Rapid glacier Shrinkage and Glacial Lake Expansion of a China-Nepal Transboundary Catchment in the Central Himalayas, between 1964 and 2020
<p>(<b>A</b>) Distribution of glaciers and glacial lakes in the Tama Koshi basin with the background image of Landsat 8 (24 October 2018), letters indicate detailly investigated glaciers and glacial lakes. The inset (<b>B</b>) shows the mean annual (red), summer (blue), and winter (black) air temperature (<b>left</b>) and precipitation (<b>right</b>) extracted from ERA5. The inset (<b>C</b>) indicates the location of the study area.</p> "> Figure 2
<p>Overview of glaciers and glacial lakes. (<b>A</b>) Number and area changes of glaciers and glacial lakes from 1964 to 2020. (<b>B</b>) Elevation distribution of glaciers (in 2020) and glacial lakes (between 1990 and 2020) on the west and east side of the basin. (<b>C</b>) Glacier distribution with aspect in the total (blue), east (red), and west (green) of the basin. (<b>D</b>) Frequency of glacial lakes in various size classes.</p> "> Figure 3
<p>Comparisons of elevation change rates and velocities of three typical land- and lake-terminating glaciers (Glacier E, I, and L) on the east and west sides of the basin.</p> "> Figure 4
<p>Changes of eight (Lake <b>A</b>–<b>H</b>) rapidly expanding proglacial lakes in the past 56 years overlayed on the Esri topographic map.</p> "> Figure 5
<p>The expansion process of eight (Lake <b>A</b>–<b>H</b>) rapidly expanding proglacial lakes with the background of KH and Landsat images.</p> "> Figure 6
<p>Area changes of eight (Lake <b>A</b>–<b>H</b>) rapidly expanding proglacial lakes.</p> "> Figure 7
<p>Changes in elevation and velocity of the lake-terminating glaciers (<b>A</b>–<b>H</b>) and land-terminating glaciers (<b>I</b>–<b>N</b>). “E” is elevation, “V” is velocity, the pink rectangle highlighted is the area where the glacial lake develops.</p> "> Figure 8
<p>GLOF events, hydropower projects, and population tendency (left 2000 and right 2018) in the basin.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Set Used
3.2. Glacier and Glacial Lake Outline Delineation
3.3. Glacier Surface Dynamics Analysis
3.4. Meteorological Data Extractions
4. Results
4.1. Glacier Distribution and Changes
4.1.1. Distribution of Glaciers
4.1.2. Glacier Changes
4.2. Glacial Lake Distribution and Changes
4.2.1. Distribution of Glacial Lakes
4.2.2. Glacial Lake Changes
5. Discussion
5.1. Glacier and Glacial Lake Variations and Climate Changes
5.2. Glacier-Lake Interactions
5.3. Evolution and Future Development of Glacial Lakes Controlled by Topography
5.4. Implications for the Risk of GLOFs
6. Conclusions and Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegert, M.J. Role of Glaciers and Ice Sheets in Climate and the Global Water Cycle. Encycl. Hydrol. Sci. 2006, 4, 164. [Google Scholar] [CrossRef]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Carton, A.; Baroni, C. The Adamello-Presanella and Brenta Massifs, Central Alps: Contrasting High-Mountain Landscapes and Landforms. In Landscapes and Landforms of Italy; Soldati, M., Marchetti, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 101–112. [Google Scholar]
- Jansson, P.; Rosqvist, G.; Schneider, T. Glacier fluctuations, suspended sediment flux and glacio-lacustrine sediments. Geogr. Ann. Ser. A Phys. Geogr. 2005, 87, 37–50. [Google Scholar] [CrossRef]
- Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R.S.; Clague, J.J.; Vuille, M.; Buytaert, W.; Cayan, D.R.; Greenwood, G.; et al. Toward mountains without permanent snow and ice. Earth’s Future 2017, 5, 418–435. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, Y.; Ding, M.; Liu, L.; Wang, Z. Lake change and its implication in the vicinity of Mt. Qomolangma (Everest), central high Himalayas, 1970–2009. Environ. Earth Sci. 2012, 68, 251–265. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Yao, T.; Wang, W.; Zhao, H.; Yang, W.; Zhang, G.; Li, S.; Yu, W.; Lei, Y.; Hu, W. Glacial hazards on Tibetan Plateau and surrounding alpines. Bull. Chin. Acad. Sci. 2019, 34, 1285–1292. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Beek, L.P.H.v.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Guo, X.; Yang, C.; Liu, Q.; Wei, J.; Zhang, Y.; Liu, S.; Zhang, Y.; Jiang, Z.; Tang, Z. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images. Earth Syst. Sci. Data 2020, 12, 2169–2182. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol. 2017, 60, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Pritchard, H.D.; Liu, Q.; Hennig, T.; Wang, W.; Wang, X.; Liu, S.; Nepal, S.; Samyn, D.; Hewitt, K.; et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. 2021, 2, 91–106. [Google Scholar] [CrossRef]
- Yao, T.; Yu, W.; Wu, G.; Xu, B.; Yang, W.; Zhao, H.; Wang, W.; Li, S.; Wang, N.; Li, Z.; et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chin. Sci. Bull. 2019, 64, 2770–2782. [Google Scholar]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The State and Fate of Himalayan Glaciers. Science 2012, 336, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef]
- Maurer, J.M.; Schaefer, J.M.; Rupper, S.; Corley, A. Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv. 2019, 5, eaav7266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westoby, M.J.; Glasser, N.F.; Brasington, J.; Hambrey, M.J.; Quincey, D.J.; Reynolds, J.M. Modelling outburst floods from moraine-dammed glacial lakes. Earth-Sci. Rev. 2014, 134, 137–159. [Google Scholar] [CrossRef] [Green Version]
- Harrison, S.; Kargel, J.S.; Huggel, C.; Reynolds, J.; Shugar, D.H.; Betts, R.A.; Emmer, A.; Glasser, N.; Haritashya, U.K.; Klimeš, J.; et al. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere 2018, 12, 1195–1209. [Google Scholar] [CrossRef] [Green Version]
- Bajracharya, S.; Maharjan, S.B.; Shrestha, F.; Sherpa, T.C. Inventroy of Glacial Lakes and Identification of Potentially Dangerous Glacial Lakes in the Koshi, Gandaki, and Karnali River Basins of Nepal, the Tibet Autonomous Region of China, and India; Research Report; ICIMOD, UNDP: Kathmandu, Nepal, 2020. [Google Scholar]
- Cook, K.L.; Andermann, C.; Gimbert, F.; Adhikari, B.R.; Hovius, N. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science 2018, 362, 53. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yao, T.; Yang, X. Variations of glacial lakes and glaciers in the Boshula mountain range, southeast Tibet, from the 1970s to 2009. Ann. Glaciol. 2017, 52, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Liu, S.; Sun, M.; Zhang, X. Study on the glacial lake outburst flood events in Tibet since the 20th Century. J. Nat. Resour. 2014, 29, 1377–1390. [Google Scholar]
- Liu, Q.; Guo, W.; Nie, Y.; Liu, S.; Xu, J. Recent glacier and glacial lake changes and their interactions in the Bugyai Kangri, southeast Tibet. Ann. Glaciol. 2016, 57, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Allen, S.K.; Zhang, G.; Wang, W.; Yao, T.; Bolch, T. Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach. Sci. Bull. 2019, 64, 435–445. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Gao, B.; Li, Y.; Mengyu, L.; Wujin, D.; Zhou, L. An overview of glacial lake outburst flood in Tibet, China. J. Glaciol. Geocryol. 2019, 41, 1335–1347. [Google Scholar]
- Fan, J.; An, C.; Zhang, X.; Li, X.; Tan, J. Hazard assessment of glacial lake outburst floods in Southeast Tibet based on RS and GIS technologies. Int. J. Remote Sens. 2019, 40, 4955–4979. [Google Scholar] [CrossRef]
- Cui, P.; Dang, C.; Cheng, Z.; Scott, K.M. Debris Flows Resulting from Glacial-Lake Outburst Floods in Tibet, China. Phys. Geogr. 2010, 31, 508–527. [Google Scholar] [CrossRef]
- Cheng, Z.L.; Liu, J.J.; Liu, J.K. Debris flow induced by glacial lake break in southeast Tibet. WIT Trans. Eng. Sci. 2010, 67, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Avian, M.; Bauer, C.; Schlögl, M.; Widhalm, B.; Gutjahr, K.-H.; Paster, M.; Hauer, C.; Frießenbichler, M.; Neureiter, A.; Weyss, G.; et al. The Status of Earth Observation Techniques in Monitoring High Mountain Environments at the Example of Pasterze Glacier, Austria: Data, Methods, Accuracies, Processes, and Scales. Remote Sens. 2020, 12, 1251. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zhang, M.; Tian, B.; Li, Z. Extraction of Glacial Lake Outlines in Tibet Plateau Using Landsat 8 Imagery and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4002–4009. [Google Scholar] [CrossRef]
- Haritashya, U.K.; Kargel, J.S.; Shugar, D.H.; Leonard, G.J.; Strattman, K.; Watson, C.S.; Shean, D.; Harrison, S.; Mandli, K.T.; Regmi, D. Evolution and Controls of Large Glacial Lakes in the Nepal Himalaya. Remote Sens. 2018, 10, 798. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Yao, Z.; Huang, H.; Liu, Z.; Liu, G. Responses of glaciers and glacial lakes to climate variation between 1975 and 2005 in the Rongxer basin of Tibet, China and Nepal. Reg. Environ. Chang. 2012, 12, 887–898. [Google Scholar] [CrossRef]
- Rounce, D.; Watson, C.; McKinney, D. Identification of Hazard and Risk for Glacial Lakes in the Nepal Himalaya Using Satellite Imagery from 2000–2015. Remote Sens. 2017, 9, 654. [Google Scholar] [CrossRef] [Green Version]
- Shilpakar, R.; Shakya, N.M.; Hiratsuka, A. Impact of Climate Change on Snowmelt Runoff: A Case Study of Tamakoshi Basin in Nepal. In Proceedings of the International Symposium on Society for Social Management Systems, SSMS, Kochi, Japan, 5–7 March 2009. SMS09-124. [Google Scholar]
- Khadka, D.; Babel, M.S.; Shrestha, S.; Tripathi, N.K. Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region. J. Hydrol. 2014, 511, 49–60. [Google Scholar] [CrossRef]
- Reynolds, J.M. Glacial hazard assessment at Tsho Rolpa, Rolwaling, Central Nepal. Q. J. Eng. Geol. Hydrogeol. 1999, 32, 209. [Google Scholar] [CrossRef]
- Sakai, A.; Chikita, K.; Yamada, T. Expansion of a moraine-dammed glacial lake, Tsho Rolpa, in Rolwaling Himal, Nepal Himalaya. Limnol. Oceanogr. 2000, 45, 1401–1408. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Nakagawa, H.; Kawaike, K.; Zhang, H. Glacial and Sediment Hazards in the Rolwaling Valley, Nepal. Int. J. Eros. Control Eng. 2012, 5, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Dahal, K.R.; Hagelman, R. People’s risk perception of glacial lake outburst flooding: A case of Tsho Rolpa Lake, Nepal. Environ. Hazards 2011, 10, 154–170. [Google Scholar] [CrossRef]
- Shrestha, S.; Bajracharya, A.R.; Babel, M.S. Assessment of risks due to climate change for the Upper Tamakoshi Hydropower Project in Nepal. Clim. Risk Manag. 2016, 14, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Khadka, M.; Kayastha, R.B.; Kayastha, R. Future projection of cryospheric and hydrologic regimes in Koshi River basin, Central Himalaya, using coupled glacier dynamics and glacio-hydrological models. J. Glaciol. 2020, 66, 831–845. [Google Scholar] [CrossRef]
- Randolph Glacier Inventory Consortium. Randolph Glacier Inventory (RGI)—A Dataset of Global Glacier Outlines: Version 6.0; Technical Report; Global Land Ice Measurements from Space; Digital Media: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Dehecq, A.; Gourmelen, N.; Gardner, A.S.; Brun, F.; Goldberg, D.; Nienow, P.W.; Berthier, E.; Vincent, C.; Wagnon, P.; Trouvé, E. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 2019, 12, 22–27. [Google Scholar] [CrossRef]
- Rose, A.N.; McKee, J.J.; Urban, M.L.; Bright, E.A.; Sims, K.M. LandScan 2018; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2019. [Google Scholar]
- Bright, E.A.; Coleman, P.R. LandScan 2000; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2001. [Google Scholar]
- Surazakov, A.; Aizen, V. Positional accuracy evaluation of declassified hexagon KH-9 mapping camera imagery. Photogramm. Eng. Remote Sens. 2010, 76, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Goerlich, F.; Bolch, T.; Mukherjee, K.; Pieczonka, T. Glacier mass loss during the 1960’s and 1970’s in the Ak-Shirak range (Kyrgyzstan) from multiple stereoscopic Corona and Hexagon imagery. Remote Sens. 2017, 9, 275. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Wu, Q. geemap: A Python package for interactive mapping with Google Earth Engine. J. Open Source Softw. 2020, 5, 2305. [Google Scholar] [CrossRef]
- Nie, Y.; Liu, Q.; Liu, S. Glacial lake expansion in the central Himalayas by Landsat images, 1990–2010. PLoS ONE 2013, 8, e83973. [Google Scholar] [CrossRef] [Green Version]
- Salerno, F.; Thakuri, S.; D’Agata, C.; Smiraglia, C.; Manfredi, E.C.; Viviano, G.; Tartari, G. Glacial lake distribution in the Mount Everest region: Uncertainty of measurement and conditions of formation. Glob. Planet. Chang. 2012, 92, 30–39. [Google Scholar] [CrossRef]
- Mertes, J.R.; Thompson, S.S.; Booth, A.D.; Gulley, J.D.; Benn, D.I. A conceptual model of supra-glacial lake formation on debris-covered glaciers based on GPR facies analysis. Earth Surf. Process. Landf. 2017, 42, 903–914. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Monthly Averaged Data on Single Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.f17050d7?tab=overview (accessed on 26 October 2020).
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef] [Green Version]
- Pelto, M.; Panday, P.; Matthews, T.; Maurer, J.; Perry, L.B. Observations of Winter Ablation on Glaciers in the Mount Everest Region in 2020–2021. Remote Sens. 2021, 13, 2692. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Richards, K.; Ke, L.; Hien Phan, V. Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes? Water Resour. Res. 2014, 50, 3170–3186. [Google Scholar] [CrossRef] [Green Version]
- Thakuri, S.; Chauhan, R.; Baskota, P. Glacial Hazards and Avalanches in High Mountains of Nepal Himalaya. J. Tour. Himalaya Adventures 2020, 2, 87–104. [Google Scholar]
- Liu, Q.; Mayer, C.; Wang, X.; Nie, Y.; Wu, K.; Wei, J.; Liu, S. Interannual flow dynamics driven by frontal retreat of a lake-terminating glacier in the Chinese Central Himalaya. Earth Planet. Sci. Lett. 2020, 546, 116450. [Google Scholar] [CrossRef]
- Basnett, S.; Kulkarni, A.V.; Bolch, T. The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India. J. Glaciol. 2013, 59, 1035–1046. [Google Scholar] [CrossRef] [Green Version]
- King, O.; Dehecq, A.; Quincey, D.; Carrivick, J. Contrasting geometric and dynamic evolution of lake and land-terminating glaciers in the central Himalaya. Glob. Planet. Chang. 2018, 167, 46–60. [Google Scholar] [CrossRef]
- Watson, C.S.; Kargel, J.S.; Shugar, D.H.; Haritashya, U.K.; Schiassi, E.; Furfaro, R. Mass Loss from Calving in Himalayan Proglacial Lakes. Front. Earth Sci. 2020, 7, 342. [Google Scholar] [CrossRef] [Green Version]
- Miles, E.S.; Willis, I.; Buri, P.; Steiner, J.F.; Arnold, N.S.; Pellicciotti, F. Surface Pond Energy Absorption Across Four Himalayan Glaciers Accounts for 1/8 of Total Catchment Ice Loss. Geophys. Res. Lett. 2018, 45, 10464–10473. [Google Scholar] [CrossRef] [Green Version]
- Steiner, J.F.; Buri, P.; Miles, E.S.; Ragettli, S.; Pellicciotti, F. Supraglacial ice cliffs and ponds on debris-covered glaciers: Spatio-temporal distribution and characteristics. J. Glaciol. 2019, 65, 617–632. [Google Scholar] [CrossRef] [Green Version]
- Buri, P.; Miles, E.S.; Steiner, J.F.; Ragettli, S.; Pellicciotti, F. Supraglacial ice cliffs can substantially increase the mass loss of debris-covered glaciers. Geophys. Res. Lett. 2021, 48, e2020GL092150. [Google Scholar] [CrossRef]
- Bolch, T.; Buchroithner, M.F.; Peters, J.; Baessler, M.; Bajracharya, S. Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Nat. Hazards Earth Syst. Sci. 2008, 8, 1329–1340. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Liu, Q.; Wang, J.; Zhang, Y.; Sheng, Y.; Liu, S. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis. Geomorphology 2018, 308, 91–106. [Google Scholar] [CrossRef]
- Terink, W.; Immerzeel, W.W.; Lutz, A.F.; Droogers, P.; Khanal, S.; Nepal, S.; Shrestha, A.B. Hydrological and Climate Change Assessment for Hydropower Development in the Tamakoshi River Basin, Nepal. 2017. Available online: https://www.futurewater.nl/wp-content/uploads/2017/05/final_report_WT_v2.pdf (accessed on 30 October 2020).
- Quincey, D.J.; Lucas, R.M.; Richardson, S.D.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. Optical remote sensing techniques in high-mountain environments: Application to glacial hazards. Prog. Phys. Geogr. Earth Environ. 2005, 29, 475–505. [Google Scholar] [CrossRef]
- Kargel, J.S.; Leonard, G.J.; Shugar, D.H.; Haritashya, U.K.; Bevington, A.; Fielding, E.J.; Fujita, K.; Geertsema, M.; Miles, E.S.; Steiner, J.; et al. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 2016, 351, 140–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study Period (Sensor) | Glacier Number | Total Area (km2) | Area Change (% a−1) | West Side of Basin | East Side of Basin | ||
---|---|---|---|---|---|---|---|
Number | Area (km2) | Number | Area (km2) | ||||
1964 (KH-4A) | 282 | 355.3 ± 1.8 | - | 141 | 142.0 ± 0.8 | 141 | 213.4 ± 1.0 |
1980 (KH-9) | 283 | 350.4 ± 5.9 | −0.09 | 143 | 141.2 ± 2.6 | 140 | 209.3 ± 3.4 |
1990 (Landsat TM) | 279 | 337.5 ± 19.0 | −0.37 | 139 | 136.2 ± 8.1 | 140 | 201.3 ± 10.9 |
2000 (Landsat TM) | 279 | 335.9 ± 19.0 | −0.05 | 139 | 135.5 ± 8.1 | 140 | 200.5 ± 10.9 |
2010 (Landsat ETM+) | 279 | 335.0 ± 18.9 | −0.03 | 139 | 135.2 ± 8.1 | 140 | 199.8 ± 10.8 |
2018 (Landsat OLI) | 271 | 331.2 ± 18.5 | −0.14 | 133 | 133.9 ± 7.9 | 138 | 197.4 ± 10.6 |
2020 (PlanetScope) | 271 | 329.2 ± 1.9 | −0.31 | 133 | 133.8 ± 0.8 | 138 | 195.4 ± 1.1 |
Study Period | Total | Land-Terminating | Lake-Terminating | West Side of Basin | East Side of Basin | |
---|---|---|---|---|---|---|
Area change rate (% a−1) | 1964–2020 | 0.13 | 0.13 | 0.14 | 0.10 | 0.15 |
Retreat rate (m a−1) | 1964–2020 | 3.2 | 2.6 | 37.7 | 2.1 | 4.3 |
Elevation change rate (m a−1) | 1975–2000 | −0.32 | −0.30 | −0.40 | −0.26 | −0.33 |
2000–2016 | −0.63 | −0.62 | −0.85 | −0.69 | −0.62 | |
Mean Velocity (m a−1) | 1999–2003 | 5.3 | 4.8 | 6.9 | 5.4 | 5.2 |
2013–2015 | 4.0 | 3.4 | 6.1 | 4.1 | 3.8 |
Study Period (Sensor) | Lake Number | Total Area (km2) | Area Change (% a−1) | West Side of Basin | East Side of Basin | Temperature Change (°C a−1) | Precipitation Change (mm a−1) | ||
---|---|---|---|---|---|---|---|---|---|
Number | Area (km2) | Number | Area (km2) | ||||||
1964 (KH-4A) | 78 | 5.1 ± 0.1 | - | 51 | 2.0 ± 0.1 | 27 | 3.1 ± 0.1 | - | - |
1980 (KH-9) | 115 | 7.6 ± 0.5 | 3.0 | 76 | 3.0 ± 0.6 | 39 | 4.5 ± 0.2 | - | - |
1990 (Landsat TM) | 171 | 10.3 ± 2.2 | 3.6 | 108 | 3.8 ± 1.1 | 63 | 6.5 ± 1.1 | - | - |
2000 (Landsat TM) | 172 | 10.7 ± 2.2 | 0.47 | 109 | 4.0 ± 1.1 | 63 | 6.9 ± 1.1 | 0.033 | 0.48 |
2010 (Landsat ETM+) | 175 | 11.7 ± 2.3 | 0.85 | 112 | 3.8 ± 1.1 | 63 | 7.8 ± 1.1 | 0.038 | 6.4 |
2018 (Landsat OLI) | 198 | 14.2 ± 2.7 | 2.8 | 118 | 4.4 ± 1.3 | 80 | 9.8 ± 1.4 | 0.0007 | 14.6 |
2020 (PlanetScope) | 196 | 14.4 ± 0.3 | 0.49 | 119 | 4.4 ± 0.1 | 77 | 10.0 ± 0.1 | - | - |
Total | |||||||||
Lake growth (dA%) | 151 | - | 180 | 133 | 123 | 185 | 217 | - | - |
Lake growth rate (% a−1) | 2.7 | - | 3.2 | 2.4 | 2.2 | 3.3 | 3.9 | - | - |
Study Period (Sensor) | Moraine-Dammed Ice-Contact Lake | Non-Moraine-Dammed Ice-Contact Lake | ||||
---|---|---|---|---|---|---|
Number | Area (km2) | Expansion Rate (% a−1) | Number | Area (km2) | Expansion Rate (% a−1) | |
1964 (KH-4A) | 10 | 2.1 ± 0.1 | - | 68 | 3.0 ± 0.1 | - |
1980 (KH-9) | 17 | 3.8 ± 0.2 | 5.7 | 98 | 3.7 ± 0.3 | 1.5 |
1990 (Landsat TM) | 11 | 4.0 ± 0.4 | 0.40 | 160 | 6.3 ± 1.8 | 6.9 |
2000 (Landsat TM) | 12 | 4.9 ± 0.6 | 2.2 | 160 | 5.9 ± 1.7 | −0.65 |
2010 (Landsat ETM+) | 10 | 5.3 ± 0.5 | 0.83 | 165 | 6.4 ± 1.9 | 0.85 |
2018 (Landsat OLI) | 5 | 5.8 ± 0.5 | 1.3 | 193 | 8.4 ± 2.4 | 4.0 |
2020 (PlanetScope) | 5 | 6.1 ± 0.1 | 2.2 | 191 | 8.3 ± 0.3 | −0.71 |
Total | ||||||
Lake growth (dA%) | −50 | - | 204 | 181 | - | 175 |
Lake growth rate (% a−1) | −0.9 | - | 3.7 | 3.2 | - | 3.1 |
ID | Name (Lake or Glacier ID) | (1964–2020) Rate of Change in Lake Area (% a−1) | (1999–2015) Rate of Change in Glacier Velocity (m a−1) | (1975–2016) Change in Glacier Elevation (m a−1) | (2007) Average Slope (°) |
---|---|---|---|---|---|
A | RGI60-15.09690 | −1.9 | 2.1 | −0.55 | 5.5 |
B | RGI60-15.09714 | 0.33 | 4.8 | −0.55 | 5.8 |
C | RGI60-15.09721 | 0.84 | 9.5 | −0.49 | 5.2 |
D | Niangzongmajue | 1.1 | 25.4 | −0.40 | 5.5 |
E | Yalongcuo | 1.9 | 10.4 | −0.80 | 3.1 |
F | Dangpu Lake | 4.2 | 2.8 | −1.2 | 7.7 |
G | RGI60-15.09771 | 9.0 | 7.4 | −1.1 | 5.5 |
H | Tsho Rolpa | 0.60 | 9.7 | −0.71 | 3.0 |
I | Shalong Glacier | 0.04 | 5.1 | −0.64 | 7.9 |
J | Dangpu Glacier | - | 3.7 | −0.47 | 10.5 |
K | RGI60-15.03428 | - | 2.5 | −0.71 | 7.9 |
L | Bamolelingjia Glacier | - | 5.7 | −0.86 | 8.2 |
M | RGI60-15.09675 | - | 8.9 | −0.64 | 7.8 |
N | RGI60-15.09729 | - | 14.7 | −0.26 | 8.1 |
Name | Date of Outburst | Location | (Possible) Trigger | Source |
---|---|---|---|---|
Chubung | 12 July 1991 | Rolwaling Valley, Nepal | Ice avalanche | (Reynolds 1999) |
Upper Langbu Tsho | 22 September 1992~17 November 1992 | Dagazhuoma River, China | Ice avalanche | (Nie et al., 2018) |
Lake A | 30 July 2018~9 August 2018 | Labujikongzangbu River, China | Extreme precipitation | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Liu, Q.; Sapkota, L.; Luo, Y.; Wang, H.; Liao, H.; Wu, Y. Rapid glacier Shrinkage and Glacial Lake Expansion of a China-Nepal Transboundary Catchment in the Central Himalayas, between 1964 and 2020. Remote Sens. 2021, 13, 3614. https://doi.org/10.3390/rs13183614
Zhong Y, Liu Q, Sapkota L, Luo Y, Wang H, Liao H, Wu Y. Rapid glacier Shrinkage and Glacial Lake Expansion of a China-Nepal Transboundary Catchment in the Central Himalayas, between 1964 and 2020. Remote Sensing. 2021; 13(18):3614. https://doi.org/10.3390/rs13183614
Chicago/Turabian StyleZhong, Yan, Qiao Liu, Liladhar Sapkota, Yunyi Luo, Han Wang, Haijun Liao, and Yanhong Wu. 2021. "Rapid glacier Shrinkage and Glacial Lake Expansion of a China-Nepal Transboundary Catchment in the Central Himalayas, between 1964 and 2020" Remote Sensing 13, no. 18: 3614. https://doi.org/10.3390/rs13183614