Land Cover and Land Use Classification with TWOPAC: towards Automated Processing for Pixel- and Object-Based Image Classification
<p>Flowchart of the Twinned Object- and Pixel based Automated classification Chain (TWOPAC).</p> ">
<p>Sampling procedure—selection and extraction of segments with features.</p> ">
<p>Classification result of TWOPAC run with Rapid Eye mosaic (2010-01-27) from the central part of the Mekong Delta—subset of object-based result (<b>a</b>); detail on rural area and natural tree area (<b>b</b>); detail on urban area (<b>c</b>).</p> ">
<p>Classification result of TWOPAC run with SPOT5 dataset (2008-01-08) from the western coast of the Mekong Delta—subset of pixel-based result ((<b>a</b>) detail on rural area and natural tree area in (<b>b</b>); detail on urban area (<b>c</b>)); subset of object-based result ((<b>d</b>) details in (<b>e</b>,<b>f</b>)).</p> ">
<p>Classification result of TWOPAC run with SPOT 4 dataset (2010-01-02) from the Dongting lake, Hunan province, China: pixel-based result generated with C5.0 ((<b>a</b>), details in (<b>b</b>,<b>c</b>)); for comparison maximum likelihood classification ((<b>d</b>), details in (<b>e</b>,<b>f</b>)).</p> ">
<p>Classification result of TWOPAC run with multi-temporal MODIS 8 tiles mosaic (2009) for Central Asia: Overview of the classification result for Uzbekistan (<b>a</b>); details on specific land cover types—cultivated area and natural vegetation (<b>b</b>,<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Method
2.1. TWOPAC Overview
2.2. Data
2.3. Input Data Generation
2.4. Sampling Data Generation
2.5. TWOPAC Automated Processing Steps
2.5.1. Preparation of the Classification
2.5.2. Classification Algorithm
2.5.3. Validation Method
2.5.4. Classification of Pre-Processed Dataset
2.5.5. Information Storage
2.6. Technical Implementation
3. Results
3.1. Object-Based Classification of Large Mosaic Data Set
3.2. Comparison of Pixel- and Object-Based Classification
3.3. Comparison of C5.0 TWOPAC Classification with Maximum Likelihood Classification
3.4. Classification of Large MODIS Time Series Data Set
4. Discussion
5. Conclusion and Outlook
Acknowledgments
References
- Brown, D.G.; Duh, J.-D. Spatial simulation for translating from land use to land cover. Int. J. Geogr. Inf. Sci 2004, 18, 35–60. [Google Scholar]
- Campbell, J.B. Introduction to Remote Sensing, 4th ed.; Taylor & Francis: London, UK, 2006; p. 626. [Google Scholar]
- Cihlar, J.; Jansen, L.J.M. From land cover to land use: A methodology for efficient land use mapping over large areas. Prof. Geogr 2001, 53, 275–289. [Google Scholar]
- Herold, M. Assessment of the Status of the Development of the Standards for the Terrestrial Essential Climate Variables. Land. Land Cover; FAO: Rome, Italy, 2009. [Google Scholar]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Cihlar, J. Land cover mapping of large areas from satellites: Status and research priorities. Int. J. Remote Sens 2000, 21, 1093–1114. [Google Scholar]
- Franklin, S.E.; Wulder, M.A. Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas. Progr. Phys. Geogr 2002, 26, 173–205. [Google Scholar]
- Knorn, J.; Rabe, A.; Radeloff, V.C.; Kuemmerle, T.; Kozak, J.; Hostert, P. Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote Sens. Environ 2009, 113, 957–964. [Google Scholar]
- Rogan, J.; Franklin, J.; Stow, D.; Miller, J.; Woodcock, C.; Roberts, D. Mapping land-cover modifications over large areas: A comparison of machine learning algorithms. Remote Sens. Environ 2008, 112, 2272–2283. [Google Scholar]
- Schaaf, C.B.; Barry, R.G.; Brady, M.; Brown, J.; CEOS; Christiansen, H.H.; Cihlar, J.; Clow, G.; Csiszar, I.; Dolman, H.; et al. Terrestrial Essential Climate Variables: Climate Change Assessment, Mitigation and Adaptation; FAO: Rome, Italy, 2008. [Google Scholar]
- Apel, H.; Thieken, A.H.; Merz, B.; Blöschl, G. Flood risk assessment and associated uncertainties. Natural Hazards Earth Syst. Sci 2004, 4, 295–308. [Google Scholar]
- Bates, P.D.; Horritt, M.S.; Smith, C.N.; Mason, D. Integrating remote sensing observations of flood hydrology and hydraulic modelling. Hydrol. Process 1997, 11, 1777–1795. [Google Scholar]
- Delgado, J.M.; Apel, H.; Merz, B. Flood trends and variability in the Mekong river. Hydrol. Earth Syst. Sci 2010, 14, 407–418. [Google Scholar]
- Matgen, P.; Schumann, G.; Henry, J.B.; Hoffmann, L.; Pfister, L. Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. Int. J. Appl. Earth Obs. Geoinf 2007, 9, 247–263. [Google Scholar]
- Schumann, G.; Di Baldassarre, G.; Bates, P.D. The utility of spaceborne radar to render flood inundation maps based on multialgorithm ensembles. IEEE Trans. Geosci. Remote Sens 2009, 47, 2801–2807. [Google Scholar]
- Eisfelder, C.; Kuenzer, C.; Dech, S. Derivation of biomass information for semi-arid areas using remote-sensing data. Int. J. Remote Sens 2011, 33, 2937–2984. [Google Scholar]
- Goetz, S.; Baccini, A.; Laporte, N.T.; Johns, T.; Walker, W.; Kellndorfer, J.; Houghton, R.; Sun, M. Mapping and monitoring carbon stocks with satellite observations: A comparison of methods. Carbon Balance Manag 2009, 4. [Google Scholar] [CrossRef]
- GTOS, Assessment of the Status of the Development of the Standards for the Terrestrial Essential Climate Variables; GTOS 67; GTOS: Rome, Italy, 2009.
- Guenther, K.P.; Borg, E.; Wisskirchen, K.; Schroedter-Homscheidt, M.; Fichtelmann, B. Remote Sensing and Modelling: A Tool to Provide the Spatial Information for Biomass Production Potential. Proceedings of 2nd International Baltic Bioenergy Conference IBBC 2006, Stralsund, Germany, 2–4 November 2006; pp. 33–45.
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens 2006, 27, 1297–1328. [Google Scholar]
- Dobson, J.E.; Bright, E.A.; Coleman, P.R.; Bhaduri, B.L. LandScan: A Global Population Database for Estimating Populations at Risk; Taylor & Francis: London, UK, 2003; pp. 267–281. [Google Scholar]
- Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from Heaven: An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens 2001, 22, 3061–3076. [Google Scholar]
- Glade, T.; Birkmann, J. Assessment of different dimensions of vulnerability to natural hazards and climate change. Natural Hazards Earth Syst. Sci 2009, 9, 315–1494. [Google Scholar]
- Jacquin, A.; Misakova, L.; Gay, M. A hybrid object-based classification approach for mapping urban sprawl in periurban environment. Landsc. Urban Plan 2008, 84, 152–165. [Google Scholar]
- Wisner, B.; Blaikie, P.; Cannon, T.; Davies, I. At Risk, 2nd ed.; Routlegde: London, UK, 2004; p. 471. [Google Scholar]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Vo Quoc, T.; Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens 2011, 3, 878–928. [Google Scholar]
- Vo Quoc, T.; Kuenzer, C.; Vo Quang, M.; Oppelt, N. The concept of ecosystem services: A review. Ecol. Indic 2012, 23, 431–446. [Google Scholar]
- DeFries, R.S.; Chan, J.C. -W. Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from Satellite Data. Remote Sens. Environ 2000, 74, 503–515. [Google Scholar]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Review ArticleDigital change detection methods in ecosystem monitoring: a review. Int. J. Remote Sens 2004, 25, 1565–1596. [Google Scholar]
- Dekker, R.J.; Kuenzer, C.; Lacroix, V.; Lehner, M.; Niemeyer, I.; Nussbaum, S.; Schoepfer, E.; Sequeira, V.; Stringa, E. Change Detection Tools. In Remote Sensing from Space: Supporting International Peace and Security; Jasani, B., Pesaresi, M., Schneiderbauer, S., Zeug, G., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume VI, pp. 119–140. [Google Scholar]
- Kuenzer, C.; Bartalis, Z.; Schmidt, M.; Wagner, W. Trend analyses of a 15 year global soil moisture time series derived from ERS-1/-2 and METOP scatterometer data—Floods, droughts and long term changes. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2008, 37(Part B7), 1363–1368. [Google Scholar]
- Lu, D.; Mausel, P.; Brondazio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens 2004, 25, 2365–2401. [Google Scholar]
- Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Progr. Plan 2004, 61, 301–325. [Google Scholar]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 6th ed; John Wiley & Sons, Inc: Chichester, UK, 2008; p. 756. [Google Scholar]
- Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis. An Introduction, 3rd ed.; Springer: Berlin, Germany, 1999; p. 363. [Google Scholar]
- Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann: San Mateo, CA, USA, 1993. [Google Scholar]
- Roth, A.; Huber, M.; Kosmann, D. Geocoding of TerraSAR-X Data. Proceedings of 20th Congress of ISPRS, Istanbul, Turkey, 12–23 July 2004.
- Richter, R. A spatially adaptive fast atmospheric correction algorithm. Int. J. Remote Sens 1996, 17, 1201–1214. [Google Scholar]
- Blaschke, T. A. Framework for Change Detection Based on Image Objects. In Remote Sensing & GIS for Environmental Studies: Applications in Geography; Erasmi, S., Cyffka, B., Kappas, M., Eds.; Göttinger Geographische Abhandlungen: Göttingen, Germany, 2005; Volume 113, pp. 1–9. [Google Scholar]
- Möller, M.; Lymburner, L.; Volk, M. The comparison index: A tool for assessing the accuracy of image segmentation. Int. J. Appl. Earth Obs. Geoinf 2007, 9, 311–321. [Google Scholar]
- Neubert, M.; Herold, H. Assessment of Remote Sensing Image Segmentation Quality. Proceedings of GEOBIA 2008, Pixels, Objects, Intelligence–GEOgraphic Object Based Image Analysis for the 21st Century, Calgary, AB, Canada, 5–8 August 2008.
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm 2010, 65, 2–16. [Google Scholar]
- Haralick, R.M.; Shapiro, L.G. Image segmentation techniques. Comput. Vis. Graph. Image Process 1985, 29, 100–132. [Google Scholar]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev 1995, 13, 95–120. [Google Scholar]
- Crist, E.P.; Cicone, R.C. A physically-based transformation of thematic mapper data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens 1984, 22, 256–263. [Google Scholar]
- Kauth, R.J.; Thomas, G.S. The tasseled Cap—A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by Landsat. Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, Lafayette, IN, USA, 29 June–1 July 1976; pp. 4B-41–44B-51.
- Schowengerdt, R.A. Remote Sensing. Models and Methods for Image Processing, 3 ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2007; p. 515. [Google Scholar]
- Singh, A.; Harrison, A. Standardized principal components. Int. J. Remote Sens 1985, 6, 883–896. [Google Scholar]
- Tso, B.; Mather, P.M. Classification Methods for Remotely Sensed Data, 2nd ed; Taylor & Francis Ltd: Abingdon, UK, 2001; p. 356. [Google Scholar]
- Quantum-GIS. Available online: http://qgis.osgeo.org (accessed on 15 March 2012).
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ 2010, 114, 168–182. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data. Principles and Practices, 2 ed.; CRC Press: Boca Raton, FL, USA, 2007; p. 183. [Google Scholar]
- Quinlan, J.R. Introduction of decision trees. Machine Learn 1986, 1, 81–106. [Google Scholar]
- Quinlan, J.R. Improved use of continuous attributes in C4.5. J. Artif. Intell. Res 1996, 4, 77–90. [Google Scholar]
- Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ 1997, 61, 399–409. [Google Scholar]
- Hansen, M.; Dubayah, R.; DeFries, R. Classification trees: An alternative to traditional land cover classifiers. Int. J. Remote Sens 1996, 17, 1075–1081. [Google Scholar]
- Quinlan, J.R. Generating Production Rules from Decision Trees. In Proceedings of the 10th International Joint Conference on Artificial Intelligence; Morgan Kaufmann Publishers Inc: Milan, Italy, 1987; Volume 1, pp. 304–307. [Google Scholar]
- Wu, X.D.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 algorithms in data mining. Knowl. Inf. Syst 2008, 14, 1–37. [Google Scholar]
- Friedl, M.A.; Brodley, C.E.; Strahler, A.H. Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Trans. Geosci. Remote Sens 1999, 37, 969–977. [Google Scholar]
- Rokach, L.; Maimon, O.Z. Data Mining with Decision Trees: Theroy and Applications; World Scientific Pub. Co. Inc.: Hackensack, NJ, USA, 2008; p. 243. [Google Scholar]
- Kamber, M.; Winstone, L.; Gong, W.; Cheng, S.; Han, J.W. Generalization and Decision Tree Induction: Efficient Classification in Data Mining. Proceedings of Seventh International Workshop on Research Issues in Data Engineering, Birmingham, UK, 7–8 April 1997; pp. 111–120.
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ 2003, 86, 554–565. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ 1991, 37, 35–46. [Google Scholar]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psych. Meas 1960, 20, 37–46. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ 2002, 80, 185–201. [Google Scholar]
- Schut, P. OpenGIS Standards—Web Processing Service (WPS). Available online: http://www.opengeospatial.org/standards/wps (accessed on 15 March 2012).
- Bielski, C.; Gentilini, S.; Pappalardo, M. Post-disaster image processing for damage analysis using GENESI-DR, WPS and Grid computing. Remote Sens 2011, 3, 1234–1250. [Google Scholar]
- Cepicky, J. Becchi geospatial processing via internet on remote servers—PyWPS. OSGeo J 2007, 1, 39–42. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; D.W.D.; Harlan, J.C. Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation; NASA/GSFC: Greenbelt, MD, USA, 1974; p. 371. [Google Scholar]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; de Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ 2005, 99, 271–287. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ 2004, 90, 337–352. [Google Scholar]
- Klein, I.; Gessner, U.; Kuenzer, C. Regional land cover mapping in Central Asia using MODIS time-series. Appl. Geogr 2012. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ 2012, 118, 259–272. [Google Scholar]
- Reinartz, P. The CATENA Processing Chain—Multi-Sensor Pre-processing: Orthorectification, Atmospheric Correction, Future Aspects. Proceedings of Geoland Forum_6, Toulouse, France, 24–25 March 2010.
- Breiman, L. Random Forests. Machine Learn 2001, 45, 5–32. [Google Scholar]
- Vapnik, V.N.; Chervonenkis, A.Y. Teoriya Raspoznavaniya Obrazov: Statisticheskie Problemy Obucheniya; Izdat; Nauka, FizMatLit.: Moscow, Russia, 1974; p. 416. [Google Scholar]
C5.0 Object-Based Class Name | Producer’s Accuracy [%] | User’s Accuracy [%] |
---|---|---|
Managed tree cover – fruit tree 1 | 84.00 | 75.00 |
Seminatural tree cover – melaleuca | 94.74 | 90.00 |
Seminatural herbaceous cover | 100.00 | 100.00 |
Artificial surface – dense urban | 86.67 | 93.69 |
Artificial surface – open urban and rural mosaic | 94.61 | 92.68 |
Artificial surface – open rural with garden | 92.16 | 96.31 |
Artificial surface – dense urban - large buildings | 97.30 | 95.24 |
Water body – river | 100.00 | 99.37 |
Water body – canal | 95.87 | 96.31 |
Water body – aquacultural ponds | 93.94 | 93.94 |
Managed tree cover – fruit tree 2 | 91.80 | 81.16 |
Agricultural area – temporarily flooded 1 | 89.36 | 95.45 |
Agricultural area – bare | 66.67 | 81.82 |
Agricultural area –rice stage 1 | 100.00 | 100.00 |
Agricultural area – rice stage 2 | 93.55 | 96.67 |
Agricultural area – temporarily flooded 1 | 75.00 | 78.95 |
Agricultural area – bare | 90.91 | 75.47 |
Overall accuracy | 93.70 | |
Kappa | 0.93 | |
Class Name | C5.0 Pixel-Based | C5.0 Object-Based | ||
---|---|---|---|---|
Producer’s Accuracy [%] | User’s Accuracy [%] | Producer’s Accuracy [%] | User’s Accuracy [%] | |
Managed tree cover – fruit tree | 78.95 | 78.95 | ||
Managed herbaceous cover (rice stage 1) | 97.00 | 96,46 | 65.38 | 100.00 |
Managed herbaceous cover (rice stage 2) | 91.23 | 93,36 | 94.12 | 72.73 |
Managed herbaceous cover (rice stage 3) | 86.98 | 89.39 | 70.83 | 58.62 |
Seminatural tree cover (mixed natural forest) | 95.30 | 97.16 | 76.19 | 76.19 |
Seminatural tree cover (melaleuca) | 96.98 | 93.69 | 88.24 | 83.33 |
Artificial surface – dense urban | 87.50 | 100.00 | ||
Artificial surface – open urban and rural mosaic | 81.82 | 75.00 | ||
Artificial surface | 88.12 | 85.75 | ||
Bare area | 50.00 | 47.06 | ||
Water body – canal | 75.60 | 63.97 | 80.00 | 92,31 |
Water body – ocean | 98.55 | 99.15 | 96.30 | 96.30 |
Water body – aquacultural ponds | 90.54 | 94.13 | 96.55 | 96.55 |
Overall accuracy | 94.20 | 90.80 | ||
Kappa | 0.93 | 0.90 |
Class Name | C5.0 Pixel-Based | ML Pixel-Based | ||
---|---|---|---|---|
Producer’s Accuracy [%] | User’s Accuracy [%] | Producer’s Accuracy [%] | User’s Accuracy [%] | |
Agricultural area – mainly rice | 98.71 | 97.46 | 45.45 | 100.00 |
Agricultural area – harvested cotton | 97.19 | 98.58 | 98.04 | 100.00 |
Agricultural area – harvested cotton/bare | 86.42 | 93.18 | 100 | 99.45 |
Tree cover – poplar | 99.23 | 98.70 | 98.66 | 32.24 |
Reed – cut | 99.59 | 98.68 | 100 | 100.00 |
Reed – bare, ploughed | 98.08 | 95.63 | 100 | 99.82 |
Tree cover – mainly citrus | 96.95 | 98.45 | 70.39 | 96.18 |
Artificial surface | 85.96 | 95.62 | 80 | 99.25 |
Shallow water – mudflat | 99.23 | 95.19 | 100 | 100.00 |
Shallow water | 99.79 | 100.00 | 100 | 100.00 |
Water body – river, lake | 99.7 | 99.70 | 100 | 83.23 |
Water body – clear, deep | 99.7 | 100.00 | 73.91 | 100.00 |
Overall accuracy | 97.80 | 85.87 | ||
Kappa | 0.98 | 0.84 |
Share and Cite
Huth, J.; Kuenzer, C.; Wehrmann, T.; Gebhardt, S.; Tuan, V.Q.; Dech, S. Land Cover and Land Use Classification with TWOPAC: towards Automated Processing for Pixel- and Object-Based Image Classification. Remote Sens. 2012, 4, 2530-2553. https://doi.org/10.3390/rs4092530
Huth J, Kuenzer C, Wehrmann T, Gebhardt S, Tuan VQ, Dech S. Land Cover and Land Use Classification with TWOPAC: towards Automated Processing for Pixel- and Object-Based Image Classification. Remote Sensing. 2012; 4(9):2530-2553. https://doi.org/10.3390/rs4092530
Chicago/Turabian StyleHuth, Juliane, Claudia Kuenzer, Thilo Wehrmann, Steffen Gebhardt, Vo Quoc Tuan, and Stefan Dech. 2012. "Land Cover and Land Use Classification with TWOPAC: towards Automated Processing for Pixel- and Object-Based Image Classification" Remote Sensing 4, no. 9: 2530-2553. https://doi.org/10.3390/rs4092530
APA StyleHuth, J., Kuenzer, C., Wehrmann, T., Gebhardt, S., Tuan, V. Q., & Dech, S. (2012). Land Cover and Land Use Classification with TWOPAC: towards Automated Processing for Pixel- and Object-Based Image Classification. Remote Sensing, 4(9), 2530-2553. https://doi.org/10.3390/rs4092530