MDPrePost-Net: A Spatial-Spectral-Temporal Fully Convolutional Network for Mapping of Mangrove Degradation Affected by Hurricane Irma 2017 Using Sentinel-2 Data
"> Figure 1
<p>Flowchart of all work stages for data processing (orange box), classification process (blue box), accuracy assessments (green box), and map processing (purple box).</p> "> Figure 2
<p>Whole study area in the southwest Florida coastal zone and Hurricane Irma track.</p> "> Figure 3
<p>10 input bands and visually interpreted labels in one of AOI. On the visually interpreted label, grey, white, and black color represents a mangrove, degraded mangrove, and non-mangrove class, respectively.</p> "> Figure 4
<p>Flowchart of steps to obtain visually interpreted labels.</p> "> Figure 5
<p>Distribution of reference samples for map accuracy in the entire study area.</p> "> Figure 6
<p>The framework of the MDPrePost-Net.</p> "> Figure 7
<p>Training curve of MDPrePost-Net.</p> "> Figure 8
<p>Visual comparison of the MDPrePost-Net with existing FCN architecture. K in FC-DenseNet stands for growth rate.</p> "> Figure 9
<p>Intact and degraded mangrove map affected by Hurricane Irma in southwest Florida 2017 using the proposed model.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sentinel-2 Pre-Processing
2.3. Input Data for Model
2.4. Reference Samples for Map Accuracy in Whole Study Area
2.5. MDPrePost-Net Architecture
2.5.1. Pre-Post Deep Feature Extractor
2.5.2. FCN Classifier
2.6. Algorithm Output Accuracy Assessments
2.7. Map Accuracy Assessments
2.8. Implementation Details
3. Results
3.1. MDPrePost-Net Results
3.2. Comparison with Existing Architecture
3.3. Effects of Vegetation and Mangrove Indices on the Results
3.4. Mangrove Degradation Map in Southwest Florida
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and Distribution of Mangrove Forests of The World Using Earth Observation Satellite Data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Tang, W.; Zheng, M.; Zhao, X.; Shi, J.; Yang, J.; Trettin, C. Big Geospatial Data Analytics for Global Mangrove Biomass and Carbon Estimation. Sustainability 2018, 10, 472. [Google Scholar] [CrossRef] [Green Version]
- Shahbudin, S.; Zuhairi, A.; Kamaruzzaman, B.Y. Impact of Coastal Development on Mangrove Cover in Kilim river, Langkawi Island, Malaysia. J. For. Res. 2012, 23, 185–190. [Google Scholar] [CrossRef]
- Carugati, L.; Gatto, B.; Rastelli, E.; Martire, M.L.; Coral, C.; Greco, S.; Danovaro, R. Impact of Mangrove Forests Degradation on Biodiversity and Ecosystem Functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barua, P.; Rahman, S. Sustainable Livelihood of Vulnerable Communities in Southern Coast of Bangladesh through the Utilization of Mangroves. Asian J. Water Environ. Pollut. 2019, 16, 59–67. [Google Scholar] [CrossRef]
- Valiela, I.; Bowen, J.L.; York, J.K. Mangrove Forests: One of the World’s Threatened Major Tropical Environments. Bioscience 2001, 51, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global Declines in Human-driven Mangrove Loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef]
- Hamilton, S.E.; Casey, D. Creation of a High Spatio-Temporal Resolution Global Database of Continuous Mangrove Forest Cover for the 21st Century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Zhen, J.; Liao, J.; Shen, G. Mapping Mangrove Forests of Dongzhaigang Nature Reserve in China Using Landsat 8 and Radarsat-2 Polarimetric SAR Data. Sensors 2018, 18, 4012. [Google Scholar] [CrossRef] [Green Version]
- Spencer, T.; Schuerch, M.; Nicholls, R.J.; Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Reef, R.; McFadden, L.; Brown, S. Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model. Glob. Planet. Chang. 2016, 139, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, S.; Jones, T. Identifying Mangrove Deforestation Hotspots in South Asia, Southeast Asia and Asia-Pacific. Remote Sens. 2019, 11, 728. [Google Scholar] [CrossRef] [Green Version]
- Ward, R.D.; Friess, D.A.; Day, R.H.; MacKenzie, R.A. Impacts of Climate Change on Mangrove Ecosystems: A Region by Region Overview. Ecosyst. Health Sustain. 2016, 2, e01211. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Monroy, V.H.; Danielson, T.M.; Castañeda-Moya, E.; Marx, B.D.; Travieso, R.; Zhao, X.; Farfan, L.M. Long-term demography and stem productivity of Everglades mangrove forests (Florida, USA): Resistance to hurricane disturbance. For. Ecol. Manag. 2019, 440, 79–91. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystem and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Hooper, D.U.; Adair, E.C.; Cardinale, B.J.; Byrnes, J.E.K.; Hungate, B.A.; Matulich, K.L.; Gonzalez, A.; Duffy, J.E.; Gamfeldt, L.; O’Connor, M.I. A Global Synthesis Reveals Biodiversity Loss as a Major Driver of Ecosystem Change. Nature 2012, 486, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Sutton, P.C.; Anderson, S.J.; Costanza, R.; Kubiszewski, I. The Ecological Economics of Land Degradation: Impacts on Ecosystem Service Values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy Global Assessment of Land Degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Reygadas, Y.; Jensen, J.L.R.; Moisen, G.G. Forest Degradation Assessment Based on Trend Analysis of MODIS-Leaf Area Index: A Case Study in Mexico. Remote Sens. 2019, 11, 2503. [Google Scholar] [CrossRef] [Green Version]
- Sippo, J.Z.; Lovelock, C.E.; Santos, I.R.; Sanders, C.J.; Maher, D.T. Mangrove mortality in a changing climate: An overview. Estuar. Coast. Shelf Sci. 2018, 215, 241–249. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Jessen, B.; Barry, M.J.; Figueroa, M.; McIntosh, J.; Murray, T.; Schmid, J.; Muller-Karger, F.E. Automated High-Resolution Time Series Mapping of Mangrove Forests Damaged by Hurricane Irma in Southwest Florida. Remote Sens. 2020, 12, 1740. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Jessen, B.; Barry, M.J.; Figueroa, M.; McIntosh, J.; Murray, T.; Schmid, J.; Muller-Karger, F.E. Mapping hurricane damage: A comparative analysis of satellite monitoring methods. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102134. [Google Scholar] [CrossRef]
- Lee, C.K.F.; Duncan, C.; Nicholson, E.; Fatoyinbo, T.E.; Lagomasino, D.; Thomas, N.; Worthington, T.A.; Murray, N.J. Mapping the Extent of Mangrove Ecosystem Degradation by Integrating an Ecological Conceptual Model with Satellite Data. Remote Sens. 2021, 13, 2047. [Google Scholar] [CrossRef]
- Kamal, M.; Phinn, S.; Johansen, K. Object-Based Approach for Multi-Scale Mangrove Composition Mapping Using Multi-Resolution Image Datasets. Remote Sens. 2015, 7, 4753–4783. [Google Scholar] [CrossRef] [Green Version]
- Diniz, C.; Cortinhas, L.; Nerino, G.; Rodrigues, J.; Sadeck, L.; Adami, M.; Souza-Filho, P.W.M. Brazilian Mangrove Status: Three Decades of Satellite Data Analysis. Remote Sens. 2019, 11, 808. [Google Scholar] [CrossRef] [Green Version]
- Mondal, P.; Liu, X.; Fatoyinbo, T.E.; Lagomasino, D. Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa. Remote Sens. 2019, 11, 2928. [Google Scholar] [CrossRef] [Green Version]
- Chen, N. Mapping mangrove in Dongzhaigang, China using Sentinel-2 imagery. J. Appl. Remote Sens. 2020, 14, 014508. [Google Scholar] [CrossRef]
- Neupane, B.; Horanont, T.; Aryal, J. Deep Learning-Based Semantic Segmentation of Urban Features in Satellite Images: A Review and Meta-Analysis. Remote Sens. 2021, 13, 808. [Google Scholar] [CrossRef]
- Chen, Y.-N.; Thaipisutikul, T.; Han, C.-C.; Liu, T.-J.; Fan, K.-C. Feature Line Embedding Based on Support Vector Machine for Hyperspectral Image Classification. Remote Sens. 2021, 13, 130. [Google Scholar] [CrossRef]
- Hoeser, T.; Bachofer, F.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review—Part II: Applications. Remote Sens. 2020, 12, 3053. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liao, J.; Shen, G. Mapping Large-Scale Mangroves along the Maritime Silk Road from 1990 to 2015 Using a Novel Deep Learning Model and Landsat Data. Remote Sens. 2021, 13, 245. [Google Scholar] [CrossRef]
- Guo, M.; Yu, Z.; Xu, Y.; Huang, Y.; Li, C. ME-Net: A Deep Convolutional Neural Network for Extracting Mangrove Using Sentinel-2A Data. Remote Sens. 2021, 13, 1292. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, H.; Lin, G.; Lin, H. A small-patched convolutional neural network for mangrove mapping at species level using high-resolution remote-sensing image. Ann. GIS 2019, 25, 45–55. [Google Scholar] [CrossRef]
- Hosseiny, B.; Mahdianpari, M.; Brisco, B.; Mohammadimanesh, F.; Salehi, B. WetNet: A Spatial-Temporal Ensemble Deep Learning Model for Wetland Classification Using Sentinel-1 and Sentinel-2. IEEE Trans. Geosci. Remote Sens. 2021, 1–14. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 39, 640–651. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems 25, Red Hook, NY, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Chaurasia, A.; Culurciello, E. LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017. [Google Scholar]
- Jégou, S.; Drozdzal, M.; Vazquez, D.; Romero, A.; Bengio, Y. The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Saferbekov, S.; Iglovikov, V.; Buslaev, A.; Shvets, A. Feature Pyramid Network for Multi-Class Land Segmentation. Comput. Vis. Pattern Recognit. 2018, 2, 272–2723. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Comput. Vis. Pattern Recognit. 2015, 2, 802–810. [Google Scholar]
- Gallego, A.-J.; Gil, P.; Pertusa, A.; Fisher, R.B. Semantic Segmentation of SLAR Imagery with Convolutional LSTM Selectional AutoEncoders. Remote Sens. 2019, 11, 1402. [Google Scholar] [CrossRef] [Green Version]
- Pfeuffer, A.; Schulz, K.; Dietmayer, K. Semantic Segmentation of Video Sequences with Convolutional LSTMs. Comput. Vis. Pattern Recognit. 2019, 1, 1441–1447. [Google Scholar]
- Nabavi, S.S.; Rochan, M.; Wang, Y. Future Semantic Segmentation with Convolutional LSTM. arXiv 2018, arXiv:1807.07946. [Google Scholar]
- Lugo, A.E.; Snedaker, S.C. The ecology of mangroves. Annu. Rev. Ecol. Syst. 1974, 5, 39–64. [Google Scholar] [CrossRef]
- Worthington, T.A.; zu Ermgassen, P.S.E.; Friess, D.A.; Krauss, K.W.; Lovelock, C.E.; Thorley, J.; Tingey, R.; Woodroffe, C.D.; Bunting, P.; Cormier, N.; et al. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci. Rep. 2020, 10, 14652. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gupta, K.; Mukhopadhyay, A.; Giri, S.; Chanda, A.; Datta Majumdar, S.; Samanta, S.; Mitra, D.; Samal, R.N.; Pattnaik, A.K.; Hazra, S. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX. 2018, 5, 1129–1139. [Google Scholar] [CrossRef]
- Shi, T.; Liu, J.; Hu, Z.; Liu, H.; Wang, J.; Wu, G. New spectral metrics for mangrove forest identification. Remote Sens. Lett. 2016, 7, 885–894. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Rezatofighi, S.H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.D.; Savarese, S. Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. In Proceedings of the AI 2006: Advances in Artificial Intelligence, Hobart, Australia, 4–8 December 2006; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4304, pp. 1015–1021. [Google Scholar] [CrossRef] [Green Version]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Matthews Correlation Coefficient (MCC) is More Informative Than Cohen’s Kappa and Brier Score in Binary Classification Assessment. IEEE Access 2021, 9, 78368–78381. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
Band | Band Name | Central Wavelength (nm) | Spatial Resolution |
---|---|---|---|
B1 | Aerosols | 442.3 | 60 |
B2 | Blue | 492.1 | 10 |
B3 | Green | 559 | 10 |
B4 | Red | 665 | 10 |
B5 | Red Edge 1 | 703.8 | 20 |
B6 | Red Edge 2 | 739.1 | 20 |
B7 | Red Edge 3 | 779.7 | 20 |
B8 | Near Infrared (NIR) | 833 | 10 |
B8A | Red Edge 4 | 864 | 20 |
B9 | Water-vapor | 943.2 | 60 |
B10 | Cirrus | 1376.9 | 60 |
B11 | Shortwave Infrared (SWIR1) | 1610.4 | 20 |
B12 | Shortwave Infrared (SWIR2) | 2185.7 | 20 |
Spectral Index | Formula | Reference |
---|---|---|
NDVI | (NIR − Red)/(Nir + Red) | [50] |
NDWI | (Green − NIR)/(Green + NIR) | [53] |
CMRI | (NDVI − NDWI) | [51] |
NDMI | (SWIR2 − Green)/(SWIR2 + Green) | [52] |
MNDWI | (Green − SWIR1)/(Green + SWIR2) | [54] |
MMRI | (|MNDWI| − |NDVI|)/(|MNDWI| + |NDVI|) | [24] |
Image (Scene Code) | Date Acquired (yyyy/mm/dd) |
---|---|
Before Hurricane Irma: | |
Sentinel-2A (T17RMJ) | 2016/12/30 |
Sentinel-2A (T17RNJ) | 2017/1/6 |
Sentinel-2A (T17RMH) | 2017/2/15 |
Sentinel-2A (T17RNH) | 2017/2/15 |
After Hurricane Irma: | |
Sentinel-2A (T17RMJ) | 2017/11/25 |
Sentinel-2B (T17RNJ) | 2018/1/16 |
Sentinel-2B (T17RMH) | 2018/1/16 |
Sentinel-2A (T17RNH) | 2018/3/22 |
Classes | Image before Event | Image after Event |
---|---|---|
Non-Mangrove | ||
Intact Mangrove | ||
Degraded Mangrove |
Class/Data | Training Data | Validation Data | Testing Data |
---|---|---|---|
Non-Mangrove | 35,452,388 | 7,672,797 | 7,668,533 |
Intact Mangrove | 2,575,944 | 525,356 | 523,906 |
Degraded Mangrove | 2,890,708 | 571,383 | 577,097 |
Model Evaluation Metrics | Formula |
---|---|
IoU Score | |
Overall Accuracy | |
F1-Score |
Reference Data | |||||||
---|---|---|---|---|---|---|---|
Non-Mangroves | Intact Mangroves | Degraded Mangroves | Rows Total | User’s Accuracy | Chance Agree | ||
Predicted Data | Non-Mangroves | A | B | C | A+B+C | A/Rows Total 1 | Rows Total 1/Total Sample |
Intact Mangroves | D | E | F | D+E+F | E/Rows Total 2 | Rows Total 2/Total Sample | |
Degraded Mangroves | G | H | I | G+H+I | I/Rows Total 3 | Rows Total 3/Total Sample | |
Columns total | A+D+G | B+E+H | C+F+I | Total Sample | |||
Producer’s Accuracy | A/Columns Total 1 | E/Columns Total 2 | I/Columns Total 3 | OA | Kappa | ||
Chance Agree | Columns Total 1/Total Sample | Columns Total 2/Total Sample | Columns Total 3/Total Sample | Total Change Agree |
Accuracy Metrics | Non-Mangrove | Intact Mangrove | Degraded Mangrove |
---|---|---|---|
IoU | 99.82% | 96.47% | 96.82% |
F1-Score | 99.91% | 98.21% | 98.39% |
Class Accuracy | 99.91% | 98.31% | 98.25% |
Total Input Data | Total Images (64 × 64) | Overall Acc | Mean IoU | NM IoU | Mg IoU | DgMg IoU |
---|---|---|---|---|---|---|
25% of training data | 2497 | 98.53% | 88.59% | 99.27% | 82.76% | 83.73% |
50% of training data | 4995 | 99.10% | 92.69% | 99.56% | 88.84% | 89.68% |
75% of training data | 7492 | 99.44% | 95.38% | 99.73% | 92.95% | 93.46% |
All training data | 9990 | 99.71% | 97.70% | 99.82% | 96.47% | 96.82% |
Architecture | Mean IoU | Average Accuracy | Mg IoU | DgMg IoU |
---|---|---|---|---|
MDPrePost-Net | 97.70% | 98.75% | 96.47% | 96.82% |
No Post extractor | 97.11% | 98.43% | 95.57% | 95.97% |
No ConvLSTM extractor | 95.65% | 97.62% | 93.41% | 93.85% |
Architecture | Mean IoU | IoU Non-Mg | IoU Mg | IoU DgMg | Time Per-Epoch (s) | Training Times (hh:mm) | Total Parameters (millions) |
---|---|---|---|---|---|---|---|
MDPrePost-Net | 97.70% | 99.82% | 96.47% | 96.82% | 16 | 01:17 | 23.8 |
FC-DenseNet103 (K = 32) | 93.00% | 99.63% | 89.24% | 90.13% | 59 | 03:22 | 35.2 |
U-Net | 92.58% | 99.62% | 88.57% | 89.54% | 13 | 01:14 | 31.4 |
LinkNet | 92.19% | 99.42% | 88.24% | 88.93% | 5 | 0:15 | 11.6 |
FPN-Net | 82.27% | 98.46% | 73.08% | 75.28% | 10 | 0:29 | 17.6 |
Input Bands | Mean IoU | OA F1-Score | OA Accuracy | Average Accuracy | IoU Non-Mg | IoU Mg | IoU Dg Mg |
---|---|---|---|---|---|---|---|
RGB | 95.54% | 97.69% | 99.45% | 97.56% | 99.71% | 93.13% | 93.76% |
R,G,B,NIR | 96.25% | 98.07% | 99.55% | 97.96% | 99.79% | 94.25% | 94.70% |
R,G,B,NIR,SWIR1,SWIR2 | 96.58% | 98.25% | 99.58% | 98.13% | 99.78% | 94.82% | 95.13% |
All 10 input bands | 97.70% | 98.83% | 99.71% | 98.75% | 99.82% | 96.47% | 96.82% |
Reference Data | ||||||
---|---|---|---|---|---|---|
Non-Mangroves | Intact Mangrove | Degraded Mangrove | Rows Total | User’s Accuracy | ||
Predicted Data | Non-Mangrove | 499 | 0 | 1 | 500 | 0.9980 |
Intact Mangrove | 7 | 484 | 9 | 500 | 0.9680 | |
Degraded Mangrove | 4 | 19 | 477 | 500 | 0.9540 | |
Column total | 510 | 503 | 487 | 1500 | ||
Producer’s Accuracy | 0.9784 | 0.9622 | 0.9794 | Overall Acc = 0.9733 | ||
Kappa = 0.960 |
Model | UA and PA of N-Mg (%) | UA and PA of Int-Mg (%) | UA and PA of Dg-Mg (%) | OA (%) | Image Data | References |
---|---|---|---|---|---|---|
Our proposed model | 99.8 and 97.8 | 96.8 and 96.2 | 95.4 and 97.9 | 97.3 | Sentinel-2 | - |
Neural Network | 89.3 and 89 | 80 and 88 | 75 and 57 | 85 | WorldView-2 | [21] |
Decision Tree | 89.7 and 86.7 | 73 and 91 | 62 and 38 | 83 | WorldView-2 | [21] |
Decision Tree | 87.7 and 84.7 | 78 and 77 | 56 and 54 | 82 | WorldView-2 | [20] |
Support Vector Machine | 88.7 and 87 | 77 and 86 | 59 and 62 | 83 | WorldView-2 | [21] |
Random Forest | - | 85.7 and 72.3 | 73.9 and 86.7 | 79.1 | Landsat | [22] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamaluddin, I.; Thaipisutikul, T.; Chen, Y.-N.; Chuang, C.-H.; Hu, C.-L. MDPrePost-Net: A Spatial-Spectral-Temporal Fully Convolutional Network for Mapping of Mangrove Degradation Affected by Hurricane Irma 2017 Using Sentinel-2 Data. Remote Sens. 2021, 13, 5042. https://doi.org/10.3390/rs13245042
Jamaluddin I, Thaipisutikul T, Chen Y-N, Chuang C-H, Hu C-L. MDPrePost-Net: A Spatial-Spectral-Temporal Fully Convolutional Network for Mapping of Mangrove Degradation Affected by Hurricane Irma 2017 Using Sentinel-2 Data. Remote Sensing. 2021; 13(24):5042. https://doi.org/10.3390/rs13245042
Chicago/Turabian StyleJamaluddin, Ilham, Tipajin Thaipisutikul, Ying-Nong Chen, Chi-Hung Chuang, and Chih-Lin Hu. 2021. "MDPrePost-Net: A Spatial-Spectral-Temporal Fully Convolutional Network for Mapping of Mangrove Degradation Affected by Hurricane Irma 2017 Using Sentinel-2 Data" Remote Sensing 13, no. 24: 5042. https://doi.org/10.3390/rs13245042
APA StyleJamaluddin, I., Thaipisutikul, T., Chen, Y. -N., Chuang, C. -H., & Hu, C. -L. (2021). MDPrePost-Net: A Spatial-Spectral-Temporal Fully Convolutional Network for Mapping of Mangrove Degradation Affected by Hurricane Irma 2017 Using Sentinel-2 Data. Remote Sensing, 13(24), 5042. https://doi.org/10.3390/rs13245042