remote Sens 2001, 39, 1480–1490. [Google Scholar]
- Smith, K.L.; Steven, M.D.; Colls, J.J. Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sens. Environ 2004, 92, 207–217. [Google Scholar]
- De Paul Obade, V.; Lal, V.R.; Chen, J. Remote sensing of soil and water quality in agroecosystems. Water Air Soil Pollut 2013, 224. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Lu, N.; Wilske, B. Land cover /land use change and their ecological consequences. Environ. Res. Lett 2009, 4. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Ou-Yang, Z.-T.; Xiao, J.; Becker, R.; Samanta, A.; Ganguly, S.; Yuan, W.; Batkhishig, O. Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environ. Res. Lett 2013, 8. [Google Scholar] [CrossRef]
- Qi, J.; Chen, J.; Wan, S.; Ai, L. Understanding the coupled natural and human systems in Dryland East Asia. Environ. Res. Lett 2012, 7. [Google Scholar] [CrossRef]
- Editoral Committee of Series Resources Maps of Inner Mongolia Autonomous Region (ECSRMIMAR), Explanation of Series Resources Maps of Inner Mongolia Autonomous Region; Science Press: Beijing, China, 1988; pp. 40–128.
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least square procedure. Anal. Chem 1964, 36, 1627–1638. [Google Scholar]
- Rouse, J.W.; Haas, R.H., Jr.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Progress Report RSC 1978-1; Remote Sensing Center, Texas A&M University: College Station, TX, USA, 1973. [Google Scholar]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; Van Leeuwen, W. A comparison of vegetation indices global set of TM images for EOSMODIS. Remote Sens. Environ 1997, 59, 440–451. [Google Scholar]
- Qi, J.; Marsett, R.; Heilman, P.; Biedenbender, S.; Wallace, O.; Wang, C.; Goodrich, D.; Moran, S.; Weltz, M. Improved rangeland information from satellites for land cover change studies in the Southwest. EOS Trans. AGU 2002, 83, 605–606. [Google Scholar]
- Jurgens, C. The modified normalized difference vegetation index (mNDVI)—A new index to determine frost damages in agriculture based on Landsat TM data. Int. J. Remote Sens 1997, 18, 3583–3594. [Google Scholar]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ 2005, 95, 480–492. [Google Scholar]
- Filella, I.; Peñuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric. Int. J. Remote Sens 1994, 15, 1459–1470. [Google Scholar]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res 1984, 89, 6329–6340. [Google Scholar]
- Kokaly, R.F.; Clark, R.N. Spectroscopic determination of leaf biochemistry using optical band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens. Environ 1999, 67, 267–287. [Google Scholar]
- Curran, P.J.; Dungan, J.L.; Peterson, D.L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry testing the Kokaly and Clark methodologies. Remote Sens. Environ 2001, 76, 349–359. [Google Scholar]
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.; Schlerf, M. Mapping grassland leaf area index with airborne hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer models. ISPRS J. Photogramm. Remote Sens 2011, 66, 894–906. [Google Scholar]
- Atzberger, C.; Guérif, M.; Baret, F.; Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electron. Agr 2010, 73, 165–173. [Google Scholar]
- Richter, K.; Atzberger, C.; Hank, T.B.; Mauser, W. Derivation of biophysical variables from earth observation data: Validation and statistical measures. J. Appl. Remote Sens 2012, 6. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ 2002, 81, 416–426. [Google Scholar]
- Treitz, P.M.; Howarth, P.J. Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems. Prog. Phys. Geogr 1999, 23, 359–390. [Google Scholar]
- Lu, N.; Chen, S.; Wilske, B.; Sun, G.; Chen, J. Evapotranspiration and soil water relationships in a range of disturbed and undisturbed ecosystems in the semi-arid Inner Mongolia, China. J. Plant Ecol 2011, 4, 49–60. [Google Scholar]
- Clevers, J.; Buker, C. Feasibility of the red edge index for the detection of nitrogen deficiency. Proceedings of the 5th International Colloquium on Physical Measurements and Signatures in Remote Sensing, Noordwijk, The Netherlands, 14–18 January 1991; ESA SP-319. pp. 165–168.
- Cho, M.A.; Skidmore, A.K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens. Environ 2006, 101, 181–193. [Google Scholar]
- Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E. Using spectral information from the NIR water absorption features for the retrieval of canopy water content. Int. J. Appl. Earth Obs 2008, 10, 388–397. [Google Scholar]
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.K.; Abkar, A.A. Leaf Area Index derivation from hyperspectral vegetation indices and the red edge position. Int. J. Remote Sens 2009, 30, 6199–6218. [Google Scholar]
- Ren, H.; Zhou, G.; Zhang, X. Estimation of green aboveground biomass of desert steppe in Inner Mongolia based on red-edge reflectance curve area method. Biosyst. Eng 2011, 109, 385–395. [Google Scholar]
- Ponzoni, F.J.; Goncalves, J.L. Spectral features associated with nitrogen, phosphorous, and potassium deficiencies in Eucalyptus saligna seedling leaves. Int. J. Remote Sens 1999, 20, 2249–2264. [Google Scholar]
- Underwood, E.; Ustin, S.; DiPietro, D. Mapping nonnative plants using hyper spectral imagery. Remote Sens. Environ 2003, 86, 150–161. [Google Scholar]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens. Environ 2008, 112, 2592–2604. [Google Scholar]
- Röder, A.; Kuemmerle, T.; Hill, J.; Papanastasis, V.P.; Tsiourlis, G.M. Adaptation of a grazing gradient concept to heterogeneous Mediterranean rangelands using cost surface modelling. Ecol. Model 2007, 204, 387–398. [Google Scholar]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Cho, M.A. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. Remote Sens 2008, 63, 409–426. [Google Scholar]
Min | Mean | Max | SD | Coefficient of Variation | |
---|---|---|---|---|---|
The whole study area (n = 61) | |||||
PGC (%) | 3.0 | 28.0 | 78.8 | 21.77 | 0.78 |
H (cm) | 4.3 | 19.1 | 45.0 | 10.69 | 0.56 |
GBM (g·m−2) | 4.8 | 72.6 | 336.4 | 72.23 | 1.00 |
TBM (g·m−2) | 7.6 | 91.5 | 362.7 | 88.18 | 0.96 |
Class I: less disturbances in typical steppe (n = 11) | |||||
PGC (%) | 28.3 | 56.1 | 78.8 | 16.01 | 0.29 |
H (cm) | 13.7 | 27.5 | 41.7 | 9.07 | 0.33 |
GBM (g·m−2) | 70.6 | 150.4 | 302.9 | 69.95 | 0.47 |
TBM (g·m−2) | 127.4 | 212.4 | 362.7 | 84.53 | 0.40 |
Class II: more disturbances in typical steppe (n = 24) | |||||
PGC (%) | 5.0 | 32.9 | 75.0 | 18.96 | 0.58 |
H (cm) | 4.3 | 17.0 | 39.7 | 10.10 | 0.59 |
GBM (g·m−2) | 12.4 | 51.3 | 142.0 | 28.02 | 0.55 |
TBM (g·m−2) | 13.9 | 63.1 | 142.0 | 31.25 | 0.50 |
Class III: desert steppe (n = 26) | |||||
PGC (%) | 3.0 | 11.6 | 41.7 | 7.28 | 0.63 |
H (cm) | 5.0 | 17.4 | 45.0 | 10.45 | 0.60 |
GBM (g·m−2) | 4.8 | 58.7 | 336.4 | 81.29 | 1.39 |
TBM (g·m−2) | 7.6 | 65.6 | 360.0 | 83.68 | 1.28 |
Spectra1 | Spectra2 | Spectra3 | R2 | |
---|---|---|---|---|
PGC | Dc | drre | Darea | 0.41 |
H | Dc | - | - | 0.30 |
GBM | Dc | drre | Darea | 0.27 |
TBM | Dc | drre | Darea | 0.31 |
[ln(PGC)]0.5 | Dc | drre | Darea | 0.54 |
[ln(H)]0.5 | Dc | Dc/Darea | - | 0.43 |
[ln(GBM)]0.5 | Dc | drre | Darea | 0.44 |
[ln(TBM)]0.5 | Dc | drre | Darea | 0.51 |
Spectra1 | Spectra2 | Spectra3 | Spectra4 | R2 | |
---|---|---|---|---|---|
PGC | NDSVI | EVI | - | - | 0.55 |
H | 1640 nm | - | - | - | 0.33 |
GBM | 421 nm | - | - | - | 0.24 |
TBM | 421 nm | 676 nm | - | - | 0.32 |
[ln(PGC)]0.5 | drre | 441 nm | 1210 nm | - | 0.72 |
[ln(PGC)]0.5 | drre | 441 nm | 1210 nm | 676 nm | 0.74 |
[ln(H)]0.5 | 1640 nm | - | - | - | 0.40 |
[ln(GBM)]0.5 | 421 nm | drre | 723 nm | NDVI | 0.55 |
[ln(TBM)]0.5 | drre | 723 nm | NDVI | - | 0.57 |
[ln(TBM)]0.5 | drre | 723 nm | NDVI | 676 nm | 0.62 |
[ln(PGC)]0.5 | [ln(H)]0.5 | [ln(GBM)]0.5 | [ln(TBM)]0.5 | |||||
---|---|---|---|---|---|---|---|---|
VIs | Factors | R2 | Factors | R2 | Factors | R2 | Factors | R2 |
NDSVI | NDVI | NDSVI | NDSVI | |||||
EVI | 0.73 | 0.45 | 0.37 | 0.48 | ||||
Reflectance spectra | 441 nm | 1640 nm | 421 nm | 421 nm | ||||
2220 nm | 0.81 | 0.49 | 676 nm | 0.47 | 676 nm | 0.56 | ||
Absorption in red domain | Dc | Dc | Dc | Dc | ||||
drre | Dc/Darea | drre | drre | |||||
Darea | 0.65 | 0.50 | Darea | 0.59 | Darea | 0.63 | ||
Comprehensive model | drre | Dc | 421 nm | drre | ||||
441 nm | Dc/Darea | drre | 723 nm | |||||
1210 nm | 723 nm | NDVI | ||||||
676 nm | 0.84 | 0.50 | NDVI | 0.65 | 676 nm | 0.70 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, F.; John, R.; Zhou, G.; Shao, C.; Chen, J. Estimating Canopy Characteristics of Inner Mongolia’s Grasslands from Field Spectrometry. Remote Sens. 2014, 6, 2239-2254. https://doi.org/10.3390/rs6032239
Zhang F, John R, Zhou G, Shao C, Chen J. Estimating Canopy Characteristics of Inner Mongolia’s Grasslands from Field Spectrometry. Remote Sensing. 2014; 6(3):2239-2254. https://doi.org/10.3390/rs6032239
Chicago/Turabian StyleZhang, Feng, Ranjeet John, Guangsheng Zhou, Changliang Shao, and Jiquan Chen. 2014. "Estimating Canopy Characteristics of Inner Mongolia’s Grasslands from Field Spectrometry" Remote Sensing 6, no. 3: 2239-2254. https://doi.org/10.3390/rs6032239
APA StyleZhang, F., John, R., Zhou, G., Shao, C., & Chen, J. (2014). Estimating Canopy Characteristics of Inner Mongolia’s Grasslands from Field Spectrometry. Remote Sensing, 6(3), 2239-2254. https://doi.org/10.3390/rs6032239