Twenty-Seven Years of Scatterometer Surface Wind Analysis over Eastern Boundary Upwelling Systems
"> Figure 1
<p>National Data Buoy Center (NDBC) buoy locations. Red and blue symbols show coastal (<50 km of coastlines) and offshore buoys, respectively. (<b>a</b>) Panel shows all buoy locations, while (<b>b</b>) shows only buoys located in the Californian basin.</p> "> Figure 2
<p>Spatial scales (km) of 10m wind speed (<b>a</b>,<b>d</b>,<b>g</b>), zonal wind (<b>b</b>,<b>e</b>,<b>h</b>), and meridional wind (<b>c</b>,<b>f</b>,<b>i</b>) structure functions estimated from Sentinel-1a and Sentinel-1b synthetic aperture radar (SAR) IW retrievals during 2017–2019 over Benguela (top), Canary (middle), and California (bottom) upwelling zones.</p> "> Figure 2 Cont.
<p>Spatial scales (km) of 10m wind speed (<b>a</b>,<b>d</b>,<b>g</b>), zonal wind (<b>b</b>,<b>e</b>,<b>h</b>), and meridional wind (<b>c</b>,<b>f</b>,<b>i</b>) structure functions estimated from Sentinel-1a and Sentinel-1b synthetic aperture radar (SAR) IW retrievals during 2017–2019 over Benguela (top), Canary (middle), and California (bottom) upwelling zones.</p> "> Figure 3
<p>Spatial distribution of lagged temporal correlations of 10 m wind speed (<b>a</b>,<b>d</b>,<b>g</b>), zonal wind (<b>b</b>,<b>e</b>,<b>h</b>), and meridional wind (<b>c</b>,<b>f</b>,<b>i</b>) estimated from homogenized remotely sensed winds [<a href="#B8-remotesensing-13-00940" class="html-bibr">8</a>] in January and July 2000 over Benguela (top), Canary (middle), and California (bottom) upwelling zones. Time lag is included in each panel.</p> "> Figure 4
<p>Offshore comparisons of 6-hourly averaged buoy and on one hand IFREMER satellite analyses (left column), and on other hand ERA5 re-analyses (right column). Panels (<b>a</b>,<b>b</b>) illustrate wind speed comparisons, (<b>c</b>,<b>d</b>) illustrate zonal wind component comparisons, and (<b>e</b>,<b>f</b>) illustrate meridional wind component comparisons. Colors indicate sampling length values. Black and green lines indicate the perfect and symmetrical regression lines, respectively.</p> "> Figure 5
<p>As <a href="#remotesensing-13-00940-f004" class="html-fig">Figure 4</a> but for nearshore comparisons.</p> "> Figure 6
<p>Spatial distribution of root mean square difference (RMSD) between 10 m neutral wind speed from collocated scatterometer retrievals and (<b>a</b>–<b>c</b>) IFREMER satellite wind analysis, (<b>d</b>–<b>f</b>) ERA5 reanalysis, (<b>g</b>–<b>i</b>) CMEMS satellite wind analysis, and (<b>j</b>–<b>l</b>) CCMP analysis over the Canary upwelling zone. Note that retrievals from different scatterometers are used in 1996 (ERS2, left column), 2006 (QuikSCAT, middle column), and 2016 (ASCAT, right column). Colors indicate RMSD in m s<sup>−1</sup>. Note that color scale limits for 1996 are different from those in 2006 and 2016.</p> "> Figure 7
<p>The same as in <a href="#remotesensing-13-00940-f006" class="html-fig">Figure 6</a> but for the Benguela upwelling region.</p> "> Figure 8
<p>July 2006 mean of wind stress curl estimated from (<b>a</b>) scatterometer (QuikSCAT) and collocated (<b>b</b>) Ifremer, (<b>c</b>) ERA-5, and (<b>d</b>) CCMP analyses over the Canary zone. Colors indicate curl amplitude in N/m<sup>3</sup>.</p> "> Figure 9
<p>The same as in <a href="#remotesensing-13-00940-f008" class="html-fig">Figure 8</a> but over the Benguela zone in January 2006.</p> "> Figure 10
<p>Diurnal 10 m wind speed anomaly (shaded, m s<sup>−1</sup>) estimated as the difference between the seasonal mean for a given synoptic time and the seasonal mean for all synoptic times for January, and the seasonal mean wind velocity for each synoptic time. Results are based on the IFREMER wind analysis, seasonal means are computed over 2000–2018.</p> "> Figure 11
<p>The same as in <a href="#remotesensing-13-00940-f010" class="html-fig">Figure 10</a> but for the Benguela region in July.</p> "> Figure A1
<p>The three EBUS zones of interest: California, Canary, and Benguela are shown as red rectangles.</p> "> Figure A2
<p>Comparison, illustrated through QQplot result, between temporal correlation estimated from NDBC buoy wind measurements and from homogenized remotely sensed wind data.</p> "> Figure A3
<p>Monthly averaged wind speeds estimated from 6-hourly buoy, moored at 34.88°N and 120.87°W, and IFREMER satellite analyses for 00 h:00 and 12 h:00 UTC.</p> "> Figure A4
<p>Spatial distributions of root mean square of zonal wind component differences between collocated scatterometer retrievals and satellite wind analyses, referenced as Ifremer, (<b>a</b>–<b>c</b>), ERA5 wind estimates (<b>d</b>–<b>f</b>), CMEMS winds (<b>g</b>–<b>i</b>), and CCMP winds (<b>j</b>–<b>l</b>). The results are drawn from data occurring, over the Canary zone, in 1996 (panels in left column), 2006 (middle column), and 2016 (right column). Color indicates RMSD values in m/s. One should notice that the color bar associated with 1996 is different from the 2006 and 2016 ones.</p> "> Figure A5
<p>Spatial distributions of root mean square of meridional wind component differences between collocated scatterometer retrievals and satellite wind analyses, referenced as Ifremer, (<b>a</b>–<b>c</b>), ERA5 wind estimates (<b>d</b>–<b>f</b>), CMEMS winds (<b>g</b>–<b>i</b>), and CCMP winds (<b>j</b>–<b>l</b>). The results are drawn from data occurring, over Canary zone, in 1996 (panels in left column), 2006 (middle column), and 2016 (right column). Color indicates RMSD values in m/s. One should notice that the color bar associated with 1996 is different from the 2006 and 2016 ones.</p> "> Figure A6
<p>Spatial distributions of root mean square of zonal wind component differences between collocated scatterometer retrievals and satellite wind analyses, referenced as Ifremer, (<b>a</b>–<b>c</b>), ERA5 wind estimates (<b>d</b>–<b>f</b>), CMEMS winds (<b>g</b>–<b>i</b>), and CCMP winds (<b>j</b>–<b>l</b>). The results are drawn from data occurring, over Benguela zone, in 1996 (panels in left column), 2006 (middle column), and 2016 (right column). Color indicates RMSD values in m/s. One should notice that the color bar associated with 1996 is different from the 2006 and 2016 ones.</p> "> Figure A7
<p>Spatial distributions of root mean square of meridional wind component differences between collocated scatterometer retrievals and satellite wind analyses, referenced as Ifremer, (<b>a</b>–<b>c</b>), ERA5 wind estimates (<b>d</b>–<b>f</b>), CMEMS winds (<b>g</b>–<b>i</b>), and CCMP winds (<b>j</b>–<b>l</b>). The results are drawn from data occurring, over the Benguela zone, in 1996 (panels in left column), 2006 (middle column), and 2016 (right column). Color indicates RMSD values in m/s. One should notice that the color bar associated with 1996 is different from the 2006 and 2016 ones.</p> "> Figure A8
<p>Monthly-averaged mean of wind stress curl estimated from collocated (<b>a</b>) scatterometer (ASCAT), (<b>b</b>) Ifremer, (<b>c</b>) ERA-5, and (<b>d</b>) CCMP wind data occurring in July 2016 over the Canary zone. Colors indicate curl amplitudes in N/m<sup>3</sup>. White and black colors indicate curl values lower than −1.210<sup>−6</sup> N/m<sup>3</sup> and higher than 1.210<sup>−6</sup> N/m<sup>3</sup>, respectively.</p> "> Figure A9
<p>Monthly-averaged mean of wind stress curl estimated from collocated (<b>a</b>) scatterometer (ASCAT), (<b>b</b>) Ifremer, (<b>c</b>) ERA-5, and (<b>d</b>) CCMP wind data occurring in January 2016 over Benguela zone. Colors indicate curl amplitudes in N/m<sup>3</sup>. White and black colors indicate curl values lower than −1.210<sup>−6</sup> N/m<sup>3</sup> and higher than 1.210<sup>−6</sup> N/m<sup>3</sup>, respectively.</p> ">
Abstract
:1. Introduction
2. Data
2.1. In Situ Data
2.2. Remote Sensing Data
2.3. Copernicus/Marine Environment Monitoring Service (CMEMS) L4 Wind Analyses
2.4. Cross-Calibrated Multi-Platform (CCMP) Wind Analysis
2.5. Atmospheric Reanalysis
3. Analysis Method
3.1. Spatial Structure Functions
3.2. Temporal Structure Functions
3.3. IFREMER Satellite Wind Analyses
3.4. Accuracy of Satellite Wind Analyses
4. Surface Wind Analyses Versus Scatterometer Wind Retrievals
4.1. Wind Vector Issues
4.2. Wind Stress Issues
4.3. Assessment of the Local Wind Patterns
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Desbiolles, F.; Blanke, B.; Bentamy, A.; Grima, N. Origin of fine-scale wind stress curl structures in the Benguela and Canary upwelling systems. J. Geophys. Res. Oceans 2014, 119, 7931–7948. [Google Scholar] [CrossRef] [Green Version]
- Desbiolles, F.; Blanke, B.; Bentamy, A. Short-term upwelling events at the western African coast related to synoptic atmospheric structures as derived from satellite observations. J. Geophys. Res. Oceans 2014, 119, 461–483. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Gouhier, T.C.; Menge, B.A.; Ganguly, A.R. Intensification and spatial homogenization of coastal upwelling under climate change. Nat. Cell Biol. 2015, 518, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Santos, I.; Seguel, R.; Schneider, W.; Linford, P.; Donoso, D.; Navarro, E.; Amaya-Cárcamo, C.; Pinilla, E.; Daneri, G. Synoptic-scale variability of surface winds and ocean response to atmospheric forcing in the eastern austral Pacific Ocean. Ocean Sci. 2019, 15, 1247–1266. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- García-Reyes, M.; Largier, J. Observations of increased wind-driven coastal upwelling off central California. J. Geophys. Res. Space Phys. 2010, 115, C04011. [Google Scholar] [CrossRef] [Green Version]
- Freeman, E.; Woodruff, S.D.; Worley, S.J.; Lubker, S.J.; Kent, E.C.; Angel, W.E.; Berry, D.I.; Brohan, P.; Eastman, R.; Gates, L.; et al. ICOADS Release 3.0: A major update to the historical marine climate record. Int. J. Clim. 2017, 37, 2211–2232. [Google Scholar] [CrossRef] [Green Version]
- Bentamy, A.; Grodsky, S.A.; Elyouncha, A.; Chapron, B.; Desbiolles, F. Homogenization of scatterometer wind retrievals. Int. J. Clim. 2017, 37, 870–889. [Google Scholar] [CrossRef] [Green Version]
- Blanke, B.; Speich, S.; Bentamy, A.; Roy, C.; Sow, B. Modeling the structure and variability of the southern Benguela upwelling using QuikSCAT wind forcing. J. Geophys. Res. Space Phys. 2005, 110, C07018. [Google Scholar] [CrossRef] [Green Version]
- Capet, X.; Colas, F.; McWilliams, J.; Penven, P.; Marchesiello., P. Eddies in eastern boundary subtropical upwelling systems. In Ocean. Modeling in an Eddying Regime; Hecht, M.W., Hasumi, H., Eds.; Wiley: Hoboken, NJ, USA, 2008; Volume 177, pp. 131–147. [Google Scholar] [CrossRef] [Green Version]
- Renault, L.; Dewitte, B.; Marchesiello, P.; Illig, S.; Echevin, V.; Cambon, G.; Ramos, M.; Astudillo, O.; Minnis, P.; Ayers, J.K. Upwelling response to atmospheric coastal jets off central Chile: A modeling study of the October 2000 event. J. Geophys. Res. Space Phys. 2012, 117, C02030. [Google Scholar] [CrossRef] [Green Version]
- Grodsky, S.A.; Kudryavtsev, V.N.; Bentamy, A.; Carton, J.A.; Chapron, B. Does direct impact of sst on short wind waves matter for scatterometry ? Geophys. Res. Lett. 2012, 39, L12602. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, E.; Weijer, W.; Grodsky, S.A.; Bates, S.C.; Wainer, I. Mean and Variability of the Tropical Atlantic Ocean in the CCSM4. J. Clim. 2012, 25, 4860–4882. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Schlax, M.G.; Freilich, M.H.; Milliff, R.F. Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds. Science 2004, 303, 978–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, L.W.; Chelton, D.B.; Esbensen, S.K. The effects of sst-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Clim. 2010, 23, 255–281. [Google Scholar]
- Desbiolles, F.; Bentamy, A.; Blanke, B.; Roy, C.; Mestas-Nuñez, A.M.; Grodsky, S.A.; Herbette, S.; Cambon, G.; Maes, C. Two decades [1992–2012] of surface wind analyses based on satellite scatterometer observations. J. Mar. Syst. 2017, 168, 38–56. [Google Scholar] [CrossRef] [Green Version]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the COARE3.0 Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Bentamy, A.; Queffeulou, P.; Quilfen, Y.; Katsaros, K. Ocean surface wind fields estimated from satellite active and passive microwave instruments. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2469–2486. [Google Scholar] [CrossRef]
- Wentz, F.J.; Smith, D.K. A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations. J. Geophys. Res. Space Phys. 1999, 104, 11499–11514. [Google Scholar] [CrossRef]
- Hersbach, H.; Stoffelen, A.; De Haan, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res. Space Phys. 2007, 112, C03006. [Google Scholar] [CrossRef]
- Bentamy, A.; Grodsky, S.A.; Chapron, B.; Carton, J.A. Compatibility of C-and Ku-band scatterometer winds: ERS-2 and QuikSCAT. J. Mar. Syst. 2013, 117–118, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Grodsky, S.A.; Carton, J.A.; Nigam, S.; Okumura, Y.M. Tropical Atlantic Biases in CCSM4. J. Clim. 2012, 25, 3684–3701. [Google Scholar] [CrossRef] [Green Version]
- Tomita, H.; Kubota, M. An analysis of the accuracy of Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO) satellite-derived latent heat flux using moored buoy data. J. Geophys. Res. Space Phys. 2006, 111, C07007. [Google Scholar] [CrossRef] [Green Version]
- Atlas, R.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications. Bull. Am. Meteorol. Soc. 2011, 92, 157–174. [Google Scholar] [CrossRef]
- Ebuchi, N.; Graber, H.C.; Caruso, M.J. Evaluation of Wind Vectors Observed by QuikSCAT/SeaWinds Using Ocean Buoy Data. J. Atmos. Ocean. Technol. 2002, 19, 2049–2069. [Google Scholar] [CrossRef]
- Bentamy, A.; Croize-Fillon, D.; Perigaud, C. Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations. Ocean Sci. 2008, 4, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Verspeek, J.; Stoffelen, A.; Portabella, M.; Bonekamp, H.; Anderson, C.; Saldana, J. Validation and Calibration of ASCAT Using CMOD5.n. IEEE Trans. Geosci. Remote Sens. 2009, 48, 386–395. [Google Scholar] [CrossRef]
- Yamartino, R.J. A Comparison of Several "Single-Pass" Estimators of the Standard Deviation of Wind Direction. J. Clim. Appl. Meteorol. 1984, 23, 1362–1366. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Freilich, M.H.; Dunbar, R.S. The accuracy of the NSCAT-1 vector winds: Comparison with NDBC buoys. J. Geophys. Res. 1999, 104, 246. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; de Rosnay, P.; Bell, B.; Schepers, D.; Simmons, A.; Soci, C.; Abdalla, S.; Alonso-Balmaseda, M.; Balsamo, G.; Bechtold, P.; et al. Operational global reanalysis: Progress, future directions and synergies with NWP. ERA Rep. Ser. 2018. [Google Scholar] [CrossRef]
- Rivas, M.B.; Stoffelen, A. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci. 2019, 15, 831–852. [Google Scholar] [CrossRef] [Green Version]
- Bentamy, A.; Fillon, D.C. Gridded surface wind fields from Metop/ASCAT measurements. Int. J. Remote Sens. 2011, 33, 1729–1754. [Google Scholar] [CrossRef] [Green Version]
- Sangrà, P.; Troupin, C.; Barreiro-González, B.; Barton, E.D.; Orbi, A.; Arístegui, J. The C ape G hir filament system in A ugust 2009 (NW Africa). J. Geophys. Res. Oceans 2015, 120, 4516–4533. [Google Scholar] [CrossRef] [Green Version]
Instrument (Satellite) | Period | Repeat Cycle (Days) | Swath Width (km) | Provider and Useful Product Link |
---|---|---|---|---|
Scatterometers | ||||
ERS-1 (ERS-1) | 1992–1996 | 3, 35, 168 | 500 | OSI SAF/KNMI http://projects.knmi.nl/scatterometer/ers_prod (accessed on 2 March 2021) |
ERS-2 (ERS-2) | 1995–2001 | 3, 35 | 500 | OSI SAF/KNMI http://projects.knmi.nl/scatterometer/ers_prod (accessed on 2 March 2021) |
NSCAT (ADEOS-1) | 1996–1997 | 41 | 2 × 600 | JPL/PODAAC https://podaac.jpl.nasa.gov/dataset/NSCAT_LEVEL_2_V2 (accessed on 2 March 2021) |
SeaWinds (QuikSCAT) | 1999–2009 | 4 | 1800 | JPL/PODAAC https://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_2B_OWV_COMP_12_KUSST_LCRES_4.0 (accessed on 2 March 2021) |
SeaWinds (ADEOS-2) | 2002–2003 | 4 | 1800 | JPL/PODAAC https://podaac.jpl.nasa.gov/dataset/RSCAT_LEVEL_2B_OWV_COMP_12_V1.1 (accessed on 2 March 2021) |
ASCAT-A (METOP-A) | 2007–Present | 29 | 2×550 | OSI SAF/KNMI http://projects.knmi.nl/scatterometer/publications/pdf/ASCAT_Product_Manual.pdf (accessed on 2 March 2021) |
OSCAT2 (OceanSat-2) | 2009–2014 | 2 | 1400 | OSI SAF/KNMI http://projects.knmi.nl/scatterometer/publications/pdf/osisaf_cdop2_ss3_pum_Oceansat2_L2_winds_datarecord_1.1.pdf (accessed on 2 March 2021) |
HY-2a (HY-2a) | 2012–Present | 14, 168 | 1600 | OSI SAF/KNMI under cooperation between NSOAS and EUMETSAT http://projects.knmi.nl/scatterometer/publications/pdf/osisaf_cdop2_ss3_pum_scatsat1_winds.pdfhttps://www-cdn-int.eumetsat.int/files/2020-04/pdf_hy-2a_user_guide.pdf (accessed on 2 March 2021) |
ASCAT-B (METOP-B) | 2012–Present | 29 | 2 × 550 | OSI SAF/KNMI http://projects.knmi.nl/scatterometer/publications/pdf/ASCAT_Product_Manual.pdf (accessed on 2 March 2021) |
RapidScat (ISSS) | 2014–2016 | 900 | JPL/PODAAC https://podaac.jpl.nasa.gov/dataset/RSCAT_LEVEL_2B_OWV_COMP_12_V1.1 (accessed on 2 March 2021) | |
ScatSat-1 (ScatSat-1) | 2016–Present | 1400 | OSI SAF/KNMI http://projects.knmi.nl/scatterometer/publications/pdf/osisaf_cdop2_ss3_pum_scatsat1_winds.pdf (accessed on 2 March 2021) | |
Radiometers | ||||
SSM/I(F10–F15) | 1992–2009 | 1400 | RSS http://www.remss.com/missions/ssmi/ (accessed on 2 March 2021) | |
SSMIS(F16–F19) | 2003–Present | 1400 | RSS http://www.remss.com/missions/ssmi/ (accessed on 2 March 2021) | |
AMSRE(AQUA) | 2002–2011 | 16 days | 1445 | RSS http://www.remss.com/missions/amsr/ (accessed on 2 March 2021) |
AMSR-2(GCOM) | 2012–Present | 16 days | 1600 | RSS http://data.remss.com/amsr2/ (accessed on 2 March 2021) |
Wind Speed | Wind Direction | ||||||||
---|---|---|---|---|---|---|---|---|---|
Length | Bias (m/s) | RMSD (m/s) | ρ | bs | As (m/s) | Bias (deg) | RMSD (deg) | ρ² | |
ERS1 | 7802 | 0.10 | 3.21 | 0.72 | 1.01 | −0.17 | −6 | 39.00 | 1.07 |
ERS2 | 11,141 | 0.26 | 3.29 | 0.71 | 1.00 | −0.28 | −7 | 39.05 | 1.04 |
QSCAT | 159,752 | 0.06 | 0.63 | 0.98 | 0.99 | 0.02 | −3 | 18.56 | 1.89 |
ASCAT-A | 110,837 | 0.15 | 0.62 | 0.98 | 1.00 | −0.12 | −0 | 17.98 | 1.90 |
ASCAT-B | 56,170 | 0.08 | 0.58 | 0.99 | 1.00 | −0.11 | −1 | 18.54 | 1.89 |
RSCAT | 16,408 | 0.00 | 0.67 | 0.98 | 1.00 | 0.03 | −0 | 18.81 | 1.89 |
HY-2A | 26,600 | 0.08 | 0.75 | 0.98 | 1.01 | −0.14 | −1 | 18.15 | 1.87 |
SSCAT | 15,321 | 0.00 | 0.76 | 0.99 | 1.01 | −0.04 | −2 | 19.92 | 1.88 |
WindSat | 69,398 | 0.00 | 0.75 | 0.97 | 0.96 | 0.33 | −0 | 22.01 | 1.81 |
SAR | 628,922 | 0.18 | 1.45 | 0.92 | 0.97 | −0.01 | −3 | 40.53 | 1.51 |
SSM/I F10 | 36,914 | 0.03 | 0.98 | 0.96 | 1.03 | −0.24 | |||
SSM/I F11 | 63,152 | 0.04 | 0.96 | 0.96 | 1.02 | −0.21 | |||
SSM/I F13 | 164,042 | 0.09 | 0.93 | 0.97 | 1.01 | −0.15 | |||
SSM/I F14 | 122,351 | 0.12 | 0.92 | 0.97 | 1.01 | −0.19 | |||
SSM/I F15 | 83,844 | 0.09 | 0.92 | 0.97 | 1.01 | −0.19 | |||
SSMIS F16 | 142,448 | 0.07 | 0.91 | 0.97 | 1.01 | −0.13 | |||
SSMIS F17 | 108,457 | 0.04 | 0.87 | 0.97 | 1.01 | −0.11 | |||
SSMIS F18 | 51,617 | −0.02 | 0.82 | 0.97 | 1.00 | 0.00 | |||
AMSRE | 140,027 | 0.19 | 0.89 | 0.97 | 1.01 | −0.28 | |||
AMSR2 | 69,398 | 0.00 | 0.75 | 0.97 | 0.96 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bentamy, A.; Grodsky, S.A.; Cambon, G.; Tandeo, P.; Capet, X.; Roy, C.; Herbette, S.; Grouazel, A. Twenty-Seven Years of Scatterometer Surface Wind Analysis over Eastern Boundary Upwelling Systems. Remote Sens. 2021, 13, 940. https://doi.org/10.3390/rs13050940
Bentamy A, Grodsky SA, Cambon G, Tandeo P, Capet X, Roy C, Herbette S, Grouazel A. Twenty-Seven Years of Scatterometer Surface Wind Analysis over Eastern Boundary Upwelling Systems. Remote Sensing. 2021; 13(5):940. https://doi.org/10.3390/rs13050940
Chicago/Turabian StyleBentamy, Abderrahim, Semyon A. Grodsky, Gildas Cambon, Pierre Tandeo, Xavier Capet, Claude Roy, Steven Herbette, and Antoine Grouazel. 2021. "Twenty-Seven Years of Scatterometer Surface Wind Analysis over Eastern Boundary Upwelling Systems" Remote Sensing 13, no. 5: 940. https://doi.org/10.3390/rs13050940
APA StyleBentamy, A., Grodsky, S. A., Cambon, G., Tandeo, P., Capet, X., Roy, C., Herbette, S., & Grouazel, A. (2021). Twenty-Seven Years of Scatterometer Surface Wind Analysis over Eastern Boundary Upwelling Systems. Remote Sensing, 13(5), 940. https://doi.org/10.3390/rs13050940