Retrieval of Water Cloud Optical and Microphysical Properties from Combined Multiwavelength Lidar and Radar Data
<p>Schematic of the algorithm for the retrieval of optical and microphysical properties of clouds by multiwavelength lidar and cloud radar.</p> "> Figure 2
<p>(<b>a</b>) The backscatter cross section of lidar at 532 nm (green) and 1064 nm (red), and radar at 8.6 mm (black); (<b>b</b>) The relations between lidar ratio (<span class="html-italic">LR<sub>λ</sub></span>) and radar ratio (<span class="html-italic">RR</span>) with effective diameter.</p> "> Figure 3
<p>(<b>a</b>) The backscatter statistical model for median diameter (<span class="html-italic">D<sub>log</sub></span>); (<b>b</b>) the backscatter statistical model for logarithmic width of the distribution (<span class="html-italic">σ</span>); (<b>c</b>) the standard deviation of the <span class="html-italic">D<sub>log</sub></span> (<span class="html-italic">D<sub>log</sub></span>, <span class="html-italic">std</span>) in the backscatter statistical model; (<b>d</b>) the standard deviation of <span class="html-italic">σ</span> (<span class="html-italic">σ</span>, <span class="html-italic">std</span>) in the backscatter statistical model.</p> "> Figure 4
<p>Comparison of the results of the look-up backscatter statistical model (BSM) with simulation results (SIM). The solid black line is the 1:1 line, the color bar represents the normalized density of the data: (<b>a</b>) the median diameter (<span class="html-italic">D<sub>log</sub></span>); (<b>b</b>) the logarithmic width of the distribution (<span class="html-italic">σ</span>); (<b>c</b>) the effective diameter (<span class="html-italic">D<sub>eff</sub></span>); and (<b>d</b>) the liquid water content (LWC).</p> "> Figure 5
<p>Results for the relative error with changes in the initial parameters: (<b>a</b>) lidar constant at 532 nm (<span class="html-italic">C</span><sub>532</sub>); (<b>b</b>) lidar constant at 1064 nm (<span class="html-italic">C</span><sub>1064</sub>); (<b>c</b>) radar constant (<span class="html-italic">C<sub>rad</sub></span>).</p> "> Figure 6
<p>The iteration results for the lidar ratio (LR)/radar ratio (<span class="html-italic">RR</span>) at a fixed altitude. The ln(<span class="html-italic">RR</span>) indicates the natural logarithm of <span class="html-italic">RR</span>. The inversion (solid line) and the simulated value (SIM, dash line) results assumed the median diameter (<span class="html-italic">D<sub>log</sub></span>) and the width of the distribution (<span class="html-italic">σ</span>): (<b>a</b>) <span class="html-italic">D<sub>log</sub></span> = 7.7 μm, <span class="html-italic">σ</span> = 0.38; (<b>b</b>) <span class="html-italic">D<sub>log</sub></span> = 35 μm, <span class="html-italic">σ</span> = 0.4.</p> "> Figure 7
<p>Comparison of the iteration results (solid line) with the simulation (SIM, dot line) in profile. The DSD parameter was the same as in <a href="#remotesensing-13-04396-f006" class="html-fig">Figure 6</a>a: (<b>a</b>) lidar ratio at different wavelengths (<span class="html-italic">LR</span><sub>532</sub>, <span class="html-italic">LR</span><sub>1064</sub>); (<b>b</b>) radar ratio (<span class="html-italic">RR</span>); (<b>c</b>) lidar backscatter at different wavelengths (<span class="html-italic">β</span><sub>532</sub>, <span class="html-italic">β</span><sub>1064</sub>) and radar reflectivity factor (<span class="html-italic">Z</span>) (initial value subscript <span class="html-italic">I</span>, dash line); the results of different <span class="html-italic">Z</span> were superimposed. (<b>d</b>) Liquid water content (LWC); (<b>e</b>) effective diameter (<span class="html-italic">D<sub>eff</sub>)</span>.</p> "> Figure 8
<p>Comparison of the iteration results (solid line) with the simulation (SIM, dot line) in profile. The DSD parameter was the same as in <a href="#remotesensing-13-04396-f006" class="html-fig">Figure 6</a>b: (<b>a</b>) lidar ratio at different wavelengths (<span class="html-italic">LR</span><sub>532</sub>, <span class="html-italic">LR</span><sub>1064</sub>); (<b>b</b>) radar ratio (<span class="html-italic">RR</span>); (<b>c</b>) lidar backscatter at different wavelengths (<span class="html-italic">β</span><sub>532</sub>, <span class="html-italic">β</span><sub>1064</sub>) and radar reflectivity factor (<span class="html-italic">Z</span>) (initial value subscript <span class="html-italic">I</span>, dash line); the <span class="html-italic">β</span><sub>532</sub>, SIM was superimposed in <span class="html-italic">β</span><sub>532</sub> (<b>d</b>) liquid water content (LWC); (<b>e</b>) effective diameter (<span class="html-italic">D<sub>eff</sub>)</span>.</p> "> Figure 9
<p>Time–height profile of <span class="html-italic">Z</span> (<b>a</b>) and 1064 nm ranged corrected signal (<span class="html-italic">RCS</span>) (<b>b</b>) on 10 October 2019.</p> "> Figure 10
<p>The inversion results at 2:30 am on 10 October 2019: (<b>a</b>) lidar ratio at different wavelengths (<span class="html-italic">LR</span><sub>532</sub>, <span class="html-italic">LR</span><sub>1064</sub>); (<b>b</b>) radar ratio (<span class="html-italic">RR</span>); (<b>c</b>) lidar backscatter at different wavelengths (<span class="html-italic">β</span><sub>532</sub><span class="html-italic">, β</span><sub>1064</sub>) and radar reflectivity factor (<span class="html-italic">Z</span>) (initial value subscript <span class="html-italic">I</span>); (<b>d</b>) liquid water content (LWC); (<b>e</b>) effective diameter (<span class="html-italic">D<sub>eff</sub>)</span>.</p> "> Figure 11
<p>The inversion results at 4:00 a.m. on 10 October 2019: (<b>a</b>) lidar ratio at different wavelengths (<span class="html-italic">LR</span><sub>532</sub>, <span class="html-italic">LR</span><sub>1064</sub>); (<b>b</b>) radar ratio (<span class="html-italic">RR</span>); (<b>c</b>) lidar backscatter at different wavelengths (<span class="html-italic">β</span><sub>532</sub><span class="html-italic">, β</span><sub>1064</sub>) and radar reflectivity factor (<span class="html-italic">Z</span>) (initial value subscript <span class="html-italic">I</span>); (<b>d</b>) liquid water content (LWC); (<b>e</b>) effective diameter (<span class="html-italic">D<sub>eff</sub>)</span>.</p> "> Figure 12
<p>Time–height profile of <span class="html-italic">Z</span> (<b>a</b>) and 1064 nm ranged corrected signal (<span class="html-italic">RCS</span>) (<b>b</b>) on 16 October 2019.</p> "> Figure 13
<p>The inversion results at 13:00 p.m. on 16 October 2019: (<b>a</b>) lidar ratio at different wavelengths (<span class="html-italic">LR</span><sub>532</sub>, <span class="html-italic">LR</span><sub>1064</sub>); (<b>b</b>) radar ratio (<span class="html-italic">RR</span>); (<b>c</b>) lidar backscatter at different wavelengths (<span class="html-italic">β</span><sub>532</sub>, <span class="html-italic">β</span><sub>1064</sub>) and radar reflectivity factor (<span class="html-italic">Z</span>) (initial value subscript <span class="html-italic">I</span>); (<b>d</b>) liquid water content (LWC); (<b>e</b>) effective diameter (<span class="html-italic">D<sub>eff</sub></span>).</p> "> Figure 14
<p>The inversion results at 20:30 p.m. on 16 October 2019: (<b>a</b>) lidar ratio at different wavelengths (<span class="html-italic">LR</span><sub>532</sub>, <span class="html-italic">LR</span><sub>1064</sub>); (<b>b</b>) radar ratio (<span class="html-italic">RR</span>); (<b>c</b>) lidar backscatter at different wavelengths (<span class="html-italic">β</span><sub>532</sub>, <span class="html-italic">β</span><sub>1064</sub>) and radar reflectivity factor (<span class="html-italic">Z</span>) (initial value subscript <span class="html-italic">I</span>); (<b>d</b>) liquid water content (LWC); (<b>e</b>) effective diameter (<span class="html-italic">D<sub>eff</sub></span>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parameter Definitions
2.2. Implementation of the Algorithm
2.2.1. Overview
2.2.2. Backscatter Statistic Model (BSM)
2.2.3. Sensitivity Analysis
3. Results and Discussion
3.1. Application to the Ideal Cloud Signal
3.2. Application to Lidar and Radar Observation
3.2.1. Observation in a Layer of the Cloud
3.2.2. Observation in Multiple Layers of the Cloud
3.2.3. Strengths and Limitations of the Application of the Combination Algorithm to Observation Cases
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Retrieval Method of Lidar Backscatter
Appendix A.2. Calibrate Lidar Constant CL
Appendix A.3. Retrieval Method of Radar Backscatter
References
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Morrison, H.; Lier-Walqui, M.; Fridlind, A.M.; Grabowski, W.W.; Harrington, J.Y.; Hoose, C.; Korolev, A.; Kumjian, M.R.; Milbrandt, J.A.; Pawlowska, H.; et al. Confronting the Challenge of Modeling Cloud and Precipitation Microphysics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001689. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Zheng, Y.; Chiu, J.C.; Zhao, F.; Cadeddu, M.; Weng, F.; Cribb, M. Cloud Optical and Microphysical Properties Derived from Ground-Based and Satellite Sensors over a Site in the Yangtze Delta Region: Cloud Properties in Eastern China. J. Geophys. Res. Atmos. 2013, 118, 9141–9152. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Zhao, G.; Yu, Y.; Li, C.; Li, J.; Kang, L.; Zhu, T.; Zhao, C. Method to Retrieve Cloud Condensation Nuclei Number Concentrations Using Lidar Measurements. Atmos. Meas. Tech. 2019, 12, 3825–3839. [Google Scholar] [CrossRef] [Green Version]
- Muskatel, H.B.; Blahak, U.; Khain, P.; Levi, Y.; Fu, Q. Parametrizations of Liquid and Ice Clouds’ Optical Properties in Operational Numerical Weather Prediction Models. Atmosphere 2021, 12, 89. [Google Scholar] [CrossRef]
- Krasnov, O.A.; Russchenberg, H.W.J. The relation between the radar to lidar ratio and the effective radius of droplets in water clouds: An analysis of statistical models and observed drop size distributions. In Proceedings of the 11th Conference on Cloud Physics 2002, Ogden, UT, USA, 2–7 June 2002; American Meteorological Society: Boston, MA, USA, 2002; pp. 1–9. [Google Scholar]
- Shaw, M.A. Testing Lidar-Radar Derived Drop Sizes against In Situ Measurements. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2016. [Google Scholar]
- Huang, D.; Zhao, C.; Dunn, M.; Dong, X.; Mace, G.G.; Jensen, M.P.; Xie, S.; Liu, Y. An Intercomparison of Radar-Based Liquid Cloud Microphysics Retrievals and Implications for Model Evaluation Studies. Atmos. Meas. Tech. 2012, 5, 1409–1424. [Google Scholar] [CrossRef] [Green Version]
- Lamer, K.; Oue, M.; Battaglia, A.; Roy, R.J.; Cooper, K.B.; Dhillon, R.; Kollias, P. Multifrequency Radar Observations of Clouds and Precipitation Including the G-Band. Atmos. Meas. Tech. 2021, 14, 3615–3629. [Google Scholar] [CrossRef]
- Vivekanandan, J.; Ghate, V.P.; Jensen, J.B.; Ellis, S.M.; Schwartz, M.C. A Technique for Estimating Liquid Droplet Diameter and Liquid Water Content in Stratocumulus Clouds Using Radar and Lidar Measurements. J. Atmos. Ocean. Technol. 2020, 37, 2145–2161. [Google Scholar] [CrossRef]
- Hogan, R.J.; Illingworth, A.J.; O’Connor, E.J.; Bouniol, D.; Brooks, M.E.; Delanoë, J.; Donovan, D.P.; Eastment, J.D.; Gaussiat, N.; Goddard, J.W.F.; et al. Cloudnet: Evaluation of Model Clouds Using Ground-Based Observations. In Proceedings of the ECMWF Workshop on Parametrization of Clouds in Large-Scale Models, Reading, UK, 13–15 November 2006. [Google Scholar]
- Radenz, M.; Bühl, J.; Lehmann, V.; Görsdorf, U.; Leinweber, R. Combining Cloud Radar and Radar Wind Profiler for a Value Added Estimate of Vertical Air Motion and Particle Terminal Velocity within Clouds. Atmos. Meas. Tech. 2018, 11, 5925–5940. [Google Scholar] [CrossRef] [Green Version]
- Painemal, D.; Chiu, J.-Y.C.; Minnis, P.; Yost, C.; Zhou, X.; Cadeddu, M.; Eloranta, E.; Lewis, E.R.; Ferrare, R.; Kollias, P. Aerosol and Cloud Microphysics Covariability in the Northeast Pacific Boundary Layer Estimated with Ship-based and Satellite Remote Sensing Observations. J. Geophys. Res. Atmos. 2017, 122, 2403–2418. [Google Scholar] [CrossRef]
- Lee, S.; Kahn, B.H.; Teixeira, J. Characterization of Cloud Liquid Water Content Distributions from CloudSat. J. Geophys. Res. 2010, 115, D20203. [Google Scholar] [CrossRef]
- Khain, A.; Pinsky, M.; Magaritz, L.; Krasnov, O.; Russchenberg, H.W.J. Combined Observational and Model Investigations of the Z–LWC Relationship in Stratocumulus Clouds. J. Appl. Meteorol. Climatol. 2008, 47, 591–606. [Google Scholar] [CrossRef]
- Oh, S.-B.; Lee, Y.H.; Jeong, J.-H.; Kim, Y.-H.; Joo, S. Estimation of the Liquid Water Content and Z-LWC Relationship Using Ka-Band Cloud Radar and a Microwave Radiometer: Estimation of the LWC Using Ka-Band Cloud Radar. Met. Apps. 2018, 25, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Baedi, R.J.P.; de Wit, J.J.M.; Russchenberg, H.W.J.; Erkelens, J.S.; Poiares Baptista, J.P.V. Estimating Effective Radius and Liquid Water Content from Radar and Lidar Based on the CLARE98 Data-Set. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 1057–1062. [Google Scholar] [CrossRef]
- Fox, N.I.; Illingworth, A.J. The Retrieval of Stratocumulus Cloud Properties by Ground-Based Cloud Radar. J. Appl. Meteorol. 1997, 36, 8. [Google Scholar] [CrossRef]
- Rémillard, J.; Kollias, P.; Szyrmer, W. Radar-Radiometer Retrievals of Cloud Number Concentration and Dispersion Parameter in Nondrizzling Marine Stratocumulus. Atmos. Meas. Tech. 2013, 6, 1817–1828. [Google Scholar] [CrossRef] [Green Version]
- Hogan, R.J.; Brooks, M.E.; Illingworth, A.J.; Donovan, D.P.; Tinel, C.; Bouniol, D.; Baptista, J.P.V.P. Independent Evaluation of the Ability of Spaceborne Radar and Lidar to Retrieve the Microphysical and Radiative Properties of Ice Clouds. J. Atmos. Ocean. Technol. 2006, 23, 211–227. [Google Scholar] [CrossRef] [Green Version]
- Tinel, C.; Testud, J.; Pelon, J.; Hogan, R.J.; Protat, A.; Delanoë, J.; Bouniol, D. The Retrieval of Ice-Cloud Properties from Cloud Radar and Lidar Synergy. J. Appl. Meteorol. 2005, 44, 860–875. [Google Scholar] [CrossRef] [Green Version]
- Donovan, D.P.; Lammeren, A.C.A.P. van Cloud Effective Particle Size and Water Content Profile Retrievals Using Combined Lidar and Radar Observations: 1. Theory and Examples. J. Geophys. Res. Atmos. 2001, 106, 27425–27448. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, H. An Algorithm for Retrieval of Cloud Microphysics Using 95-GHz Cloud Radar and Lidar. J. Geophys. Res. 2003, 108, 4226. [Google Scholar] [CrossRef]
- Weitkamp, C. (Ed.) Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2005; ISBN 978-0-387-40075-4. [Google Scholar]
- Rinehart, P.D.R.E. Radar for Meteorologists; Miss: Las Vegas, NV, USA, 2010; ISBN 978-0-9658002-3-5. [Google Scholar]
- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Wu, W.; McFarquhar, G.M. Statistical Theory on the Functional Form of Cloud Particle Size Distributions. J. Atmos. Sci. 2018, 75, 2801–2814. [Google Scholar] [CrossRef]
- Mao, F.; Gong, W.; Zhu, Z. Simple Multiscale Algorithm for Layer Detection with Lidar. Appl. Opt. 2011, 50, 6591. [Google Scholar] [CrossRef] [PubMed]
- Shupe, M.D. A Ground-Based Multisensor Cloud Phase Classifier. Geophys. Res. Lett. 2007, 34, L22809. [Google Scholar] [CrossRef] [Green Version]
- Porter, J.N.; Lienert, B.; Sharma, S.K. Using Horizontal and Slant Lidar Measurements to Obtain Calibrated Aerosol Scattering Coefficients from a Coastal Lidar in Hawaii. J. Atmos. Ocean. Technol. 2000, 17, 10. [Google Scholar] [CrossRef] [Green Version]
- Gunn, K.L.S.; East, T.W.R. The Microwave Properties of Precipitation Particles. Q. J. R. Met. Soc. 1954, 80, 522–545. [Google Scholar] [CrossRef]
- Kedenburg, S.; Vieweg, M.; Gissibl, T.; Giessen, H. Linear Refractive Index and Absorption Measurements of Nonlinear Optical Liquids in the Visible and Near-Infrared Spectral Region. Opt. Mater. Express 2012, 2, 1588. [Google Scholar] [CrossRef]
- Misumi, R.; Uji, Y.; Tobo, Y.; Miura, K.; Uetake, J.; Iwamoto, Y.; Maesaka, T.; Iwanami, K. Characteristics of Droplet Size Distributions in Low-Level Stratiform Clouds Observed from Tokyo Skytree. J. Meteorol. Soc. Jpn. 2018, 96, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Miles, N.L.; Verlinde, J.; Clothiaux, E.E. Cloud Droplet Size Distributions in Low-Level Stratiform Clouds. J. Atmos. Sci. 2000, 57, 17. [Google Scholar] [CrossRef]
- Deng, Z.; Zhao, C.; Zhang, Q.; Huang, M.; Ma, X. Statistical Analysis of Microphysical Properties and the Parameterization of Effective Radius of Warm Clouds in Beijing Area. Atmos. Res. 2009, 93, 888–896. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Atlas, D. The estimation of cloud parameters by radar. J. Atmos. Sci. 1954, 11, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Che, Y.; Ma, S.; Xing, F.; Li, S.; Dai, Y. An Improvement of the Retrieval of Temperature and Relative Humidity Profiles from a Combination of Active and Passive Remote Sensing. Meteorol. Atmos. Phys. 2019, 131, 681–695. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, S.; Tan, W.; Chen, S.; Chen, H.; Guo, P.; Sun, Z.; Hu, R.; Xu, Q.; Zhang, M.; et al. Retrieval of Water Cloud Optical and Microphysical Properties from Combined Multiwavelength Lidar and Radar Data. Remote Sens. 2021, 13, 4396. https://doi.org/10.3390/rs13214396
Zhang Y, Chen S, Tan W, Chen S, Chen H, Guo P, Sun Z, Hu R, Xu Q, Zhang M, et al. Retrieval of Water Cloud Optical and Microphysical Properties from Combined Multiwavelength Lidar and Radar Data. Remote Sensing. 2021; 13(21):4396. https://doi.org/10.3390/rs13214396
Chicago/Turabian StyleZhang, Yinchao, Su Chen, Wangshu Tan, Siying Chen, He Chen, Pan Guo, Zhuoran Sun, Rui Hu, Qingyue Xu, Mengwei Zhang, and et al. 2021. "Retrieval of Water Cloud Optical and Microphysical Properties from Combined Multiwavelength Lidar and Radar Data" Remote Sensing 13, no. 21: 4396. https://doi.org/10.3390/rs13214396