Basal Channel Extraction and Variation Analysis of Nioghalvfjerdsfjorden Ice Shelf in Greenland
"> Figure 1
<p>79NG ice shelf of Landsat 7. The black solid lines represent airborne radar flight paths in 2012 and 2017 (the first and second solid black lines are the common route positions of 2012 and 2017 ice bridge data; the third black solid line is the exclusive route of 2012). Greenland surface melting: the red star in lower left corner represents the position of the central point and the spatial resolution of the dataset is<math display="inline"><semantics> <mrow> <mo> </mo> <mn>25</mn> <mo> </mo> <mi>km</mi> <mo>×</mo> <mn>25</mn> <mo> </mo> <mi>km</mi> </mrow> </semantics></math>. Sea Surface Temperature (SST): the red star in upper right corner represents the position of central point and the spatial resolution of the dataset<math display="inline"><semantics> <mrow> <mrow> <mo> </mo> <mi>is</mi> <mo> </mo> </mrow> <mn>1</mn> <mo>°</mo> <mo>×</mo> <mn>1</mn> <mo>°</mo> </mrow> </semantics></math>.</p> "> Figure 2
<p>Creep simulation flowchart.</p> "> Figure 3
<p>The annual deformation of the ice shelf under the action of its own gravity and buoyancy effect of seawater. (<b>a</b>) The ice shelf with a basal channel, the corresponding position of surface appears obvious depression. (<b>b</b>) The ice shelf with no basal channel, there is no obvious depression on the ice shelf surface (<math display="inline"><semantics> <mn>1</mn> </semantics></math> year = <math display="inline"><semantics> <mrow> <mn>3.139</mn> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mn>7</mn> </msup> </mrow> </semantics></math> seconds). The model of the ice shelf is <math display="inline"><semantics> <mrow> <mn>2000</mn> <mo>×</mo> <mn>1000</mn> <mo>×</mo> <mn>400</mn> <mo> </mo> <mi mathvariant="normal">m</mi> <mo>,</mo> <mo> </mo> </mrow> </semantics></math>and the basal channel is<math display="inline"><semantics> <mrow> <mo> </mo> <mn>2000</mn> <mo>×</mo> <mn>160</mn> <mo>×</mo> <mn>160</mn> <mi mathvariant="normal">m</mi> <mo>.</mo> </mrow> </semantics></math> (Length × Width × Height). The model resolution is 100 m.</p> "> Figure 4
<p>The annual vertical displacement at the geometric center of the ice shelf surface. (The location is indicated by the black arrow in <a href="#remotesensing-12-01474-f002" class="html-fig">Figure 2</a>).</p> "> Figure 5
<p>Basal channel extraction flowchart.</p> "> Figure 6
<p>An example of a depression on the 79NG ice shelf verified by ICESat. (<b>a</b>) Depression distribution on the surface of 79NG ice shelf. The solid red line indicates ICESat satellite orbit. (<b>b</b>) and (<b>c</b>) represent the ICESat data track 1325 and track 0343 respectively.</p> "> Figure 7
<p>The first IceBridge in 2012 validates data and Landsat imagery. (<b>a</b>) shows the surface morphology at the first IceBridge data in 2012, with IceBridge airborne radar flight path (black solid line). The location indicated by the yellow circle is the area confirming the existence of the basal channel. (<b>b</b>) shows the results from the first IceBridge in 2012. The yellow area corresponds to the yellow circle in (<b>a</b>).</p> "> Figure 8
<p>A portion of the 79NG ice shelf as shown in the 2012 Landsat imagery. The red arrow marks a grounding-line-sourced basal channel. Black arrow marks a subglacially-sourced channel.</p> "> Figure 9
<p>A portion of the 79NG Ice Shelf as shown in the 2012 Landsat imagery. The red arrows mark ocean-sourced basal channel.</p> "> Figure 10
<p>The distribution of 79NG ice shelf basal channels in 2000.</p> "> Figure 11
<p>The RMS of basal channel length annual increment from 2000 to 2018 in 79NG.</p> "> Figure 12
<p>Time series of basal channel length change. (<b>a</b>) The interannual variation of the grounding-line-sourced basal channel, ocean-sourced basal channel and subglacially-sourced basal channel. (<b>b</b>) Variation trend of three type of basal channel in length: positive value represents length elongation of the basal channel in the corresponding timescale; negative value represents length shortening of the channel in the corresponding timescale.</p> "> Figure 13
<p>The location change of the calving front of 79NG ice shelf shown in the base map of Landsat 7 image data in 2012. Area A and B are the two main outlets of 79NG ice shelf, where the yellow (Area I) and green (Area II) rectangular boxes indicate that a large disintegration event has occurred in this area. The different color curves represent the position of the calving front of the ice shelf in different years. In these colored lines, the solid lines represent the major calving events that did not occur during the year, and the dotted lines represent the major calving events that occurred during the year.</p> "> Figure 14
<p>Variations in the length of ocean-sourced basal channel. (<b>a</b>) shows the distribution of ocean-sourced basal channel, where the red, yellow and blue dotted boxes represent the total length of ocean source basal channel in region B, region A and region C, respectively. (<b>b</b>) shows the changes of ocean-sourced channel length in different regions and the annual change of SST. The three blue lines show in the legend correspond to the length of ocean sourced basal channel in regions A, B and C respectively (refer to the left y-coordinate for coordinate axes). The solid red line represents the data results of the sampling location of SST in <a href="#remotesensing-12-01474-f001" class="html-fig">Figure 1</a>a (refer to the y-coordinate on the right of the coordinate axis).</p> "> Figure 15
<p>The time series of grounding-line-sourced channel and SST.</p> "> Figure 16
<p>The time series of subglacially-sourced channel, SST and ice sheet surface melting days.</p> "> Figure 17
<p>(<b>a</b>) Landsat image near the third IceBridge airborne radar flight path in 2012. Ocean-sourced basal channel (red solid line), grounding-line-sourced basal channel (Green solid line), subglacially-sourced basal channel (blue solid line). (<b>b</b>) IceBridge data corresponds to the position marked by the yellow solid box in (<b>a</b>). (<b>c</b>) IceBridge data with gray background represent a supraglacial river terrain indicated by blue solid arrow in figure (<b>a</b>).</p> "> Figure A1
<p>The second IceBridge in 2012 validates the data and Landsat imagery. (<b>a</b>) shows the surface morphology at the second IceBridge data in 2012, with IceBridge airborne radar flight path (black solid line). The location indicated by the yellow circle is the area confirming the existence of the basal channel. (<b>b</b>) shows the results from the second IceBridge in 2012. The yellow area corresponds to the yellow circle in (<b>a</b>).</p> "> Figure A2
<p>The third IceBridge in 2012 validates the data and Landsat imagery. (<b>a</b>) shows the surface morphology at the third IceBridge data in 2012, with IceBridge airborne radar flight path (black solid line). The location indicated by the yellow circle is the area confirming the existence of the basal channel. (<b>b</b>) shows the results from the third IceBridge in 2012. The yellow area corresponds to the yellow circle in (<b>a</b>).</p> "> Figure A3
<p>The first IceBridge in 2017 validates the data and Landsat imagery. (<b>a</b>) shows the surface morphology at the first IceBridge data in 2017, with IceBridge airborne radar flight path (black solid line). The location indicated by the yellow circle is the area confirming the existence of the basal channel. (<b>b</b>) shows the results from the first IceBridge in 2017. The yellow area corresponds to the yellow circle in (<b>a</b>).</p> "> Figure A4
<p>The second IceBridge in 2017 validates the data and Landsat imagery. (<b>a</b>) shows the surface morphology at the second IceBridge data in 2017, with IceBridge airborne radar flight path (black solid line). The location indicated by the yellow circle is the area confirming the existence of the basal channel. (<b>b</b>) shows the results from the second IceBridge in 2017. The yellow area corresponds to the yellow circle in (<b>a</b>).</p> "> Figure A5
<p>The distribution of 79NG ice shelf basal channels from 2000 to 2018. The positions marked by black circles in some images represent the areas with large changes in the basal channel.</p> "> Figure A5 Cont.
<p>The distribution of 79NG ice shelf basal channels from 2000 to 2018. The positions marked by black circles in some images represent the areas with large changes in the basal channel.</p> "> Figure A5 Cont.
<p>The distribution of 79NG ice shelf basal channels from 2000 to 2018. The positions marked by black circles in some images represent the areas with large changes in the basal channel.</p> "> Figure A5 Cont.
<p>The distribution of 79NG ice shelf basal channels from 2000 to 2018. The positions marked by black circles in some images represent the areas with large changes in the basal channel.</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data
2.2.1. Landsat
2.2.2. ICESat
2.2.3. IceBridge
2.2.4. Grounding Line
2.2.5. Greenland Topographic Data
3. Methods
3.1. Basal Channel Formation and Surface Depression
3.2. Formation and Identification of Basal Channels
4. Results and Discussion
4.1. Spatiotemporal Series of Basal Channel
4.2. Ocean-Sourced Basal Channel
4.3. Grounding-Line-Sourced Basal Channel
4.4. Subglacially-Sourced Basal Channel
4.5. Uncertainties Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Lazeroms, W.M.J.; Jenkins, A.; Gudmundsson, G.H.; Wal, R.S.W. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes. Cryosphere 2018, 12, 49–70. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, S.S.; Jenkins, A.; Giulivi, C.F.; Dutrieux, P. Stronger ocean circulation and increased melting under pine island glacier ice shelf. Nat. Geosci. 2011, 4, 519–523. [Google Scholar] [CrossRef]
- Joughin, I.; Smith, B.E.; Holland, D.M. Sensitivity of 21st century sea level to ocean-induced thinning of pine island glacier, antarctica. Geophys. Res. Lett. 2010, 37, L20502. [Google Scholar] [CrossRef]
- Shepherd, A.; Wingham, D.; Wallis, D.; Giles, K.; Sundal, A.V. Correction to “recent loss of floating ice and the consequent sea level contribution”. Geophys. Res. Lett. 2010, 37, 17. [Google Scholar] [CrossRef] [Green Version]
- Fogwill, C.J.; Golledge, N.R.; Kowalewski, D.E.; Levy, R.H.; Gasson, E.G.W.; Naish, T.R. The multi-millennial Antarctic commitment to future sea-level rise. Nature 2015, 526, 421–425. [Google Scholar]
- Ritz, C.; Edwards, T.L.; Durand, G.; Payne, A.J.; Peyaud, V.; Hindmarsh, R.C.A. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 2015, 528, 115. [Google Scholar] [CrossRef]
- Pollard, D.; DeConto, R.M. Description of a hybrid ice sheet-shelf model, and application to Antarctica. Geosci. Model Dev. 2012, 5, 1273–1295. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B. Ice-shelf melting around Antarctica. Science 2013, 341, 266–270. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Moore, J.C.; Cheng, X.; Gladstone, R.M.; Hui, F. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proc. Natl. Acad. Sci. USA 2015, 112, 3263–3268. [Google Scholar] [CrossRef] [Green Version]
- Depoorter, M.A.; Bamber, J.L.; Griggs, J.A.; Lenaerts, J.T.M.; Ligtenberg, S.R.M.; Van, B.M.R. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 2013, 502, 89. [Google Scholar] [CrossRef]
- Pritchard, H.D.; Ligtenberg, S.R.M.; Fricker, H.A.; Vaughan, D.G.; Broeke, M.R.V.D.; Padman, L. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 2012, 484, 502. [Google Scholar] [CrossRef] [PubMed]
- Paolo, F.S.; Fricker, H.A.; Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 2015, 348, 327–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourmelen, N.; Goldberg, D.N.; Snow, K.; Henley, S.F.; Bingham, R.G.; Kimura, S. Channelized melting drives thinning under a rapidly melting Antarctic ice shelf. Geophys. Res. Lett. 2017, 44, 9796–9804. [Google Scholar] [CrossRef]
- Jenkins, A.; Dutrieux, P.; Jacobs, S.S.; Mcphail, S.D.; Perrett, J.R.; Webb, A.T. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat. Geosci. 2010, 3, 468. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Steffen, K. Channelized bottom melting and stability of floating ice shelves. Geophys. Res. Lett. 2008, 35, L0250. [Google Scholar] [CrossRef] [Green Version]
- Dutrieux, P.; Stewart, C.; Jenkins, A.; Nicholls, K.W.; Corr, H.F.J.; Rignot, E. Basal terraces on melting ice shelves. Geophys. Res. Lett. 2014, 41, 5506–5513. [Google Scholar] [CrossRef] [Green Version]
- Le Brocq, A.M.; Ross, N.; Griggs, J.A.; Bingham, R.G.; Corr, H.F.J.; Ferraccioli, F. Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nat. Geosci. 2013, 6, 945. [Google Scholar] [CrossRef]
- Fricker, H.A.; Coleman, R.; Padman, L.; Scambos, T.A.; Brunt, K.M. Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS and ICESat. Antarct. Sci. 2009, 21, 515–532. [Google Scholar] [CrossRef] [Green Version]
- Bindschadler, R.; Vaughan, D.G.; Vornberger, P. Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica. J. Glaciol. 2011, 57, 581–595. [Google Scholar] [CrossRef] [Green Version]
- Mankoff, K.D.; Jacobs, S.; Tulaczyk, S.M.; Stammerjohn, S.E. The role of Pine Island Glacier ice shelf basal channels in deep-water upwelling, polynyas and ocean circulation in Pine Island Bay, Antarctica. Ann. Glaciol. 2012, 53, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Dutrieux, P.; Vaughan, D.G.; Corr, H.F.J.; Jankins, A.; Holland, P.R.; Joughin, I.; Fleming, A. Pine Island glacier ice shelf melt distributed at kilometre scales. Cryosphere 2013, 7, 1543–1555. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Jacobs, S.S. Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science 2002, 296, 2020–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langley, K.; Von Deschwanden, A.; Kohler, J.; Sinisalo, A.; Matsuoka, K.; Hattermann, T.; Humbert, A.; Nost, O.A.; Isaksson, E. Complex network of channels beneath an Antarctic ice shelf. Geophys. Res. Lett. 2014, 41, 1209–1215. [Google Scholar] [CrossRef]
- Marsh, O.J.; Fricker, H.A.; Siegfried, M.R.; Christianson, K. High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica. Geophys. Res. Lett. 2016, 43, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Alley, K.E.; Scambos, T.A.; Siegfried, M.R.; Fricker, H.A. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nat. Geosci. 2016, 9, 290. [Google Scholar] [CrossRef]
- Motyka, R.J.; Truffer, M.; Fahnestock, M.; Mortensen, J.; Søren, R.; Howat, I. Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res. Earth Surf. 2011, 116, 1–41. [Google Scholar] [CrossRef]
- Gladish, C.V.; Holland, D.M.; Holland, P.R.; Price, S.F. Ice-shelf basal channels in a coupled ice/ocean model. J. Glaciol. 2012, 58, 1227–1244. [Google Scholar] [CrossRef] [Green Version]
- Millgate, T.; Holland, P.R.; Jenkins, A.; Johnson, H.L. The effect of basal channels on oceanic ice-shelf melting. J. Geophys. Res. Ocean. 2013, 118, 6951–6964. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, D.G.; Corr, H.F.J.; Bindschadler, R.A.; Dutrieux, P.; Gudmundsson, G.H.; Jenkins, A.; Newman, T.; Vornberger, P.; Wingham, D. Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica. J. Geophys. Res. Earth Surf. 2012, 117, F03012. [Google Scholar] [CrossRef] [Green Version]
- Sergienko, O.V. Basal channels on ice shelves. J. Geophys. Res. Earth Surf. 2013, 118, 1342–1355. [Google Scholar] [CrossRef]
- Matsuoka, K.; Maeno, H.; Uratsuka, S.; Fujita, S.; Furukawa, T.; Watanabe, O. A ground-based, multi-frequency ice-penetrating radar system. Ann. Glaciol. 2002, 34, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, N.T.; Farrell, S.L.; Studinger, M.; Galin, N.; Harbeck, J.P.; Lindsay, R.; Onana, C.D.; Panzer, B.; Sonntag, J.G. Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere 2013, 7, 1035–1056. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Allen, C.T.; Ledford, J.R.; Rodriguez-Morales, F.; Gogineni, S. Multichannel coherent radar depth sounder for NASA operation ice bridge. Proceeding of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 June 2010; volume, pp. 1729–1732. [Google Scholar]
- Lindbäck, K.; Pettersson, R.; Doyle, S.H.; Helanow, C.; Jansson, P.; Kristensen, S.S.; Stenseng, L.; Forsberg, R.; Hubbard, A. High-resolution ice thickness and bed topography of a land-terminating section of the Greenland Ice Sheet. Earth Syst. Sci. Data 2014, 6, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, D.M.; Dowdeswell, J.A.; Siegert, M.J.; Bingham, R.G.; Maho, Y.L. Multidecadal observations of the Antarctic ice sheet from restored analog radar records. Proc. Natl. Acad. Sci. USA 2019, 116, 18867–18873. [Google Scholar] [CrossRef] [Green Version]
- Sinha, N.K. Crack-enhanced creep in polycrystalline material: Strain-rate sensitive strength and deformation of ice. J. Mater. Sci. 1988, 23, 4415–4428. [Google Scholar] [CrossRef] [Green Version]
- Treverrow, A.; Budd, W.F.; Jacka, T.H.; Warner, R.C. The tertiary creep of polycrystalline ice: Experimental evidence for stress-dependent levels of strain-rate enhancement. J. Glaciol. 2012, 58, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Steenis, K.; Hicks, F.E.; Hrudey, T.M.; Beltaos, S. Modelling creep deformation in floating ice. Can. J. Civ. Eng. 2003, 30, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Glen, J.W. The creep of polycrystalline ice. Proceedings of the Royal Society of London. Series A. Math. Phys. Sci. 1955, 228, 519–538. [Google Scholar]
- Thomas, R.H. The Creep of Ice Shelves Theory. J. Glaciol. 1973, 12, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Mouginot, J. Ice flow in Greenland for the international polar year 2008–2009. Geophys. Res. Lett. 2012, 39, L11501. [Google Scholar] [CrossRef] [Green Version]
- Borsa, A.A.; Moholdt, G.; Fricker, H.A.; Brunt, K.M. A range correction for ICESat and its potential impact on ice-sheet mass balance studies. Cryosphere 2014, 8, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Fricker, H.A.; Padman, L. Ice shelf grounding zone structure from ICESat laser altimetry. Geophys. Resolut. Lett. 2006, 33, L15502. [Google Scholar] [CrossRef]
- Kurtz, N.T.; Farrell, S.L. Large–scale surveys of snow depth on Arctic sea ice from operation IceBridge. Geophys. Resolut. Lett. 2011, 38, L20505. [Google Scholar] [CrossRef]
- Farrell, S.L. A first assessment of icebridge snow and ice thickness data over arctic sea ice. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2098–2111. [Google Scholar] [CrossRef]
- Schaffer, J.; Von Appen, W.J.; Dodd, P.A.; Hofstede, C.; Mayer, C.; Steur, L.; Kanzow, T. Warm water pathways toward Nioghalvfjerdsfjorden Glacier, Northeast Greenland. J. Geophys. Res. Ocean. 2017, 122, 4004–4020. [Google Scholar] [CrossRef]
- Wilson, N.J.; Straneo, F. Water exchange between the continental shelf and the cavity beneath Nioghalvfjerdsbræ (79 North Glacier). Geophys. Res. Lett. 2015, 42, 7648–7654. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B.; Fenty, I.; Khazendar, A.; Morlighem, M. Fast retreat of Zachariæ Isstrøm, northeast Greenland. Science 2015, 350, 1357–1361. [Google Scholar] [CrossRef] [Green Version]
- Mayer, C.; Schaffer, J.; Hattermann, T.; Floricioiu, D.; Krieger, L.; Dodd, P.A.; Kanzow, T.; Licciulli, C.; Schannwell, C. Large ice loss variability at Nioghalvfjerdsfjorden Glacier, Northeast-Greenland. Nat. Commun. 2018, 9, 2768. [Google Scholar] [CrossRef] [Green Version]
- Drewry, D.; Robin, G. Form and flow of the Antarctic ice sheet during the last million years. Clim. Rec. Polar Ice Sheet 1983, 28–38. [Google Scholar]
- Howat, I.M.; Negrete, A.; Smith, B.E. The Greenland ice mapping project (gimp) land classification and surface elevation data sets. Cryosphere Discuss. 2014, 8, 1509–1518. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, S.; Li, C.; Hu, Q.; Yang, H. A Seismic Capacity Evaluation Approach for Architectural Heritage Using Finite Element Analysis of Three-Dimensional Model: A Case Study of the Limestone Hall in the Ming Dynasty. Remote Sens. 2018, 10, 963. [Google Scholar] [CrossRef] [Green Version]
- ANSYS Release 9.0 Documentation 2004. Available online: https://epdf.pub/ansys-verification-manual-ansys-release-90.html. (accessed on 5 November 2014).
- Betten, J. Creep Mechanics; Springer: Aachen, Germany, 2008; p. 52. [Google Scholar]
- Bråthe, L.; Josefson, L. Estimation of Norton-Bailey parameters from creep rupture data. Met. Sci. 1979, 13, 660–664. [Google Scholar] [CrossRef]
- Zheng, M.; Han, L.; Qiu, Z.; Li, H.; Ma, Q.; Che, F. Simulation of permanent deformation in high-modulus asphalt pavement using the Bailey-Norton creep law. J. Mater. Civ. Eng. 2016, 28, 04016020. [Google Scholar] [CrossRef]
- Paterson, W.B.S. The Physics of Glaciers; Elsevier: Amsterdam, The Netherlands, 2016; pp. 72–75. [Google Scholar]
- Brocq, L.; Payne, A.; Siegert, M.; Alley, R. A subglacial water-flow model for West Antarctica. J. Glacial 2009, 55, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Rayner, N.A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Chauché, N.; Hubbard, A.; Gascard, J.C.; Box, J.E.; Bates, R.; Koppes, M. Ocean properties, ice-ocean interactions, and calving front morphology at two major west Greenland glaciers. Cryosphere Discuss. 2013, 7, 6. [Google Scholar]
- Jones, H.; Marshall, J. Convection with rotation in a neutral ocean: A study of open-ocean deep convection. J. Phys. Oceanogr. 1993, 23, 1009–1039. [Google Scholar] [CrossRef]
- Jiuxin, S. A review of ice shelf-ocean interaction in Antarctica. Polar Res. 2015, 030, 287–302. [Google Scholar]
- Meierbachtol, T.; Harper, J.; Humphrey, N. Basal drainage system response to increasing surface melt on the Greenland ice sheet. Science 2013, 341, 777–779. [Google Scholar] [CrossRef]
- Picard, G.; Fily, M.; Gallee, H. Surface melting derived from microwave radiometers: A climatic indicator in Antarctica. Ann. Glaciol. 2007, 46, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Abdalati, W.; Herring, T.; Larson, K.; Saba, J.; Steffen, K. Surface melt-induced acceleration of Greenland ice-sheet flow. Science 2002, 297, 218–222. [Google Scholar]
Number | Acquisition Data | Path/Row | Series | Land Cloud Cover |
---|---|---|---|---|
1 | 2000/07/02 | 011/002 | Landsat 7 | 1.00% |
2 | 2001/06/26 | 012/002 | Landsat 7 | 0.00% |
3 | 2002/06/20 | 013/002 | Landsat 7 | 3.00% |
4 | 2003/07/31 | 007/003 | Landsat 7 | 1.00% |
5 | 2004/07/15 | 009/003 | Landsat 7 | 0.00% |
6 | 2005/07/23 | 012/002 | Landsat 7 | 5.00% |
7 | 2006/07/19 | 011/002 | Landsat 7 | 0.00% |
8 | 2007/07/06 | 011/002 | Landsat 7 | 0.00% |
9 | 2008/07/19 | 008/003 | Landsat 7 | 0.00% |
10 | 2009/07/25 | 013/002 | Landsat 7 | 2.00% |
11 | 2010/07/27 | 006/003 | Landsat 7 | 9.00% |
12 | 2011/07/15 | 013/002 | Landsat 7 | 2.00% |
13 | 2012/07/30 | 008/003 | Landsat 7 | 7.00% |
14 | 2013/08/20 | 014/002 | Landsat 8 | 0.02% |
15 | 2014/07/21 | 007/003 | Landsat 8 | 0.07% |
16 | 2015/07/20 | 011/002 | Landsat 8 | 0.92% |
17 | 2016/07/20 | 013/002 | Landsat 8 | 1.48% |
18 | 2017/07/20 | 008/003 | Landsat 8 | 0.52% |
19 | 2018/07/19 | 044/242 | Landsat 8 | 0.28% |
Location | Area I | Area II | ||
---|---|---|---|---|
Periods of time | 2003–2004 | 2004–2005 | 2015–2016 | 2002–2003 |
Collapse Area | 9.1 | 8.2 | 13.8 | 18 |
Retreat Distance | 3.2 | 2.4 | 5.5 | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Song, X.; Zhang, B.; Liu, T.; Geng, H. Basal Channel Extraction and Variation Analysis of Nioghalvfjerdsfjorden Ice Shelf in Greenland. Remote Sens. 2020, 12, 1474. https://doi.org/10.3390/rs12091474
Wang Z, Song X, Zhang B, Liu T, Geng H. Basal Channel Extraction and Variation Analysis of Nioghalvfjerdsfjorden Ice Shelf in Greenland. Remote Sensing. 2020; 12(9):1474. https://doi.org/10.3390/rs12091474
Chicago/Turabian StyleWang, Zemin, Xiangyu Song, Baojun Zhang, Tingting Liu, and Hong Geng. 2020. "Basal Channel Extraction and Variation Analysis of Nioghalvfjerdsfjorden Ice Shelf in Greenland" Remote Sensing 12, no. 9: 1474. https://doi.org/10.3390/rs12091474
APA StyleWang, Z., Song, X., Zhang, B., Liu, T., & Geng, H. (2020). Basal Channel Extraction and Variation Analysis of Nioghalvfjerdsfjorden Ice Shelf in Greenland. Remote Sensing, 12(9), 1474. https://doi.org/10.3390/rs12091474