Air–Sea Interaction in the Central Mediterranean Sea: Assessment of Reanalysis and Satellite Observations
<p>Pictorial view of the air–sea heat exchange components.</p> "> Figure 2
<p>The Oceanographic Observatory (OO, left panel) and its position near Lampedusa Island. AO indicates the position of the Atmospheric observatory. The Lampedusa island picture was taken from the International Space Station (picture ISS 024-E-10246; see acknowledgments).</p> "> Figure 3
<p>Comparison between key meteorological variables contributing to air–sea heat flux estimates from ERA5 and from in situ observations. Air temperature (<b>a</b>), dew point temperature (<b>b</b>), atmospheric pressure at sea level (<b>c</b>), wind intensity (<b>d</b>), sea surface temperature (<b>e</b>). The (hourly) SST was inferred from the “skin” SST by adding the mean value of the difference with the “subskin” (0.17 °C) to make it more comparable with the sensor measurement at 1 m depth. Dot color indicates data density, increasing from white to black. Data refer to the period 3 June 2017–3 June 2018. Boxes within each plot include statistics of differences between ERA5 estimates and in situ measurements. Negative bias values indicate underestimates of the reanalysis.</p> "> Figure 4
<p>Comparison between hourly shortwave (<b>a</b>) and longwave (<b>b</b>) irradiance estimated by ERA5 and corresponding values measured on the buoy. Dot color indicates data density, increasing from white to black. Data refer to the period 4 June 2017–3 June 2018. Units are W/m<sup>2</sup>. Boxes within each plot include statistics of differences between ERA5 estimates and in situ measurements of shortwave and longwave irradiance.</p> "> Figure 5
<p>Comparison between hourly shortwave (<b>a</b>) and longwave (<b>b</b>) irradiances estimated by SEVIRI and the corresponding values measured on the buoy. Dot color indicates data density, increasing from white to black. Data refer to the period June 2017–3 June 2018. Units are W/m<sup>2</sup>. Boxes within each plot include statistics of differences between satellite estimates and in situ measurements of shortwave and longwave irradiances.</p> "> Figure 6
<p>In situ CTD casts made from 3 June 2017 at 14:00 UTC to 4 June 2017 at 07:56:00 UTC close to the Oceanographic Observatory. Dots represent individual CTD casts. The black lines represent the average profiles for temperature (<b>a</b>) and salinity (<b>b</b>) used as initial condition for the simulation.</p> "> Figure 7
<p>Comparison between in situ measurements of water temperature at 1 m depth (black curves in (<b>a</b>–<b>c</b>)) and GOTM simulated water temperatures at the same depth obtained as follows: (<b>a</b>) Simulations using air–sea heat and momentum fluxes computed by the model at each time step, using bulk formulae with ERA5 meteorological parameters (experiment 1, red line) or bulk formulae with in situ meteorological parameters (experiment 2, blue line). (<b>b</b>) Simulations imposing air–sea heat and momentum fluxes obtained by ERA5 (experiment 3, red line), by ERA5 except for the shortwave irradiance, which is from in situ measurements (experiment 4, blue line) and by ERA5 except for the shortwave irradiance, which is estimated by SEVIRI (experiment 5, green line). (<b>c</b>) Simulations imposing air–sea heat and momentum fluxes obtained by ERA5 (experiment 3, red line), by ERA5 except for the longwave irradiance, which is form in situ observations at the buoy (experiment 6, blue line), by ERA5 except for the longwave irradiance, which is estimated by SEVIRI (experiment 7, green line). The differences between measured and simulated temperatures at 1 m depth are reported in panels d, e, f, for: (<b>d</b>) Experiment 1 (red) and experiment 2 (blue). (<b>e</b>) Experiment 3 (red), experiment 4 (blue) and experiment 5 (green). (<b>f</b>) Experiment 3 (red), experiment 6 (blue) and experiment 7 (green). (<b>g</b>) Ocean heat flux loss (latent + sensible + net longwave) computed by the model for experiment 1 (red) and experiment 2 (blue). (<b>h</b>) Shortwave component of the heat fluxes from in situ measurements (blue), ERA5 (red) and SEVIRI (green). (<b>i</b>) Ocean heat flux loss (latent+sensible+net longwave) for experiment 3 (red), experiment 6 (blue) and experiment 7 (green) A 10 days moving average filter has been applied to curves in panels (<b>g</b>–<b>i</b>) to enhance readability.</p> "> Figure 8
<p>ERA5 minus buoy wind speed (<b>a</b>) and ERA5 minus buoy heat loss (Latent + Sensible + net Longwave) as a function of the in situ measured wind speed (<b>b</b>). Averages and standard deviations over 1 m/s intervals are shown as blue squares and red bars, respectively.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. In Situ Measurements
2.2. ERA5 Reanalysis
- Sea surface temperature;
- Air temperature near the surface (2 m from the surface);
- Dew point temperature (2 m from the surface);
- Cloud cover (fraction);
- Wind intensity (10 m from the surface, zonal and meridional components);
- Atmospheric pressure at the surface;
- Longwave Irradiance (LW);
- Shortwave Irradiance (SW).
2.3. Geostationary Satellite Irradiance Data
2.4. GOTM
3. Results and Discussion
3.1. Assessment of ERA5 Products
3.2. Assessment of Satellite Data
3.3. Impact of Flux Differences on Numerical Simulations: A Case Study
4. Conclusions and Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myhre, G.; Shindell, D.; Pongratz, J. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Ed.; Cambridge University Press: Cambridge, UK, 2014; pp. 659–740. [Google Scholar]
- Jordà, G.; Von Schuckmann, K.; Josey, S.A.; Caniaux, G.; García-Lafuente, J.; Sammartino, S.; Özsoy, E.; Polcher, J.; Notarstefano, G.; Poulain, P.M.; et al. The Mediterranean Sea heat and mass budgets: Estimates, uncertainties and perspectives. Prog. Oceanogr. 2017, 156, 174–208. [Google Scholar] [CrossRef]
- Millot, C. Another description of the Mediterranean Sea outflow. Prog. Oceanogr. 2009, 82, 101–124. [Google Scholar] [CrossRef]
- Garrett, C.; Outerbridge, R.; Thompson, K. Interannual Variability in Meterrancan Heat and Buoyancy Fluxes. J. Clim. 1993, 6, 900–910. [Google Scholar] [CrossRef]
- Castellari, S.; Pinardi, N.; Leaman, K. A model study of air–sea interactions in the Mediterranean Sea. J. Mar. Syst. 1998, 18, 89–114. [Google Scholar] [CrossRef]
- Bethoux, J. Budgets of the Mediterranean Sea-Their dependance on the local climate and on the characteristics of the Atlantic waters. Oceanol. Acta 1979, 2, 157–163. [Google Scholar]
- Bunker, A.; Charnock, H.; Goldsmith, R. A note on the heat balance of the Mediterranean and Red Seas. J. Mar. Res. 1982, 40, 73–84. [Google Scholar]
- Gilman, C.; Garrett, C. Heat flux parameterizations for the Mediterranean Sea: The role of atmospheric aerosols and constraints from the water budget. J. Geophys. Res. Ocean. 1994, 99, 5119–5134. [Google Scholar] [CrossRef]
- Matsoukas, C.; Banks, A.C.; Hatzianastassiou, N.; Pavlakis, K.G.; Hatzidimitriou, D.; Drakakis, E.; Stackhouse, P.W.; Vardavas, I. Seasonal heat budget of the Mediterranean Sea. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef]
- May, P. A Brief Explanation of Mediterranean Heat and Momentum Flux Calculations; Naval Oceanography Atmospheric Research Laboratory: Washington, DC, USA, 1986. [Google Scholar]
- Pettenuzzo, D.; Large, W.G.; Pinardi, N. On the corrections of ERA-40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef]
- Ruiz, S.; Gomis, D.; Sotillo, M.G.; Josey, S.A. Characterization of surface heat fluxes in the Mediterranean Sea from a 44-year high-resolution atmospheric data set. Glob. Planet. Chang. 2008, 63, 258–274. [Google Scholar] [CrossRef]
- Criado-Aldeanueva, F.; Soto-Navarro, F.J.; García-Lafuente, J. Seasonal and interannual variability of surface heat and freshwater fluxes in the Mediterranean Sea: Budgets and exchange through the Strait of Gibraltar. Int. J. Climatol. 2012, 32, 286–302. [Google Scholar] [CrossRef]
- Smith, S.D.; Fairall, C.W.; Geernaert, G.L.; Hasse, L. Air-sea fluxes: 25 years of progress. Bound. Layer Meteorol. 1996, 78, 247–290. [Google Scholar] [CrossRef]
- Cronin, M.F.; Gentemann, C.L.; Edson, J.; Ueki, I.; Bourassa, M.; Brown, S.; Clayson, C.A.; Fairall, C.W.; Farrar, J.T.; Gille, S.T.; et al. Air-Sea Fluxes With a Focus on Heat and Momentum. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Pond, S.; Phelps, G.T.; Paquin, J.E.; McBean, G.; Stewart, R.W. Measurements of the Turbulent Fluxes of Momentum, Moisture and Sensible Heat over the Ocean. J. Atmos. Sci. 1971, 28, 901–917. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Large, W.G.; Pond, S. Sensible and Latent Heat Flux Measurements over the Ocean. J. Phys. Oceanogr. 1982, 12, 464–482. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Moнин, A.; Oбyxoв, A. Ocнoвныe зaкoнoмepнocти тypбyлeнтнoгo пepeмeшивaния в пpизeмнoм cлoe aтмocφepы. Tp. гeoφиз. Ин-тa CCCP 1954, 151, 163–187. [Google Scholar]
- Garratt, J.R. Review of Drag Coefficients over Oceans and Continents. Mon. Weather Rev. 1977, 105, 915–929. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res. Ocean. 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Hill, R.J. Implications of Monin–Obukhov Similarity Theory for Scalar Quantities. J. Atmos. Sci. 1989, 46, 2236–2244. [Google Scholar] [CrossRef] [Green Version]
- Kondo, J. Air-sea bulk transfer coefficients in diabatic conditions. Bound. Layer Meteorol. 1975, 9, 91–112. [Google Scholar] [CrossRef]
- Kara, A.B.; Hurlburt, H.E.; Wallcraft, A.J. Stability-Dependent Exchange Coefficients for Air–Sea Fluxes. J. Atmos. Ocean. Technol. 2005, 22, 1080–1094. [Google Scholar] [CrossRef]
- Schiano, M.E.; Santoleri, R.; Bignami, F.; Leonardi, R.M.; Marullo, S.; Böhm, E. Air-sea interaction measurements in the west Mediterranean Sea during the Tyrrhenian Eddy Multi-Platform Observations Experiment. J. Geophys. Res. Ocean. 1993, 98, 2461–2474. [Google Scholar] [CrossRef]
- Bignami, F.; Marullo, S.; Santoleri, R.; Schiano, M.E. Longwave radiation budget in the Mediterranean Sea. J. Geophys. Res. Ocean. 1995, 100, 2501–2514. [Google Scholar] [CrossRef]
- Schiano, M.E. Insolation over the western Mediterranean Sea: A comparison of direct measurements and Reed’s formula. J. Geophys. Res. Ocean. 1996, 101, 3831–3838. [Google Scholar] [CrossRef]
- Reed, R.K. On Estimating Insolation over the Ocean. J. Phys. Oceanogr. 1977, 7, 482–485. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.J.; Paulson, C.A. Mid-ocean observations of atmospheric radiation. Q. J. R. Meteorol. Soc. 1979, 105, 487–502. [Google Scholar] [CrossRef]
- Rosati, A.; Miyakoda, K. A General Circulation Model for Upper Ocean Simulation. J. Phys. Oceanogr. 1988, 18, 1601–1626. [Google Scholar] [CrossRef]
- Brunt, D. Notes on radiation in the atmosphere. I. Q. J. R. Meteorol. Soc. 1932, 58, 389–420. [Google Scholar] [CrossRef]
- Anderson, E.R. Energy-budget studies. Water-Loss Investigation: Lake Hefner Studies; Technical Report; United States Geological Survey: Washington, DC, USA, 1954; Volume 269, pp. 71–119. [Google Scholar] [CrossRef]
- Berliand, M.; Berliand, T. Measurement of the effective radiation of the Earth with varying cloud amounts. Izv. Akad. Nauk SSSR Ser. Geofiz 1952, 1, 64–78. [Google Scholar]
- Swinbank, W.C. Long-wave radiation from clear skies. Q. J. R. Meteorol. Soc. 1963, 89, 339–348. [Google Scholar] [CrossRef]
- Efimova, N. On methods of calculating monthly values of net longwave radiation. Meterol. Gidrol. 1961, 10, 28–33. [Google Scholar]
- Clark, N.; Eber, L.E.; Laurs, R.M.; Renneer, J.; Saur, J. Heat Exchange between Ocean and Atmosphere in the Eastern North. Pacific for 1961-71; Technical Report NMFS SSRF-682; NOAA: Seattle, WA, USA, 1974. [Google Scholar]
- Hastenrath, S. Heat Budget Atlas of the Tropical Atlantic and Eastern Pacific Oceans; University of Wisconsin Press: Madison, WI, USA, 1978. [Google Scholar]
- Pinardi, N.; Allen, I.; Demirov, E.; De Mey, P.; Korres, G.; Lascaratos, A.; Le Traon, P.Y.; Maillard, C.; Manzella, G.; Tziavos, C. The Mediterranean ocean forecasting system: First phase of implementation (1998–2001). Ann. Geophys. 2003, 21, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Madec, G.; Bourdallé-Badie, R.; Bouttier, P.-A.; Bricaud, C.; Bruciaferri, D.; Calvert, D.; Chanut, J.; Clementi, E.; Coward, A.; Delrosso, D.; et al. NEMO Ocean Engine; Note du Pôle de Modélisation, Institut Pierre-Simon Laplace (IPSL): Guyancourt, France, 2017; No 27. [Google Scholar]
- Liguori, G.; Di Lorenzo, E.; Cabos, W. A multi-model ensemble view of winter heat flux dynamics and the dipole mode in the Mediterranean Sea. Clim. Dyn. 2017, 48, 1089–1108. [Google Scholar] [CrossRef]
- Karagali, I.; Høyer, J.L.; Donlon, C.J. Using a 1-D model to reproduce the diurnal variability of SST. J. Geophys. Res. Ocean. 2017, 122, 2945–2959. [Google Scholar] [CrossRef]
- Babar, B.; Graversen, R.; Boström, T. Solar radiation estimation at high latitudes: Assessment of the CMSAF databases, ASR and ERA5. Sol. Energy 2019, 182, 397–411. [Google Scholar] [CrossRef]
- Luo, B.; Minnett, P.J.; Szczodrak, M.; Nalli, N.R.; Morris, V.R. Accuracy Assessment of MERRA-2 and ERA-Interim Sea Surface Temperature, Air Temperature, and Humidity Profiles over the Atlantic Ocean Using AEROSE Measurements. J. Clim. 2020, 33, 6889–6909. [Google Scholar] [CrossRef]
- Trolliet, M.; Walawender, J.P.; Bourlès, B.; Boilley, A.; Trentmann, J.; Blanc, P.; Lefèvre, M.; Wald, L. Downwelling surface solar irradiance in the tropical Atlantic Ocean: A comparison of re-analyses and satellite-derived data sets to PIRATA measurements. Ocean. Sci. 2018, 14, 1021–1056. [Google Scholar] [CrossRef] [Green Version]
- Renfrew, I.A.; Barrell, C.; Elvidge, A.D.; Brooke, J.K.; Duscha, C.; King, J.C.; Kristiansen, J.; Cope, T.L.; Moore, G.W.K.; Pickart, R.S.; et al. An evaluation of surface meteorology and fluxes over the Iceland and Greenland Seas in ERA5 reanalysis: The impact of sea ice distribution. Q. J. R. Meteorol. Soc. 2021, 147, 691–712. [Google Scholar] [CrossRef]
- Belmonte Rivas, M.; Stoffelen, A. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean. Sci. 2019, 15, 831–852. [Google Scholar] [CrossRef] [Green Version]
- Di Sarra, A.; Bommarito, C.; Anello, F.; Di Iorio, T.; Meloni, D.; Monteleone, F.; Pace, G.; Piacentino, S.; Sferlazzo, D. Assessing the Quality of Shortwave and Longwave Irradiance Observations over the Ocean: One Year of High-Time-Resolution Measurements at the Lampedusa Oceanographic Observatory. J. Atmos. Ocean. Technol. 2019, 36, 2383–2400. [Google Scholar] [CrossRef]
- Meloni, D.; Di Biagio, C.; di Sarra, A.; Monteleone, F.; Pace, G.; Sferlazzo, D.M. Accounting for the Solar Radiation Influence on Downward Longwave Irradiance Measurements by Pyrgeometers. J. Atmos. Ocean. Technol. 2012, 29, 1629–1643. [Google Scholar] [CrossRef]
- Frouin, R.; Chertock, B. A Technique for Global Monitoring of Net Solar Irradiance at the Ocean Surface. Part I: Model. J. Appl. Meteorol. Climatol. 1992, 31, 1056–1066. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Brisson, A.; Le Borgne, P.; Marsouin, A. Development of algorithms for surface solar irradiance retrieval at O&SI SAF low and mid latitudes. Eumetsat Ocean. and Sea Ice SAF Internal Project Team Report; Eumetsat: Darmstadt, Germany, 1999; Volume 69, pp. 71–73. [Google Scholar]
- Burchard, H.; Bolding, K.; Ruiz-Villarreal, M. GOTM, a General Ocean Turbulence Model. Theory, Implementation and Test Cases; Technical Report EUR 18745; Joint Research Centre, European Commission: Ispra, Italy, 1999. [Google Scholar]
- Umlauf, L.; Burchard, H. Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Cont. Shelf Res. 2005, 25, 795–827. [Google Scholar] [CrossRef]
- Burchard, H.; Bolding, K. Comparative Analysis of Four Second-Moment Turbulence Closure Models for the Oceanic Mixed Layer. J. Phys. Oceanogr. 2001, 31, 1943–1968. [Google Scholar] [CrossRef]
- Ruti, P.M.; Marullo, S.; D’Ortenzio, F.; Tremant, M. Comparison of analyzed and measured wind speeds in the perspective of oceanic simulations over the Mediterranean basin: Analyses, QuikSCAT and buoy data. J. Mar. Syst. 2008, 70, 33–48. [Google Scholar] [CrossRef]
- Jerlov, N. Optical Oceanography; Elsevier Publishing Company: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 1968; Volume 5. [Google Scholar]
- Payne, R.E. Albedo of the Sea Surface. J. Atmos. Sci. 1972, 29, 959–970. [Google Scholar] [CrossRef]
- Liu, H.; Wu, J.; Zhang, S.; Yan, J.; Niu, L.; Zhang, C.; Sun, W.; Li, H.; Li, B. The Geostationary Interferometric Microwave Sounder (GIMS): Instrument overview and recent progress. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 3629–3632. [Google Scholar]
Sensor | Operational Dates | Parameters | Position |
---|---|---|---|
Kipp and Zonen CMP21 | 6 April 2017–12 July 2018 | downwelling solar irradiance | 7.8 m.a.s.l. |
Kipp and Zonen CGR4 | 6 April 2017–12 July 2018 | downwelling infrared irradiance | 7.8 m.a.s.l. |
Vaisala HMP155 | 5 June 2017–present | temperature, relative humidity | 8 m.a.s.l. |
Gill Windsonic | 6 April 2017–present | wind speed and direction | 10 m.a.s.l. |
Vaisala Baro-1QML | 6 April 2017–present | pressure | 8 m.a.s.l. |
SeaBird SBE39Plus #7317 | 6 April 2017–20 April 2018 | temperature and pressure | 1 m depth |
SeaBird SBE39Plus #7726 | 6 April 2017–20 April 2018 | temperature and pressure | 2 m depth |
Instrument | First, Calibration | Second, Calibration |
---|---|---|
Vaisala Baro-1QML | 26 January 2015 | - |
Vaisala HMP155 | 17 April 2015 | - |
Gill Windsonic | 11 March 2015 | - |
SeaBird SBE39Plus #7317 | 15 October 2014 | 4 September 2018 |
SeaBird SBE39Plus #7726 | 17 July 2015 | 4 September 2018 |
Kipp and Zonen CMP21 | 31 March–4 April 2017 | 15–31 July 2018 |
Kipp and Zonen CGR4 | 10 February–31 March 2017 | 15–31 July 2018 |
Parameters | Option | |
---|---|---|
1 | Surface fluxes (heat and momentum) | Prescribed (From ERA5, in situ measurements or Satellite data) |
Calculated (using meteorological inputs: measured or ERA5) | ||
2 | Shortwave radiation | Prescribed (From ERA5, in situ measurements or Satellite data) |
Calculated (using ERA5 Cloud Cover): Rosati and Miyakoda 1988 [29] + Payne 1972 [55] for the albedo | ||
3 | Longwave radiation | Prescribed (From ERA5, in situ measurements or Satellite data) |
Bignami et al. [25]: Calculated (using ERA5 data or in situ measurements) | ||
4 | Turbulence closure | Turbulence model calculating turbulent kinetic energy and length scale |
5 | Type of equation for turbulence kinetic energy | Dynamic equation (k-ε style) |
6 | Length scale method | Dynamic dissipation rate equation |
7 | Stability method | Constant stability functions |
8 | Light extinction | Jerlov Type I [54] |
Experiment n° | Forcing | Heat Loss (W/m2) | Heat Gain (W/m2) | Net Heat (W/m2) | MB | RMSE | R |
---|---|---|---|---|---|---|---|
1 | Heat and momentum fluxes computed by the model using bulk formulae and ERA5 meteorological data | −215.2 | 217.4 | 2.2 | −0.08 °C | 0.40 °C | 0.997 |
2 | Heat and momentum fluxes computed by the model using bulk formulae and meteorological in situ data | −215.8 | 217.4 | 1.6 | 0.13 °C | 0.42 °C | 0.997 |
3 | Heat fluxes from ERA5 | −198.8 | 216.6 | 17.8 | 1.07 °C | 0.55 °C | 0.995 |
4 | Heat fluxes from ERA5 but shortwave from in situ measurements | −198.8 | 215.7 | 16.9 | 1.17 °C | 0.58 °C | 0.994 |
5 | Heat fluxes from ERA5 but shortwave from SEVIRI | −198.8 | 221.7 | 22.9 | 1.80 °C | 0.61 °C | 0.991 |
6 | Heat fluxes from ERA5 but longwave from in situ measurements | −182.6 | 216.6 | 34 | 2.68 °C | 0.95 °C | 0.978 |
7 | Heat fluxes from ERA5 but longwave from SEVIRI | −176.2 | 216.6 | 40.4 | 3.54 °C | 1.08 °C | 0.973 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marullo, S.; Pitarch, J.; Bellacicco, M.; Sarra, A.G.d.; Meloni, D.; Monteleone, F.; Sferlazzo, D.; Artale, V.; Santoleri, R. Air–Sea Interaction in the Central Mediterranean Sea: Assessment of Reanalysis and Satellite Observations. Remote Sens. 2021, 13, 2188. https://doi.org/10.3390/rs13112188
Marullo S, Pitarch J, Bellacicco M, Sarra AGd, Meloni D, Monteleone F, Sferlazzo D, Artale V, Santoleri R. Air–Sea Interaction in the Central Mediterranean Sea: Assessment of Reanalysis and Satellite Observations. Remote Sensing. 2021; 13(11):2188. https://doi.org/10.3390/rs13112188
Chicago/Turabian StyleMarullo, Salvatore, Jaime Pitarch, Marco Bellacicco, Alcide Giorgio di Sarra, Daniela Meloni, Francesco Monteleone, Damiano Sferlazzo, Vincenzo Artale, and Rosalia Santoleri. 2021. "Air–Sea Interaction in the Central Mediterranean Sea: Assessment of Reanalysis and Satellite Observations" Remote Sensing 13, no. 11: 2188. https://doi.org/10.3390/rs13112188
APA StyleMarullo, S., Pitarch, J., Bellacicco, M., Sarra, A. G. d., Meloni, D., Monteleone, F., Sferlazzo, D., Artale, V., & Santoleri, R. (2021). Air–Sea Interaction in the Central Mediterranean Sea: Assessment of Reanalysis and Satellite Observations. Remote Sensing, 13(11), 2188. https://doi.org/10.3390/rs13112188