From Standard Weather Stations to Virtual Micro-Meteorological Towers in Ungauged Sites: Modeling Tool for Surface Energy Fluxes, Evapotranspiration, Soil Temperature, and Soil Moisture Estimations
"> Figure 1
<p>Location of the four eddy covariance (EC) sites adopted in this study: U.S. Department of Energy Atmospheric Radiation Measurement Program Southern Great Plains Central Facility site (ARM-CF) (cropland) in Marena, Oklahoma, and In Situ Sensor Testbed site (MOISST) (grassland), ARM SGP US-A74 (cropland), and ARM SGP US-A32 (grassland) in north central Oklahoma, USA. Land cover types according to the National Land Cover Dataset (NLCD 2016) within Oklahoma are also shown.</p> "> Figure 2
<p>Phenocam images of the ARM-CF site (left column) and MOISST site (right column) during typical days of the cool (February) and warm (July) seasons. Note the changes in vegetation cover and activity.</p> "> Figure 3
<p>Model simulation coverage including each site flux footprint at (<b>a</b>) ARM-CF, (<b>b</b>) MOISST, (<b>c</b>) ARM-A74, and (<b>d</b>) ARM-A32. Flux footprints were computed using the method proposed by Kljun et al. (2015). Each red contour line represents a 10% inward increment, starting with 10% from the outermost contour line.</p> "> Figure 4
<p>Remotely sensed derived time series of v<math display="inline"><semantics> <msub> <mrow/> <mi>f</mi> </msub> </semantics></math>, <math display="inline"><semantics> <mi>α</mi> </semantics></math>, leaf area index (LAI), S, p, k<math display="inline"><semantics> <msub> <mrow/> <mi>t</mi> </msub> </semantics></math>, and r<math display="inline"><semantics> <msub> <mrow/> <mi>s</mi> </msub> </semantics></math> for ARM-CF (left column) and MOISST (right column) during their corresponding model calibration periods.</p> "> Figure 5
<p>Density scatter plots of the calibration results at ARM-CF. From top-left to bottom-right: net radiation (NR, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), latent heat flux (LE, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), sensible heat flux (H, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), ground heat flux (G, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), and soil surface temperature (SST, <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C). In all panels, the x-axis represents the observed and the y-axis the simulated values.</p> "> Figure 6
<p>Density scatter plots of the calibration results at MOISST. From top-left to bottom-right: net radiation (NR, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), latent heat flux (LE, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), sensible heat flux (H, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), ground heat flux (G, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), soil surface temperature (SST, <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C), surface soil moisture (SSM, -), and root-zone soil moisture (RSM, -). In all panels, the x-axis represents the observed and the y-axis represents the simulated values.</p> "> Figure 7
<p>Daily-aggregated time series of observed (<b>a</b>) precipitation (P; blue bars), and simulated (orange) and observed (black) (<b>b</b>) net radiation (NR, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>c</b>) latent heat flux (LE, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>d</b>) sensible heat flux (H, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>e</b>) ground heat flux (G, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), and (<b>f</b>) soil surface temperature (SST, <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C) at ARM-CF during the calibration period. Daily standard deviation envelopes (pink for simulated and grey for observed) were added to both time series to illustrate sub-daily variability.</p> "> Figure 8
<p>Daily-aggregated time series of observed (<b>a</b>) precipitation (P; blue bars), and simulated (orange) and observed (black) (<b>b</b>) net radiation (NR, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>c</b>) latent heat flux (LE, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>d</b>) sensible heat flux (H, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>e</b>) soil surface temperature (SST, <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C), (<b>f</b>) surface soil moisture (SSM, -), and (<b>g</b>) root soil moisture (RSM, -) at MOISST during the calibration period. Daily standard deviation envelopes (pink for simulated and grey for observed) were added to both time series to illustrate sub-daily variability.</p> "> Figure 9
<p>Hourly time series of (<b>a</b>) observed precipitation (P; blue bars), (<b>b</b>) simulated (red) and observed (black) net radiation (NR, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>c</b>) latent heat flux (LE, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>d</b>) sensible heat flux (H, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>e</b>) ground heat flux (G, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), and (<b>f</b>) soil surface temperature (SST, <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C) at ARM-CF during a ten-day period in 2004 between 12 August and 22 August.</p> "> Figure 10
<p>Hourly time series of (<b>a</b>) observed precipitation (P; blue bars), (<b>b</b>) simulated (red) and observed (black) net radiation (NR, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>c</b>) latent heat flux (LE, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>d</b>) sensible heat flux (H, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>e</b>) soil surface temperature (SST), <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C, (<b>f</b>) surface soil moisture (SSM, -), and (g) root-zone soil moisture (RSM, -) at MOISST during the ten-day period between 13 August 2014 and 22 August 2014.</p> "> Figure 11
<p>Daily-aggregated time series of ARM-CF to ARM-A74 parameter transferability experiments vs. observations: (<b>a</b>) precipitation (P; blue bars), and simulated (orange) and observed (black) (<b>b</b>) net radiation (NR, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>c</b>) latent heat flux (LE, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>d</b>) sensible heat flux (H, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>e</b>) ground heat flux (G, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>f</b>) soil surface temperature (SST, <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C), and (<b>g</b>) root-zone soil temperature (RST, <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C). Daily standard deviation envelopes (pink for simulated and grey for observed) were added to both time series to illustrate sub-daily variability.</p> "> Figure 12
<p>Daily-aggregated time series of MOISST to ARM-A32 parameter transferability experiments vs. observations: (<b>a</b>) precipitation (P; blue bars), and simulated (orange) and observed (black) (<b>b</b>) net radiation (NR, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>c</b>) latent heat flux (LE, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>d</b>) sensible heat flux (H, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>e</b>) ground heat flux (G, W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>), (<b>f</b>) soil surface temperature (SST, <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C), (<b>g</b>) root-zone soil temperature (RST, <math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>C), and (<b>h</b>) surface soil moisture (SSM, -). Daily standard deviation envelopes (pink for simulated and grey for observed) were added to both time series to illustrate sub-daily variability.</p> ">
Abstract
:1. Introduction and Goals
1.1. Fusing Remote Sensing with a Multi-Physics Framework: The Key to Model Transferability
1.2. Goals
2. Data and Methods
2.1. Study Sites
2.2. Data
2.2.1. Terrain and Vegetation
2.2.2. Weather Forcing
2.2.3. Surface Energy Fluxes, Surface, and Root-Zone Soil Temperature and Moisture
2.3. Modeling Framework
2.3.1. Multi-Physics Model
2.3.2. Model Training and Verification
2.4. Model Transferability Approach and Evaluation
3. Results
3.1. Model Training and Validation
3.2. Model Inter-Site Transferability
4. Discussion
5. Summary and Conclusions
- 1.
- Hourly simulations adequately predicted NR, SST, RST, and H, including the representation of seasonal variability and daily cycles. Even though LE and SSM sometimes, obtained mixed skill assessments, the simulations always guaranteed a quality level better than historical means and, in some cases, with sufficient quality.
- 2.
- Model validation proved the robustness of the found static and dynamically changing parameters and provided confidence for the model performance at the same sites where calibration was conducted.
- 3.
- Inter-site transference of the model framework showed that the model was able to assimilate data about vegetation dynamics from the remotely sensed information to update important in situ vegetation parameters that resulted in adequate hourly model performance metrics. Model transferability experiments from ARM-CF to ARM-A74 (cropland) and from MOISST to ARM-A32 (grassland) provided arguments to explore future use of a set of precalibrated static parameters with another set of dynamically evolving, in situ, vegetation parameters between regions of pedologic, ecosystem, and hydrologic similarity.
- 4.
- The straightforward model transfer relying on vegetation dynamics marks a paradigm shift in the simulation framework of land surface models that has overrelied on exhausting model calibration procedures of fixed vegetation parameters for each work-site. Parameter sets that can be transferred to similar ecosystem locations become powerful tools for facilitating the modeling of multiple locations at once.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NR | Net radiation |
LE | Latent heat flux (aka ET) |
H | Sensible heat flux |
G | Ground heat flux |
SST | Soil surface temperature |
RST | Root-zone soil temperature |
SSM | Surface soil moisture |
RSM | Root-zone soil moisture |
P | Precipitation |
SW | Incoming solar radiation |
WS | Wind speed |
T | Air temperature |
VP | Air vapor pressure |
Pa | Atmospheric pressure |
PAR | Photosynthetically active radiation |
LAI | Leaf area index |
NDVI | Normalized difference vegetation index |
RMSE | Root mean squared error |
NSE | Nash–Sutcliffe model efficiency coefficient |
CC | Pearson correlation coefficient |
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | linear dichroism |
References
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics; Springer: New York, NY, USA, 1998. [Google Scholar]
- Castelli, F.; Rodriguez-Iturbe, I.; Entekhabi, D. An analytic framework for the modeling of the spatial interaction between the soil moisture and the atmosphere. J. Hydrol. 1996, 10, 142–149. [Google Scholar]
- Oglesby, R.J. Springtime soil moisture, natural climate variability, and North American drought as simulated by NCAR Community Climate Model 1. J. Clim. 1991, 4, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Palladinoa, M.; Staianob, A.; D’Ursoa, G.; Minacapillic, M.; Ralloc, G. Mass and Surface Energy Balance Approaches for Monitoring Water Stress in Vineyards. Procedia Environ. Sci. 2004, 19, 231–238. [Google Scholar] [CrossRef]
- Anthes, R.A. Enhancement of convective precipitation by mesoscale variations in vegetative covering in semiarid regions. J. Clim. Appl. Meteorol. 1984, 23, 541–554. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Freedman, W.L.; Madore, B.F.; Gibson, B.K.; Ferrarese, L.; Kelson, D.D.; Sakai, S.; Mould, J.R.; Kennicutt, R.C., Jr.; Ford, H.C.; Graham, J.A.; et al. Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophys. J. 2001, 553, 47. [Google Scholar] [CrossRef]
- McPherson, R.A. A review of vegetation—Atmosphere interactions and their influences on mesoscale phenomena. Prog. Phys. Geogr. 2007, 31, 261–285. [Google Scholar] [CrossRef]
- Taylor, C.M.; Saïd, F.; Lebel, T. Interactions between the land surface and mesoscale rainfall variability during HAPEX-Sahel. Mon. Weather Rev. 1997, 125, 2211–2227. [Google Scholar] [CrossRef]
- Brunsell, N.A.; Jones, A.R.; Jackson, T.; Feddema, J. Seasonal trends in air temperature and precipitation in IPCC AR4 GCM output for Kansas, USA: Evaluation and implications. Int. J. Climatol. 2010, 30, 1178–1193. [Google Scholar] [CrossRef] [Green Version]
- Huber, D.; Mechem, D.; Brunsell, N. The effects of Great Plains irrigation on the surface energy balance, regional circulation, and precipitation. Climate 2014, 2, 103–128. [Google Scholar] [CrossRef]
- Souza, E.P.; Rennó, N.O.; Silva Dias, M.A. Convective circulations induced by surface heterogeneities. J. Atmos. Sci. 2000, 57, 2915–2922. [Google Scholar] [CrossRef]
- Xiang, T.; Vivoni, E.R.; Gochis, D.J. Seasonal Evolution of ecohydrological controls on land surface temperature over complex terrain. Water Resour. 2014, 50, 3852–3874. [Google Scholar] [CrossRef]
- Lingli, H.; Ivanov, V.Y.; Bohrer, G.; Maurer, K.D.; Vogel, C.S. Effects of fine-scale soil moisture and canopy heterogeneity on energy and water fluxes in a northern temperate mixed forest. Agric. For. Meteorol. 2014, 184, 243–256. [Google Scholar]
- Sánchez, J.; Bisquert, M.; Rubio, E.; Caselles, V. Impact of land cover change induced by a fire event on the surface energy fluxes derived from remote sensing. Remote Sens. 2015, 7, 14899–14915. [Google Scholar] [CrossRef] [Green Version]
- Dore, S.; Kolb, T.E.; Montes-Helu, M.; Eckert, S.E.; Sullivan, B.W.; Hungate, B.A.; Finkral, A. Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning. Ecol. Appl. 2010, 20, 663–683. [Google Scholar] [CrossRef] [PubMed]
- Maggard, A.O.; Willa, R.E.; Wilson, D.; Meeka, C.R.; Vogel, J. Fertilization reduced stomatal conductance but not photosynthesis of Pinus taeda which compensated for lower water availability in regards to growth. For. Ecol. Manag. 2016, 381, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Moreno, H.A.; Gupta, H.V.; White, D.D.; Sampson, D.A. Modeling the distributed effects of forest thinning on the long-term water balance and stream flow extremes for a semi-arid basin in the southwestern US. Hydrol. Earth Syst. Sci. 2016, 20, 1241–1267. [Google Scholar] [CrossRef] [Green Version]
- Olajuyigbe, S.; Tobin, B.; Saunders, M.; Nieuwenhuis, M. Forest thinning and soil respiration in a Sitka spruce forest in Ireland. Agric. For. Meteorol. 2012, 157, 86–95. [Google Scholar] [CrossRef]
- Montgomery, R. Vertical eddy flux of heat in the atmosphere. J. Meteorol. 1948, 5, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, A. Charakteristiki mikrostruktury vetra v prizemnom sloje atmosfery (Characteristics of the micro-structure of the wind in the surface layer of the atmosphere). Izv ANSSSR Ser Geofiz 1951, 3, 49–68. [Google Scholar]
- Swinbank, W. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J. Meteorol. 1951, 8, 135–145. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Aubinet, M.; Vesala, T.; Papale, D. (Eds.) Eddy Covariance: A practical Guide to Measurement and Data Analysis; Springer Science+Business Media B.V.: London, UK; New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Goodrich, J.P.; Oechel, W.C.; Gioli, B.; Moreaux, V.; Murphy, P.C.; Burba, G.; Zona, D. Impact of different eddy covariance sensors, site set-up, and maintenance on the annual balance of CO2 and CH4 in the harsh Arctic environment. Agric. For. Meteorol. 2016, 228, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A.; Avissar, S.R.; Raupach, M.; Dolman, A.J.; Zeng, X.; Denning, A.S. Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Glob. Chang. Biol. 1998, 4, 461–475. [Google Scholar] [CrossRef]
- Wagle, P.; Bhattaraib, N.; Gowdaa, P.H.; Kakanic, V.G. Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghumily. ISPRS J. Photogramm. Remote Sens. 2017, 128, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Hirschboeck, K.K.; Brown, P. Integrating remote sensing and ground methods to estimate evapotranspiration. Crit. Rev. Plant Sci. 2007, 26, 139–168. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; Van der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL): Part 2: Validation. J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Roerink, G.J.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth Part Hydrol. Ocean. Atmos. 2000, 25, 147–157. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–99. [Google Scholar] [CrossRef]
- Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, A.M. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields. Sensors 2007, 7, 979–1000. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, N.; Shaw, S.B.; Quackenbush, L.J.; Im, J.; Niraula, R. Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 75–86. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote. Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Schulze, E.D.; Leuning, R.; Kelliher, F.M. Environmental regulation of surface conductance for evaporation from vegetation. In Global Change and Terrestrial Ecosystems in Monsoon Asia; Springer: Dordrecht, The Netherlands, 1995; pp. 79–87. [Google Scholar]
- Velpuri, N.M.; Senay, G.B.; Singh, R.K.; Bohms, S.; Verdin, J.P. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sens. Environ. 2013, 139, 35–49. [Google Scholar] [CrossRef]
- Dietrich, W.E.; Perron, J.T. The search for a topographic signature of life. Nature 2006, 439, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Eltahir, E.A.B. Role of topography in facilitating coexistence of trees and grasses within savannas. Water Resour. Res. 2004, 40, W07505. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Xiang, T.; Vivoni, E.; Gochis, D.J.; Mascaro, G. On the diurnal cycle of surface energy fluxes in the North American monsoon region using the WRF-Hydro modeling system. J. Geophys. Res. Atmos. 2017, 122, 9024–9049. [Google Scholar] [CrossRef]
- Fisher, R.A.; Koven, C.D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst. 2020, 12, e2018MS001453. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Wang, G.; Chen, H. Quantifying the impacts of land surface schemes and dynamic vegetation on the model dependency of projected changes in surface energy and water budgets. J. Adv. Model. Earth Syst. 2016, 8, 370–386. [Google Scholar] [CrossRef] [Green Version]
- Oklahoma Climatological Survey. Oklahoma Annual Climate Summary 2002; Board of Regents of The University of Oklahoma: Norman, OK, USA, 2004. [Google Scholar]
- Oklahoma Department of Wildlife Conservation. Vegetation Classification Project: Interpretative Booklet; Oklahoma Department of Wildlife Conservation: Oklahoma City, OK, USA, 2004. [Google Scholar]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple two- dimensional parameterisation for Flux Footprint Prediction (FFP). Published by Copernicus Publications on behalf of the European Geosciences Union. Geosci. Model Dev. 2015, 8, 3695–3713. [Google Scholar] [CrossRef] [Green Version]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 225. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, V.Y.; Vivoni, E.R.; Bras, R.L.; Entekhabi, D. Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Ivanov, V.Y.; Vivoni, E.R.; Bras, R.L.; Entekhabi, D. Preserving high-resolution surface and rainfall data in operational-scale basin hydrology: A fully-distributed physically-based approach. J. Hydrol. 2004, 298, 80–111. [Google Scholar] [CrossRef]
- Seyfried, M.S.; Grant, L.E.; Du, E.; Humes, K.S. Dielectric loss and calibration of the Hydra probe soil water sensor. Vadose Zone J. 2005, 4, 1070–1079. [Google Scholar] [CrossRef]
- Cosh, M.H.; Ochsner, T.E.; McKee, L.; Dong, J.; Basara, J.B.; Evett, S.R.; Sayde, C. The soil moisture active passive Marena, Oklahoma, in situ sensor testbed (smap-moisst): Testbed design and evaluation of in situ sensors. Vadose Zone J. 2016, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Vivoni, E.R.; Ivanov, V.Y.; Bras, R.L.; Entekhabi, D. Generation of triangulated irregular networks based on hydrological similarity. J. Hydrol. Eng. 2004, 9, 288–302. [Google Scholar] [CrossRef]
- Vivoni, E.R.; Ivanov, V.Y.; Bras, R.L.; Entekhabi, D. On the effects of triangulated terrain resolution on distributed hydrologic model response. Hydrol. Process. Int. J. 2005, 19, 2101–2122. [Google Scholar] [CrossRef]
- Mahmood, T.H.; Vivoni, E.R. A climate-induced threshold in hydrologic response in a semiarid ponderosa pine hillslope. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Mendez-Barroso, L.A.; Vivoni, E.R.; Morua, A.R.; Mascaro, G.; Yepez, E.A.; Rodriguez, J.C.; Hernandez, J.A. A modeling approach reveals differences in evapotranspiration and its partitioning in two semiarid ecosystems in Northwest Mexico. Am. Geophys. Union Water Resour. Res. 2014, 50, 3229–3252. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, G.A.; Vivoni, E.R.; Robles-Morua, A.; Mascaro, G.; Rivera, E.; Dominguez, F. A climate change projection for summer hydrologic conditions in a semiarid watershed of central Arizona. J. Arid. Environ. 2015, 118, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Méndez-Barroso, L.A.; Vivoni, E.R.; Mascaro, G. Impact of spatially-variable soil thickness and texture on simulated hydrologic conditions in a semiarid watershed in northwest Mexico. Rev. Mex. Cienc. Geol. 2016, 33, 365–377. [Google Scholar]
- Moreno, H.A.; Vivoni, E.; Gochis, D.J. Utility of Quantitative Precipitation Estimates for high resolution hydrologic. J. Hydrol. 2012, 438, 66–83. [Google Scholar] [CrossRef]
- Moreno, H.A.; Vivoni, E.R.; Gochis, D.J. Limits to flood forecasting in the Colorado Front Range for two summer convection periods using radar now casting and a distributed hydrologic model. J. Hydrometeorol. 2013, 14, 1075–1097. [Google Scholar] [CrossRef]
- Moreno, H.A.; Vivoni, E.R.; Gochis, D.J. Addressing uncertainty in reflectivity-rainfall relations in mountain watersheds during summer convection. Hydrol. Process. 2014, 28, 688–704. [Google Scholar] [CrossRef]
- Robles-Morua, A.; Che, D.; Mayer, A.S.; Vivoni, E.R. Hydrological assessment of proposed reservoirs in the Sonora River Basin, Mexico, under historical and future climate scenarios. Hydrol. Sci. J. 2015, 60, 50–66. [Google Scholar] [CrossRef]
- Xiang, T.; Vivoni, E.R.; Gochis, D.J. Influence of initial soil moisture and vegetation conditions on monsoon precipitation events in northwest México. Atmósfera 2018, 31, 25–45. [Google Scholar] [CrossRef] [Green Version]
- Bras, R.L. Hydrology: An Introduction to Hydrologic Science; Addison Wesley Publishing Company: Boston, MA, USA, 1990. [Google Scholar]
- Vivoni, E.R.; Entekhabi, D.; Bras, R.L.; Ivanov, V.Y. Controls on runoff generation and scale-dependence in a distributed hydrologic model. Hydrol. Earth Syst. Sci. 2007, 11, 1683–1701. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.P.; Gallant, J.C. Terrain Analysis: Principles and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Deardorff, J.W. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res. Oceans 1978, 83, 1889–1903. [Google Scholar] [CrossRef] [Green Version]
- Eltahir, E.A.; Bras, R.L. Estimation of the fractional coverage of rainfall in climate models. J. Clim. 1993, 6, 639–644. [Google Scholar] [CrossRef]
- Monteith, J. Evaporation and the Environment. In Symposia of the Society for Experimental Biology; Cambridge University Press: Cambridge, UK, 1965; Volume 19, pp. 205–234. [Google Scholar]
- Penman, H. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Phys. Math. Eng. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Wigmosta, M.S.; Vail, L.W.; Lettenmaier, D.P. A distributed hydrology-vegetation model for complex terrain. Water Resour. Res. 1994, 30, 1665–1679. [Google Scholar] [CrossRef]
- Stull, R.B.; Donald, A.C. Meteorology for Scientists and Engineers, 2nd ed.; Brooks/Cole: Pacific Grove, CA, USA, 2000. [Google Scholar]
- Hu, Z.; Islam, S. Prediction of ground surface temperature and soil moisture content by the force-restore method. Water Resour. Res. 1995, 31, 2531–2539. [Google Scholar] [CrossRef]
- Lin, J.D. On the force-restore method for prediction of ground surface temperature. J. Geophys. Res. Oceans 1980, 85, 3251–3254. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 1964. [Google Scholar]
- Cabral, M.C.; Garrote, L.; Bras, R.L.; Entekhabi, D. A kinematic model of infiltration and runoff generation in layered and sloped soils. Adv. Water Resour. 1992, 15, 311–324. [Google Scholar] [CrossRef] [Green Version]
- Garrote, L.; Bras, R.L. A distributed Model for real flood forecasting using digital elevations models. J. Hydrol. 1995, 167, 279–306. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Ivanov, V.Y.; Bras, R.L.; Vivoni, E.R. Vegetation-Hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamics feedbacks. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Rawls, W.J.; Brakensiek, D.L.; Saxton, K.E. Estimation of Soil water properties. Am. Soc. Agric. Eng. 1982, 25, 1316–1320. [Google Scholar] [CrossRef]
- Pitman, J.I. Rainfall interception by bracken in open habitats—Relations between leaf area, canopy storage and drainage rate. J. Hydrol. 1989, 105, 317–334. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Z.; Fan, J.; Zhou, D.; Tang, F. A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems. Front. Earth Sci. 2014, 8, 599–609. [Google Scholar] [CrossRef]
- Dorman, J.; Sellers, P. A Global Climatology of albedo, Roughnrss Lengths and Stomatal Resistance for Atmospheric General Circulation Models as Represented by the Simple Biosphere Model (SiB); American Meteorological Society: Boston, MA, USA, 1989. [Google Scholar]
- Irmak, S.; Mutiibwa, D.; Irmak, A.; Arkebauer, T.J.; Weiss, A.; Martin, D.L.; Eisenhauer, D.E. On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density. Agric. For. Meteorol. 2008, 148, 1034–1044. [Google Scholar] [CrossRef]
- Meek, D.W.; Hatfield, J.L.; Howell, T.A.; Idso, S.B.; Reginato, R.J. A Generalized Relationship between Photosynthetically Active Radiation and Solar Radiation 1. Agron. J. 1984, 76, 939–945. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote. Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Justice, C.; Van Leeuwen, W. MODIS vegetation index (MOD13). Algorithm Theor. Basis Doc. 1999, 3, 295–309. [Google Scholar]
- Mascaro, G.; Vivoni, E.R. Utility of coarse and downscaled soil moisture products at L-band for hydrologic modeling at the catchment scale. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Vivoni, E.R. Diagnosing seasonal vegetation impacts on evapotranspiration and its partitioning at the catchment scale during SMEX04–NAME. J. Hydrometeorol. 2012, 13, 1631–1638. [Google Scholar] [CrossRef]
- Lucht, W.; Roujean, J.L. Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations. Remote. Sens. Rev. 2000, 18, 343–379. [Google Scholar] [CrossRef]
- Zhou, L.; Dickinson, R.E.; Tian, Y.; Zeng, X.; Dai, Y.; Yang, Z.L.; Myneni, R.B. Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Schulze, E.D.; Kelliher, F.M.; Körner, C.; Lloyd, J.; Leuning, R. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst. 1994, 25, 629–662. [Google Scholar] [CrossRef]
- Jarvis, P.G.; McNaughton, K.G. Stomatal control of transpiration: Scaling up from leaf to region. Adv. Ecol. Res. 1986, 15, 1–49. [Google Scholar]
- Alvenäs, G.; Jansson, P.E. Model for evaporation, moisture and temperature of bare soil: Calibration and sensitivity analysis. Agric. For. Meteorol. 1997, 88, 47–56. [Google Scholar] [CrossRef]
- Assouline, S. Modeling the relationship between soil bulk density and the hydraulic conductivity function. Vadose Zone J. 2006, 5, 697–705. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S. Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resour. Res. 2001, 37, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Cosh, M.H.; Bindlish, R.; Lakshmi, V. Field evaluation of portable soil water content sensors in a sandy loam. Vadose Zone J. 2020, 19, e20033. [Google Scholar] [CrossRef]
- Koster, R.D.; Guo, Z.; Yang, R.; Dirmeyer, P.A.; Mitchell, K.; Puma, M.J. On the nature of soil moisture in land surface models. J. Clim. 2009, 22, 4322–4335. [Google Scholar] [CrossRef] [Green Version]
- Reichle, R.H.; Koster, R.D. Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Mannstein, H. The Interpretation of Albedo Measurements on a Snowcovered Slope. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 1985, 36, 73–81. [Google Scholar] [CrossRef]
- Ochsner, T.; Sauer, T.; Horton, R. Field Tests of the Soil Heat Flux Plate Method and Some Alternatives. Agron. J. 2006, 98, 1005–1014. [Google Scholar] [CrossRef] [Green Version]
ID | Lat, Lon | Soil and Vegetation Type | Purpose Within the Study |
---|---|---|---|
ARM-CF | 36.6058N, 97.4888W | Silty clay loam. Crop field (winter wheat, soy, corn, and alfalfa) | Model calibration and validation in cropland |
MOISST | 36.0634N, 97.2169W | Sandy clay loam. Rangeland with grazed cattle pasture | Model calibration and validation in grassland |
ARM-A74 | 36.8084N, 97.5488W | Silt Loam. Croplands and rotational crops (i.e., soybean and corn) followed by harvest and a bare soil period | ARM-CF parameter transferability evaluation in cropland |
ARM-A32 | 36.8192N, 97.8197W | Kirkland silt loam. Grasslands (Medford hay pasture) periodically cut for hay | MOISST parameter transferability in grassland |
Type of Input | Source | Product | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|
Digital Elevation Model | USGS | SRTM | 30 m | N.A. |
Soil type | Logs, NRCS | Texture | Footprint | N.A. |
Land cover type | USGS | NLCD | 30 m | 2016 version |
Leaf Area Index (LAI) | MODIS | MCD15A3H | 500 m | 4 days |
NDVI | MODIS | MCD43A4 | 500 m | daily |
Photosynthetically Active Radiation (PAR) | MODIS | MCD15A3H | 500 m | 4 days |
Albedo | MODIS | MCD43A | 500 m | daily |
Symbol | Description | Method | Reference |
---|---|---|---|
NR | Net Radiation | Based on the four vertical components of the radiation budget at the surface including incoming and outgoing short- and longwave components NR = R + R − R − R. All terms are computed from standard weather (e.g., T and VP), surface (SST), and remote sensing measurements (albedo and LAI). | [62,63,64] |
LE or ET | Latent Heat Flux or Actual Evapotranspiration | Using the Penmann–Monteith approach, the model partitions reference ET among evaporation from soil, and evaporation from vegetation interception and transpiration. Estimated actual ET accounts for soil moisture as a limiting factor when atmospheric demand is high; wind speed, water vapor deficit, vegetation height, vegetation cover (from LAI), and activity (from NDVI) that determine optical transmission; and atmospheric and stomatal resistances. | [65,66,67,68,69] |
H | Sensible Heat Flux | Uses an aerodynamic resistance approach between surface and air temperatures. The atmospheric resistance term depends on wind speed and rugosity terms. | [70] |
G | Ground Heat Flux | Based on a force-restore method that solves the heat diffusion equation between soil surface and deeper layers. The flux G is obtained from G = 0.5·Cd((d(SST)/dt) + (SST-RST)), where C is the soil heat capacity, is the daily frequency of oscillation, d = (2k/) is the soil heat damping depth, k = k/C is the soil diffusivity, and k is the soil heat conductivity (see Table 5). is computed using Hu and Islam (1995) parameterization. | [71,72] |
SSM and RSM | Surface and root-zone soil moisture | A ponding and infiltration scheme based on the kinematic approximation for unsaturated flow for a sloping, heterogeneous anisotropic soil. A soil moisture state results from infiltration, runoff, and subsurface flows and is coupled to loses from soil evaporation and transpiration. The model considers ponded infiltration, infiltration under unsaturated conditions, wetted wedge dynamics for the unsaturated phase, and perched zones and keeps track of the evolution of fronts. Surface and root-zone moisture are integrated within the first 5 cm of soil and at 1 m depth. Soil water content is expressed as a fraction of the soil porosity or degree of saturation. | [73,74,75] |
SST and RST | Surface and root-zone soil temperature | SST and RST are obtained during calculation of the transient-state energy budget equation at the surface, C·(d(SST)/dt) = Rn-LE-H-G, and the calculation of G (see above). Soil heat wave damping depth and damping depth temperature are intrinsically computed when resolving with the force-restore method to calculate G. | [12,71,72] |
Station | Purpose | Simulated Interval | Simulated Period (h) |
---|---|---|---|
ARM-CF | Calibration | 04/30/2004–06/29/2005 | 10,000 |
ARM-CF | Validation | 07/01/2008–07/01/2009 | 8780 |
MOISST | Calibration | 12/09/2013–09/10/2014 | 7300 |
MOISST | Validation | 11/09/2015–29/12/2016 | 10,000 |
ARM-A74 | Transferability Evaluation | 01/01/2016–06/01/2017 | 12,384 |
ARM-A32 | Transferability Evaluation | 01/01/2016–06/01/2017 | 12,384 |
Parameter | Description | Parameter | Description |
---|---|---|---|
*K (mm/h) | Saturated hydraulic conductivity | (unitless) | Soil Moisture at saturation |
(-) | Residual soil moisture | m (-) | Pore distribution index |
(mm) | Air-entry pressure | f (unitless) | Conductivity decay with depth |
A (-) | Saturated anisotropy ratio | A (-) | Unsaturated anisotropy ratio |
n (-) | Soil porosity | k (J/msK) | Soil volumetric heat conductivity |
C (J/mK) | Soil heat capacity | K (mm/h) | Vegetation throughfall drainage coefficient-Rutter |
b (mm) | Vegetation throughfall drainage exponential parameter-Rutter | H (m) | Vegetation height |
(-) | Evaporation stress threshold for soil evaporation (-) | (-) | Stress threshold for plant transpiration |
Parameter | Equation | Remarks |
---|---|---|
Canopy Field Capacity-Rutter (S, mm) | S = 0.5.LAI | Controls depth of rainfall interception as a function of LAI [79]. The values can range among ecosystems (i.e., SGP OK 0.8–1.2 mm) [47]. |
Free throughfall coefficient-Rutter (p, -) | p = e | Drives the fraction of rainfall not captured by plants as a function of LAI [54,79]. |
Optical transmission coefficient (k, -) | k = e | Based on Beer–Lambert law. k is the light extinction coefficient determined from [80]. |
Minimum stomatal resistance (r, s/m) | r = | Based on the energy-limited relation by [35,81]. Q is the value of the absorbed photosynthetically active radiation (Q) when the maximum seasonal stomatal conductance (g) is half of its value. LAI is used to upscale the individual leaf estimation to the entire canopy [82]. |
Absorbed photosynthetically active radiation (Q, W/m) | Q = 0.45 SW fPAR | Q drives photosynthesis and transpiration. fPAR is the fraction of photosynthetically active radiation absorbed by plants; 0.45 is the fraction of shortwave (SW) radiation used during photosynthesis [83]. |
Vegetation Fraction (v, -) | v = | Vegetation fraction computed as a function of NDVI based on [84]. v plays a determinant role in model transpiration [54,85]. |
Albedo (, -) | Absolute value of ground reflectivity. |
Parameter | ARM-CF | MOISST | Units |
---|---|---|---|
K | 21.84 | 4.85 | [mm/hr] |
0.552 | 0.61 | [] | |
0.017 | 0.11 | [] | |
m | 0.57 | 0.52 | [] |
−0.373 | −99.2 | [mm] | |
f | 5.00 × 10 | 0.07 | [mm] |
A | 1.109 | 388 | [] |
A | 1.109 | 388 | [] |
n | 0.431 | 0.51 | [] |
k | 0.989 | 1.6 | [J/msK] |
C | 1.061 × 10 | 1.383 × 10 | [J/mK] |
K | 0.2911 | 0.2911 | [mm/hr] |
b | 3.209 | 3.527 | [mm] |
H | 0.2953 | 0.4476 | [m] |
0.55 | 0.4939 | [] | |
0.1792 | 0.1577 | [] |
Station → | ARM-CF | MOISST | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable → | NR | LE | H | G | SST | NR | LE | H | SST | SSM | RSM | |
CC | HH | 0.91 | 0.78 | 0.83 | 0.77 | 0.92 | 0.9 | 0.81 | 0.87 | 0.86 | 0.64 | 0.87 |
DD | 0.95 | 0.75 | 0.73 | 0.76 | 0.98 | 0.37 | 0.83 | 0.46 | 0.94 | 0.62 | 0.87 | |
Bias | HH | 0.24 | −0.36 | −8.99 | −8.76 | 0.08 | 0.68 | 1.54 | −0.35 | −0.02 | −0.26 | −0.05 |
DD | 0.14 | −0.36 | −9.07 | −8.6 | −0.31 | 0.68 | 1.72 | −0.34 | −0.02 | 0.01 | −0.05 | |
RMSE | HH | 77.55 | 66.64 | 60.54 | 22.13 | 2.99 | 126.20 | 63.77 | 85.43 | 5.79 | 0.19 | 0.02 |
DD | 24.57 | 39.47 | 43.15 | 9.97 | 2.7 | 78.13 | 42.47 | 31.56 | 3.44 | 0.17 | 0.02 | |
NRMSE | HH | 0.96 | 1.56 | 1.94 | −4.11 | 0.17 | 0.98 | 1.12 | 2.27 | 0.30 | 0.47 | 0.10 |
DD | 0.31 | 0.92 | 1.38 | -1.86 | 0.15 | 0.58 | 0.76 | 0.84 | 0.18 | 0.44 | 0.10 | |
NSE | HH | 0.81 | 0.56 | 0.59 | 0.36 | 0.84 | 0.55 | 0.66 | 0.71 | 0.83 | 0.20 | 0.68 |
DD | 0.85 | 0.43 | 0.27 | 0.23 | 0.94 | 0.22 | 0.17 | 0.48 | 0.96 | 0.18 | 0.77 |
Station → | ARM-CF | MOISST | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable → | NR | LE | H | G | SST | NR | LE | H | SST | SSM | RSM | |
CC | HH | 0.92 | 0.74 | 0.78 | 0.74 | 0.88 | 0.9 | 0.82 | 0.82 | 0.85 | 0.73 | 0.62 |
DD | 0.67 | 0.55 | 0.59 | 0.54 | 0.91 | 0.60 | 0.79 | 0.19 | 0.95 | 0.74 | 0.62 | |
Bias | HH | 0.13 | −0.32 | −16.55 | −26.45 | 0 | 1 | 0.41 | 0.17 | −0.06 | −0.15 | −0.17 |
DD | −0.10 | −0.30 | 2.61 | 3.04 | −0.02 | 1 | 0.52 | 0.17 | −0.03 | −0.14 | 0.24 | |
RMSE | HH | 78.47 | 63.39 | 71.97 | 20.86 | 6.30 | 130.5 | 46.25 | 69.45 | 5.45 | 0.16 | 0.093 |
DD | 62.35 | 41.75 | 45.32 | 9.98 | 3.02 | 78.35 | 28.17 | 30.01 | 2.85 | 0.15 | 0.079 | |
NRMSE | HH | 0.94 | 1.45 | 2.15 | −2.40 | 0.41 | 1.13 | 0.95 | 2.17 | 0.29 | 0.28 | 0.21 |
DD | 0.61 | 0.87 | 1.09 | −1.17 | 0.13 | 0.68 | 0.59 | 0.96 | 0.15 | 0.27 | 0.21 | |
NSE | HH | 0.83 | 0.51 | 0.53 | 0.50 | 0.74 | 0.45 | 0.34 | 0.71 | 0.81 | 0.55 | −0.10 |
DD | 0.02 | 0.23 | 0.20 | 0.09 | 0.81 | 0.08 | 0.32 | −0.17 | 0.93 | 0.55 | −0.10 |
Station → | ARM-A74 | ARM-A32 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable → | NR | LE | H | G | SST | RST | NR | LE | H | G | SST | RST | SSM | |
CC | HH | 0.92 | 0.69 | 0.70 | 0.76 | 0.79 | 0.98 | 0.88 | 0.69 | 0.73 | 0.59 | 0.80 | 0.99 | 0.59 |
DD | 0.70 | 0.51 | 0.06 | 0.83 | 0.96 | 0.98 | 0.58 | 0.49 | 0.16 | 0.77 | 0.96 | 0.99 | 0.58 | |
Bias | HH | 0.13 | 0.13 | −0.32 | 13.27 | −0.05 | −0.07 | −0.12 | −0.15 | −0.68 | −4.10 | −0.10 | −0.10 | 0.80 |
DD | 0.03 | 0.71 | 0.11 | 13.56 | −0.05 | −0.06 | −0.11 | 0.08 | −0.59 | −0.07 | −0.14 | −0.12 | 0.71 | |
RMSE | HH | 78.47 | 92.60 | 106.90 | 33.20 | 6.70 | 1.99 | 105.61 | 75.99 | 122.02 | 28.80 | 8.852 | 3.81 | 0.16 |
DD | 38.59 | 76.59 | 65.79 | 9.61 | 2.46 | 1.96 | 59.66 | 50.03 | 74.26 | 5.66 | 4.61 | 4.02 | 0.15 | |
NRMSE | HH | 0.76 | −.93 | 2.30 | 5.33 | 0.34 | 0.10 | 1.04 | 0.95 | 4.11 | 25.36 | 0.49 | 0.22 | 0.53 |
DD | 0.34 | 0.75 | 1.26 | 1.54 | 0.12 | 0.10 | 0.54 | 0.57 | 2.10 | 3.83 | 0.25 | 0.22 | 0.49 | |
NSE | HH | 0.83 | 0.31 | 0.56 | −0.11 | 0.61 | 0.93 | 0.77 | 0.60 | 0.60 | 0.36 | 0.60 | 0.87 | 0.18 |
DD | 0.37 | −0.68 | −1.33 | 0.08 | 0.91 | 0.93 | 0.31 | 0.45 | −0.01 | 0.57 | 0.81 | 0.86 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celis, J.A.; Moreno, H.A.; Basara, J.B.; McPherson, R.A.; Cosh, M.; Ochsner, T.; Xiao, X. From Standard Weather Stations to Virtual Micro-Meteorological Towers in Ungauged Sites: Modeling Tool for Surface Energy Fluxes, Evapotranspiration, Soil Temperature, and Soil Moisture Estimations. Remote Sens. 2021, 13, 1271. https://doi.org/10.3390/rs13071271
Celis JA, Moreno HA, Basara JB, McPherson RA, Cosh M, Ochsner T, Xiao X. From Standard Weather Stations to Virtual Micro-Meteorological Towers in Ungauged Sites: Modeling Tool for Surface Energy Fluxes, Evapotranspiration, Soil Temperature, and Soil Moisture Estimations. Remote Sensing. 2021; 13(7):1271. https://doi.org/10.3390/rs13071271
Chicago/Turabian StyleCelis, Jorge A., Hernan A. Moreno, Jeffrey B. Basara, Renee A. McPherson, Michael Cosh, Tyson Ochsner, and Xiangming Xiao. 2021. "From Standard Weather Stations to Virtual Micro-Meteorological Towers in Ungauged Sites: Modeling Tool for Surface Energy Fluxes, Evapotranspiration, Soil Temperature, and Soil Moisture Estimations" Remote Sensing 13, no. 7: 1271. https://doi.org/10.3390/rs13071271