Quantitative Assessment of Landslide Risk Based on Susceptibility Mapping Using Random Forest and GeoDetector
"> Figure 1
<p>Location and landslide distribution of Fengjie County.</p> "> Figure 2
<p>Geological Structure Outline Map of Fengjie County.</p> "> Figure 3
<p>Landslide numbers for the counties of Chongqing from 2001 to 2016.</p> "> Figure 4
<p>Field survey of landslides in Fengjie County: (<b>a</b>) the Xiawazhaping Landslide; (<b>b</b>) the Zhujiatian Landslide.</p> "> Figure 5
<p>Conditioning Factors on Layer of Landslide Susceptibility: (<b>a</b>) Elevation; (<b>b</b>) Slope; (<b>c</b>) Aspect; (<b>d</b>) Curvature; (<b>e</b>) Plan curvature; (<b>f</b>) Profile curvature; (<b>g</b>) Slope shape; (<b>h</b>) Slope position; (<b>i</b>) Slope variability; (<b>j</b>) Micro-landform; (<b>k</b>) RDLS; (<b>l</b>) TRI; (<b>m</b>) Incision density; (<b>n</b>) Incision depth; (<b>o</b>) TWI; (<b>p</b>) Elevation coefficient of variation; (<b>q</b>) Lithology; (<b>r</b>) Distance from fault; (<b>s</b>) CRDS; (<b>t</b>) STI; (<b>u</b>) Land cover; (<b>v</b>) SPI; (<b>w</b>) Distance from rivers; (<b>x</b>) NDVI; (<b>y</b>) Groundwater type.</p> "> Figure 5 Cont.
<p>Conditioning Factors on Layer of Landslide Susceptibility: (<b>a</b>) Elevation; (<b>b</b>) Slope; (<b>c</b>) Aspect; (<b>d</b>) Curvature; (<b>e</b>) Plan curvature; (<b>f</b>) Profile curvature; (<b>g</b>) Slope shape; (<b>h</b>) Slope position; (<b>i</b>) Slope variability; (<b>j</b>) Micro-landform; (<b>k</b>) RDLS; (<b>l</b>) TRI; (<b>m</b>) Incision density; (<b>n</b>) Incision depth; (<b>o</b>) TWI; (<b>p</b>) Elevation coefficient of variation; (<b>q</b>) Lithology; (<b>r</b>) Distance from fault; (<b>s</b>) CRDS; (<b>t</b>) STI; (<b>u</b>) Land cover; (<b>v</b>) SPI; (<b>w</b>) Distance from rivers; (<b>x</b>) NDVI; (<b>y</b>) Groundwater type.</p> "> Figure 5 Cont.
<p>Conditioning Factors on Layer of Landslide Susceptibility: (<b>a</b>) Elevation; (<b>b</b>) Slope; (<b>c</b>) Aspect; (<b>d</b>) Curvature; (<b>e</b>) Plan curvature; (<b>f</b>) Profile curvature; (<b>g</b>) Slope shape; (<b>h</b>) Slope position; (<b>i</b>) Slope variability; (<b>j</b>) Micro-landform; (<b>k</b>) RDLS; (<b>l</b>) TRI; (<b>m</b>) Incision density; (<b>n</b>) Incision depth; (<b>o</b>) TWI; (<b>p</b>) Elevation coefficient of variation; (<b>q</b>) Lithology; (<b>r</b>) Distance from fault; (<b>s</b>) CRDS; (<b>t</b>) STI; (<b>u</b>) Land cover; (<b>v</b>) SPI; (<b>w</b>) Distance from rivers; (<b>x</b>) NDVI; (<b>y</b>) Groundwater type.</p> "> Figure 5 Cont.
<p>Conditioning Factors on Layer of Landslide Susceptibility: (<b>a</b>) Elevation; (<b>b</b>) Slope; (<b>c</b>) Aspect; (<b>d</b>) Curvature; (<b>e</b>) Plan curvature; (<b>f</b>) Profile curvature; (<b>g</b>) Slope shape; (<b>h</b>) Slope position; (<b>i</b>) Slope variability; (<b>j</b>) Micro-landform; (<b>k</b>) RDLS; (<b>l</b>) TRI; (<b>m</b>) Incision density; (<b>n</b>) Incision depth; (<b>o</b>) TWI; (<b>p</b>) Elevation coefficient of variation; (<b>q</b>) Lithology; (<b>r</b>) Distance from fault; (<b>s</b>) CRDS; (<b>t</b>) STI; (<b>u</b>) Land cover; (<b>v</b>) SPI; (<b>w</b>) Distance from rivers; (<b>x</b>) NDVI; (<b>y</b>) Groundwater type.</p> "> Figure 5 Cont.
<p>Conditioning Factors on Layer of Landslide Susceptibility: (<b>a</b>) Elevation; (<b>b</b>) Slope; (<b>c</b>) Aspect; (<b>d</b>) Curvature; (<b>e</b>) Plan curvature; (<b>f</b>) Profile curvature; (<b>g</b>) Slope shape; (<b>h</b>) Slope position; (<b>i</b>) Slope variability; (<b>j</b>) Micro-landform; (<b>k</b>) RDLS; (<b>l</b>) TRI; (<b>m</b>) Incision density; (<b>n</b>) Incision depth; (<b>o</b>) TWI; (<b>p</b>) Elevation coefficient of variation; (<b>q</b>) Lithology; (<b>r</b>) Distance from fault; (<b>s</b>) CRDS; (<b>t</b>) STI; (<b>u</b>) Land cover; (<b>v</b>) SPI; (<b>w</b>) Distance from rivers; (<b>x</b>) NDVI; (<b>y</b>) Groundwater type.</p> "> Figure 6
<p>Triggering factors Layer of Landslide Hazard: (<b>a</b>) Annual average rainfall; (<b>b</b>) Distance from roads; (<b>c</b>) Distance from houses.</p> "> Figure 7
<p>Influence Factors on Layer of Landslide vulnerability: (<b>a</b>) POI kernel density; (<b>b</b>) Population; (<b>c</b>) GDP; (<b>d</b>) Road cost.</p> "> Figure 8
<p>The methodological framework of the study.</p> "> Figure 9
<p>The schematic diagram of the RF algorithm.</p> "> Figure 10
<p>Factor detector results.</p> "> Figure 11
<p>ROC curve and AUC value.</p> "> Figure 12
<p>Landslide comprehensive susceptibility map.</p> "> Figure 13
<p>Landslide hazard map.</p> "> Figure 14
<p>Landslide vulnerability map.</p> "> Figure 15
<p>Landslide risk map.</p> "> Figure 16
<p>Typical factors in landslide density statistics: (<b>a</b>) Elevation; (<b>b</b>) Lithology; (<b>c</b>) Groundwater type.</p> "> Figure 16 Cont.
<p>Typical factors in landslide density statistics: (<b>a</b>) Elevation; (<b>b</b>) Lithology; (<b>c</b>) Groundwater type.</p> "> Figure 17
<p>Key prevention area for landslide hazard. (<b>III-1</b>) in the eastern Yongan Town and the western Zhuyi Town, (<b>III-2</b>) in the Chenjiabao landslide, Guanmiaotuo landslide and Linjiawan landslide, (<b>III-3</b>) in the central urban section of Hurong Expressway.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Data on Landslide Susceptibility Assessment
2.2.2. Data for Landslide Hazard Assessment
2.2.3. Data of Landslide Vulnerability Assessment
2.3. Methodology
2.3.1. Landslide Susceptibility Assessment Method
1. Random Forest Model (RF)
2. GeoDetector
3.Evaluation of LSM Model
2.3.2. Landslide Hazard Assessment Method
2.3.3. Landslide Vulnerability Assessment Method
2.3.4. Landslide Risk Assessment Method
3. Results
3.1. Results of Landslide Susceptibility
3.2. Results of Landslide Hazard
3.3. Results of Landslide Vulnerability
3.4. Results of Landslide Risk
4. Discussion
4.1. Importance of Contributing Factors
4.2. Risk Prevention Zoning
4.3. Contributions and Shortcomings
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, H.; Pourghasemi, H.R.; Pourtaghi, Z.S. Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 2016, 259, 105–118. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. Catena 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Acharya, S.; Pathak, D. Landslide hazard assessment around MCT zone in Marsyangdi River basin, west Nepal. J. Nepal Geol. Soc. 2017, 53, 93–98. [Google Scholar] [CrossRef]
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Salvati, P.; Bianchi, C.; Rossi, M.; Guzzetti, F. Societal landslide and flood risk in Italy. Nat. Hazards Earth Syst. Sci 2010, 10, 465–483. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena 2017, 151, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice; Unesco: Paris, France, 1984. [Google Scholar]
- Biçer, Ç.T.; Ercanoglu, M. A semi-quantitative landslide risk assessment of central Kahramanmaraş City in the Eastern Mediterranean region of Turkey. Arab. J. Geosci. 2020, 13. [Google Scholar] [CrossRef]
- Bonachea, J.; Remondo, J.; de Teran, J.R.; Gonzalez-Diez, A.; Cendrero, A. Landslide risk models for decision making. Risk Anal. 2009, 29, 1629–1643. [Google Scholar] [CrossRef]
- Yong, X.; Zhipeng, L.; Chunying, G. Risk Study on quantitative risk analysis of Rainfall Landslide—A Case Study of Ganba Landslide in Xuanen County. Geol. Miner. Resour. South China 2018, 34, 294–301. [Google Scholar] [CrossRef]
- Nianchang, Z.; Bolong, L.I.U.; Junning, X.I.E. Numerical Investigation on the Barrier Dam Risk Caused by Landslide-A Case Study on Caijiaba Landslide. IOP Conf. Ser. Earth Environ. Sci. 2021, 658. [Google Scholar] [CrossRef]
- Michellier, C.; Pigeon, P.; Paillet, A.; Trefon, T.; Dewitte, O.; Kervyn, F. The Challenging Place of Natural Hazards in Disaster Risk Reduction Conceptual Models: Insights from Central Africa and the European Alps. Int. J. Disaster Risk Sci. 2020, 11, 316–332. [Google Scholar] [CrossRef]
- Adnan, M.S.G.; Rahman, M.S.; Ahmed, N.; Ahmed, B.; Rabbi, M.F.; Rahman, R.M. Improving Spatial Agreement in Machine Learning-Based Landslide Susceptibility Mapping. Remote Sens. 2020, 12, 3347. [Google Scholar] [CrossRef]
- Can, A.; Dagdelenler, G.; Ercanoglu, M.; Sonmez, H. Landslide susceptibility mapping at Ovacık-Karabük (Turkey) using different artificial neural network models: Comparison of training algorithms. Bull. Eng. Geol. Environ. 2017, 78, 89–102. [Google Scholar] [CrossRef]
- Du, C.; Yi, Q.; Zhou, B.; Qin, S.; Zeng, H. Evaluation of landslide susceptibility in Yunyang County of Three Gorges Reservoir Area Based on GIS and weighted information. J. China Three Gorges Univ. (Nat. Sci.) 2017, 39, 48–53. [Google Scholar]
- Steger, S.; Brenning, A.; Bell, R.; Glade, T. The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements. Landslides 2017, 14, 1767–1781. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H.; Ningsheng, C.; Rahman, M.; Islam, M.M.; Pourghasemi, H.R.; Hussain, S.F.; Habumugisha, J.M.; Liu, E.; Zheng, H.; Ni, H.; et al. Geohazards Susceptibility Assessment along the Upper Indus Basin Using Four Machine Learning and Statistical Models. ISPRS Int. J. Geo-Inf. 2021, 10, 315. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, D.; Wen, H.; Zhang, H.; Zhang, F. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China). Int. J. Environ. Res. Public Health 2020, 17, 4206. [Google Scholar] [CrossRef]
- Lombardo, L.; Mai, P.M. Presenting logistic regression-based landslide susceptibility results. Eng. Geol. 2018, 244, 14–24. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, R.; Jiang, Y.; Liu, H.; Wei, Z. GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing, Southeastern China. Eng. Geol. 2019, 259. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, C.; Hong, H.; Zhou, Q.; Wang, D. Mapping earthquake-triggered landslide susceptibility by use of artificial neural network (ANN) models: An example of the 2013 Minxian (China) Mw 5.9 event. Geomat. Nat. Hazards Risk 2018, 10, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B.; Li, Y.; Catani, F.; Pourghasemi, H.R. Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China. Comput. Geosci. 2018, 112, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Yao, C.; Liu, W.; Li, Y.; Liu, X. Landslide susceptibility assessment in the Nantian area of China: A comparison of frequency ratio model and support vector machine. Geomat. Nat. Hazards Risk 2018, 9, 919–938. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Xu, J.; Wen, H.; Wang, Y. An Optimized Random Forest Model and Its Generalization Ability in Landslide Susceptibility Mapping: Application in Two Areas of Three Gorges Reservoir, China. J. Earth Sci. 2020, 31, 1068–1086. [Google Scholar] [CrossRef]
- Lin, J.-W.; Hsieh, M.-H.; Li, Y.-J. Factor analysis for the statistical modeling of earthquake-induced landslides. Front. Struct. Civ. Eng. 2019, 14, 123–126. [Google Scholar] [CrossRef]
- Chang, S.-H.; Wan, S. Discrete rough set analysis of two different soil-behavior-induced landslides in National Shei-Pa Park, Taiwan. Geosci. Front. 2015, 6, 807–816. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Xu, J.; Wen, H.; Wang, D. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest. Eng. Geol. 2021, 281. [Google Scholar] [CrossRef]
- Soma, A.S.; Kubota, T.; Mizuno, H. Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia. J. Mt. Sci. 2019, 16, 383–401. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Yang, X.; Wang, P.; Li, X.; Xie, C.; Zhou, B.; Huang, X. Application of topographic slope and elevation variation coefficient in identifying the motuo active fault zone. Seismol. Geol. 2019, 41, 419–435. [Google Scholar] [CrossRef]
- Mark, R.K.; Ellen, S.D. Statistical and Simulation Models for Mapping Debris-Flow Hazard. In Geographical Information Systems in Assessing Natural Hazards; Carrara, A., Guzzetti, F., Eds.; Springer: Dordrecht, The Netherlands, 1995; Volume 5, pp. 93–106. [Google Scholar] [CrossRef]
- Ram, P.; Gupta, V. Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie township, lesser himalaya, India. Environ. Dev. Sustain. 2021. [Google Scholar] [CrossRef]
- Dikshit, A.; Sarkar, R.; Pradhan, B.; Acharya, S.; Alamri, A.M. Spatial Landslide Risk Assessment at Phuentsholing, Bhutan. Geosciences 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Tien Bui, D.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2015, 13, 361–378. [Google Scholar] [CrossRef]
- Park, Y.; Pradhan, A.M.S.; Kim, U.; Kim, Y.-T.; Kim, S. Development and Application of Urban Landslide Vulnerability Assessment Methodology Reflecting Social and Economic Variables. Adv. Meteorol. 2016, 2016, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Khadka, A.; Katel, P.; Rai, P.; Bahadur Budha, P. Vulnerability Assessment of Peoples Exposed to Landslides in Panchase of Nepal using Analytical Hierarchy Process. Int. J. Environ. 2020, 9, 81–103. [Google Scholar] [CrossRef]
- Fauzan, M.E.; Damayanti, A.; Saraswati, R. Vulnerability Assessment of Landslide Areas in Ci Manuk Upstream Watershed, Garut District, West Java Province. Int. J. Adv. Sci. Eng. Inf. Technol. 2020, 10, 219–226. [Google Scholar] [CrossRef]
- van Westen, C.J.; van Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation—why is it still so difficult? Bull. Eng. Geol. Environ. 2005, 65, 167–184. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Liu, C.-C. Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods. Landslides 2017, 15, 465–474. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Chen, Z.; Ren, F.; Feng, L.; Du, Q. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Int. J. Environ. Res. Public Health 2019, 16, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EINSTEIN, N. Special lecture: Landslide risk assessment procedure. In Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, 10–15 July 1988; pp. 1075–1090. [Google Scholar]
- FELL, R. Landslide risk assessment and acceptable risk. Can. Geotech. J. 1994, 31, 261–272. [Google Scholar] [CrossRef]
- Hearn, G.J. Landslide and erosion hazard mapping at Ok Tedi copper mine, Papua New Guinea. Q. J. Eng. Geol. 1995, 28, 47–60. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Chen, T. Landslide Susceptibility Assessment Based on Optimized Random Forest Model. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 1085–1091. [Google Scholar] [CrossRef]
- Feng, H. Rainfall-Triggered Landslide Development Regularity Analysis and Hazard Assessment in Chun’an, West Zhejiang. Ph.D. Thesis, China University of Geosciences (Wuhan), Wuhan, China, 1 May 2016. [Google Scholar]
- Yang, Y.; Yang, J.; Xu, C.; Xu, C.; Song, C. Local-scale landslide susceptibility mapping using the B-GeoSVC model. Landslides 2019, 16, 1301–1312. [Google Scholar] [CrossRef]
- Domènech, G.; Alvioli, M.; Corominas, J. Preparing first-time slope failures hazard maps: From pixel-based to slope unit-based. Landslides 2019, 17, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Tanyas, H.; Rossi, M.; Alvioli, M.; van Westen, C.J.; Marchesini, I. A global slope unit-based method for the near real-time prediction of earthquake-induced landslides. Geomorphology 2019, 327, 126–146. [Google Scholar] [CrossRef]
Data Name | Data Sources | Type | Scale |
---|---|---|---|
Historical landslide | Chongqing Geological monitoring station | Dataset | |
Elevation | Aster satellite | Grid | 30 m |
Geological data | National Geological Data Center | Grid | 1:200,000 |
Land cover | Chongqing Municipal Bureau of land and resources | Vector | 1:100,000 |
Administrative division | Chongqing Municipal Bureau of land and resources | Vector | 1:100,000 |
River network | Chongqing Water Resources Bureau | Vector | 1:100,000 |
Annual rainfall | Chongqing Meteorological Administration | Dataset | 90 m |
Road | Chongqing Transportation Commission | Vector | 1:100,000 |
Satellite image | Geospatial Data Cloud platform | Grid | 30 m |
POI of Chongqing | Web Crawler | Dataset | |
GDP (Gross Domestic Product) | Resource and Environment Science and Data Center | Grid | 1 km × 1 km |
Population | Resource and Environment Science and Data Center | Grid | 1 km × 1 km |
Type | Factor | Classification |
---|---|---|
Topographic Factors | plane curvature | 1. <−1.4; 2. −1.4∼−0.38; 3. −0.38∼0.4; 4. 0.4∼1.5; 5. >1.5 |
elevation/m | 1. <343; 2. 343∼538; 3. 538∼712; 4. 712∼872; 5. 872∼1025; 6. 1025∼1185; 7. 1185∼1357; 8. 1357∼1554; 9. 1554∼1783; 10. >1783 | |
elevation coefficient of variation | 1. <0.008; 2. 0.008∼0.02; 3. 0.02∼0.035; 4. 0.035∼0.055; 5. 0.055∼0.085; 6. 0.085∼0.153; 7. >0.153 | |
slope/° | 1. <6; 2. 6∼13; 3. 13∼19; 4. 19–24; 5. 24∼30; 6. 30∼35; 7. 35∼42; 8. 42∼50; 9. >50 | |
aspect | 1. Flat; 2. North; 3. Northeast; 4. East; 5. Southeast; 6. South; 7. Southwest; 8. West; 9. Northwest | |
slope variability | 1. <4; 2. 4∼7; 3. 7∼10; 4. 10∼13; 5. 13∼17; 6. 17∼20; 7. 20∼25; 8. 25∼31; 9. >31 | |
curvature | 1. <−2; 2. −2∼−0.8; 3. −0.8∼0.7; 4. 0.7∼2.8; 5. >2.8 | |
profile curvature | 1. <−2; 2. −2∼−0.6; 3. −0.6∼0.4; 4. 0.4∼1.8; 5. >1.8 | |
slope shape | 1. Convex slope; 2. Concave slope; 3. Straight slope | |
RDLS/m | 1. <15; 2. 15∼29; 3. 29∼43; 4. 43∼58; 5. 58∼78; 6. 78∼112; 7. >112 | |
slope position | 1. Valleys; 2. Flats slope; 3. Ridge; 4. Middle slope; 5. Lower slope; 6. Upper slope | |
micro-landform | 1. Canyons, Deeply incised streams; 2. Open slopes; 3. Midslope ridges, Small hills in plains; 4. Plains; 5. Upland drainages, Headwaters; 6. Mountain tops, High narrow ridges; 7. Local ridges hills in valleys; 8. Midslope drainages, shallow valleys; 9. Upper slopes, Plateau; 10. U-shape valleys | |
TRI | 1. <1.07; 2. 1.07∼1.2; 3. 1.2∼1.4; 4. 1.4∼1.8; 5. >1.8 | |
incision density | 1. <0; 2. 0∼2; 3. 2∼3; 4. 3∼4; 5. 4∼5; 6. >5 | |
Incision depth/m | 1. <433; 2. 433∼616; 3. 616∼700; 4. 933∼1126; 5. 1126∼1369; 6. 1369∼1835; 7.>1835 | |
TWI | 1. <5; 2. 5∼7; 3. 7∼10; 4. 10∼15; 5. >15 | |
Geological Factors | lithology | 1. T3xj; 2. T3b1; 3. T2b2; 4. T1j; 5. T1d; 6. S1–2; 7. P2; 8. P1; 9. J3p/J3s; 10. J2s/J2xs; 11. J1–2z/J1z; 12. D2/D3 |
CRDS | 1. Reverse slope; 2. Tangential slope; 3. Outward slope; 4. Oblique slope; 5. Flat; 6. Dip-slope I; 7. Dip-slope II | |
distance from the fault/m | 1. <500; 2. 500∼1000; 3. 1000∼1500; 4. 1500∼2000; 5. 2000∼2500; 6. 2500∼3000; 7. >3000 | |
Meteorological and Hydrological Factors | distance from rivers/m | 1. <100; 2. 100∼200; 3. 200∼300; 4. 300∼400; 5. 400∼500; 6. 500∼600; 7. >600 |
SPI | 1. <15; 2. 15∼30; 3. 30∼45; 4. 45∼60; 5. 60∼100; 6. 100∼1000; 7. >1000 | |
groundwater type | 1. Carbonate fissure cave water; 2. Fracture water of clastic rock interbedded karst cave; 3. Crushed rock fissure water; 4. Sandstone fissure/Gravel fissure/shale pore fissure water; 5. Sandy pebble micro confined water; 6. Dolomite fissure karst water; 7. Mud dolomite fissure water; 8. Weathering fissure water; 9. Without water | |
STI | 1. <133; 2. 133∼1071; 3. 1071∼3483; 4. 3483∼8708; 5. >8708 | |
Vegetation Factors | NDVI | 1. <0.1; 2. 0.1∼0.2; 3. 0.2∼0.3; 4. 0.3∼0.4; 5. 0.4∼0.5; 6. 0.5∼0.6; 7. >0.6 |
land cover | 1. Meadow; 2. Farmland; 3. Water area; 4. Forest; 5. Garden plot; 6. Others; 7. Residential land; 8. Transportation |
No. | Metric | Equation | Definition |
---|---|---|---|
1 | Precision | The fraction of relevant instances in the retrieved instances. | |
2 | Sensitivity (SST) | The percentage of landslide cells that are correctly classified. | |
3 | Specificity (SPF) | The percentage of non-landslide cells that are correctly classified. | |
4 | Accuracy (ACC) | The proportion of landslide and non-landslide cells are correctly classified. | |
5 | Recall | It indicates how many positive examples in the sample are predicted correctly. |
Subset | Accuracy | |
---|---|---|
Training | Testing | |
1 | 0.977 | 0.908 |
2 | 0.977 | 0.917 |
3 | 0.975 | 0.919 |
4 | 0.975 | 0.904 |
5 | 0.976 | 0.918 |
Average | 0.976 | 0.913 |
RF | True Condition | Summation | ||
---|---|---|---|---|
Landslide | Non-Landslide | |||
Prediction Condition | Landslide | 1416 (TP) | 40 (FP) | Precision: 0.997 |
Non-landslide | 106 (FN) | 15,180 (TN) | Precision: 0.939 | |
Summation | Recall: 0.930 | Recall: 0.997 | Accuracy: 0.991 |
Landslide Probability | Susceptibility Class | Grid Number | Area Proportion | Landslide | Landslide Proportion |
---|---|---|---|---|---|
<0.16 | Very low | 1,775,732 | 39.41% | 16 | 1.05% |
0.16–0.23 | Low | 635,784 | 14.11% | 39 | 2.56% |
0.23–0.31 | Medium | 868,521 | 19.28% | 98 | 6.44% |
0.31–0.41 | High | 922,251 | 20.47% | 269 | 17.67% |
>0.41 | Very high | 303,324 | 6.73% | 1100 | 72.27% |
Hazard Class | Grid Number | Area Proportion | Landslide | Landslide Proportion |
---|---|---|---|---|
Very low | 1,380,163 | 30.63% | 19 | 1.25% |
Low | 1,321,706 | 29.33% | 76 | 4.99% |
Medium | 963,268 | 21.38% | 211 | 13.86% |
High | 585,668 | 13.00% | 395 | 25.95% |
Very high | 242,624 | 5.38% | 821 | 53.94% |
Vulnerability Class | Grid Number | Area Proportion | Area (km2) |
---|---|---|---|
Very low | 3,147,329 | 70.42% | 2832.60 |
Low | 1,298,767 | 29.06% | 1168.89 |
Medium | 12,899 | 0.29% | 11.61 |
High | 7481 | 0.17% | 6.73 |
Very high | 2580 | 0.06% | 2.32 |
Risk Class | Grid Number | Area Proportion | Area (km2) |
---|---|---|---|
Very low | 1,341,361 | 30.17% | 1207.22 |
Low | 1,935,495 | 43.54% | 1741.95 |
Medium | 1,057,730 | 23.79% | 951.96 |
High | 94,178 | 2.12% | 84.76 |
Very high | 16,714 | 0.38% | 15.04 |
Division Name and Code | Subregion Name and Code | Area (km2) | Area Proportion | Landslide | Landslide Proportion | Landslide Situation |
---|---|---|---|---|---|---|
General Control Area (I) | Scenic spots, nature reserves and other general prevention and control areas of high mountains and extremely high mountains | 2949.17 | 73.71% | 208 | 0.07% | It belongs to the very low and low-risk area of landslide disaster. The landslide density is small and the risk level is low. |
Sub-focus Areas (II) | Subkey control area of landslide and unstable slope in the transition zone of a river valley | 951.96 | 23.79% | 785 | 0.82% | It belongs to the risk area of the landslide; the landslide density is large and the risk level is high. |
Key Control Areas (III) | Key prevention and control subregion of landslide group at the junction of eastern Yongan town and western Zhuyi town (III-1) | 5.35 | 0.13% | 29 | 5.42% | It belongs to the very high-risk area of landslide, with high landslide density and high-risk level. |
Chenjiabao landslide, Guanmiaotuo landslide and Linjiawan landslide key prevention and control sub-region (III-2) | 0.98 | 0.02% | 3 | 3.06% | It belongs to very high-risk area, with big landslide density and high-risk level. | |
Key Prevention and Control Sub-districts in the Central Urban Section of Hurong Expressway (III-3) | 1.45 | 0.04% | 6 | 4.13% | It belongs to very high-risk area, with large landslide density, and high-risk level. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wen, H.; Sun, D.; Li, Y. Quantitative Assessment of Landslide Risk Based on Susceptibility Mapping Using Random Forest and GeoDetector. Remote Sens. 2021, 13, 2625. https://doi.org/10.3390/rs13132625
Wang Y, Wen H, Sun D, Li Y. Quantitative Assessment of Landslide Risk Based on Susceptibility Mapping Using Random Forest and GeoDetector. Remote Sensing. 2021; 13(13):2625. https://doi.org/10.3390/rs13132625
Chicago/Turabian StyleWang, Yue, Haijia Wen, Deliang Sun, and Yuechen Li. 2021. "Quantitative Assessment of Landslide Risk Based on Susceptibility Mapping Using Random Forest and GeoDetector" Remote Sensing 13, no. 13: 2625. https://doi.org/10.3390/rs13132625
APA StyleWang, Y., Wen, H., Sun, D., & Li, Y. (2021). Quantitative Assessment of Landslide Risk Based on Susceptibility Mapping Using Random Forest and GeoDetector. Remote Sensing, 13(13), 2625. https://doi.org/10.3390/rs13132625