Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform
<p>(<b>A</b>) Location of the Cerrado biome in Brazil and its subdivision into tiles of 1.5 degree by 1.0 degree, and field plots (in red), which were used to explore the spectral differences between vegetation types; (<b>B</b>) “fisheye” field photographs showing the canopy cover in a forest (top), savanna (middle), and grassland (bottom); (<b>C</b>) panoramic field photos of forest, savanna, and grassland; (<b>D</b>) R5G4B3 representative Landsat-8 color composites of forest, savanna, and grassland; and (<b>E</b>) average carbon stock estimates in each vegetation [<a href="#B29-remotesensing-12-00924" class="html-bibr">29</a>].</p> "> Figure 2
<p>Workflow of the procedures conducted to map annual native vegetation cover in the Brazilian Cerrado biome, including the production of the annual mosaics, the definition of the empirical decision tree classification, and the statistical decision tree classification. L1T TOA = Collection 1, Tier 1 top-of-atmosphere reflectance; SMA = spectral mixing analysis; SEFI = savanna ecosystem fraction index; GVS = green vegetation and shade; GV = green vegetation; NDFI = normalized difference fraction index; and NPV = non-photosynthetic vegetation.</p> "> Figure 3
<p>Empirical decision tree classification scheme based on the values of the spectral metrics in 262 known field inventory plots in the Cerrado biome, seeking to separate native vegetation classes (grassland, savanna, and forest) from land use-related classes (mostly agriculture and pastures) and other non-vegetated areas (e.g., urban areas, bare soils). Values below each split refer to the factors at each node above it.</p> "> Figure 4
<p>Area (hectare) occupied by the three native vegetation types (forest in dark green, savanna in light green, and grassland in beige) in the Brazilian Cerrado over the time period of 1985–2017. Mha = million hectares; NV = native Cerrado vegetation.</p> "> Figure 5
<p>Comparison between the first (1985) and last (2017) maps of the time series, showing the net loss of the three predominant native vegetation classes in relation to the total area of the Brazilian Cerrado. Mha = million hectares.</p> "> Figure 6
<p>Temporal distribution of (<b>A</b>) forest, (<b>B</b>) savanna, and (<b>C</b>) grassland per year and per tile from 1985 to 2017 in the Brazilian Cerrado. Tiles with a reduction of over 50% in each NV class over the time series are highlighted in red.</p> "> Figure 7
<p>Classification probability maps of three native vegetation classes (<b>A</b>—forest, <b>B</b>—savanna, and <b>C</b>—grassland) in the Brazilian Cerrado, indicating the levels of consistency (low: 1–11 years; medium: 12–26 years; and high: 27–33 years) observed for each class in the 1985–2017 period.</p> "> Figure 8
<p>Analysis of stability of native vegetation (NV) and other non-NV classes in the Brazilian Cerrado from 1985 to 2017, presenting stable NV and non-NV areas, as well as the unstable areas that either changed to other NV classes or to other non-NV land cover classes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Classification Approach
2.2.1. Annual Landsat Mosaics
2.2.2. Empirical Decision Tree
2.2.3. Statistical Decision Tree Classification
2.3. Post Classification
2.4. Integration with MapBiomas Cross-Cutting Themes
2.5. Accuracy Assessment
2.6. Native Vegetation Net Loss
2.7. Stability of Native Vegetation
3. Results
3.1. Accuracy of Native Cerrado Vegetation Mapping
3.2. Spatial and Temporal Patterns of the Cerrado Native Vegetation
3.3. Stability of the Cerrado NV Classes
4. Discussion
4.1. Innovative Machine Learning Approach to Map Temporal Dynamics of Cerrado Native Vegetation
4.2. Temporal and Spatial Dynamics of the Cerrado Native Vegetation
4.3. Stability of the Cerrado Native Vegetation Classes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bourlière, F.; Hadley, M. Present-day savannas: An overview. In Tropical Savannas; Bourlière, F., Ed.; Elsevier: Amsterdam, The Netherlands, 1983; pp. 1–17. [Google Scholar]
- Scholes, R.J.; Hall, D.O. The carbon budget of tropical savannas, woodlands and grasslands. Sci. Comm. Probl. Environ. Int. Counc. Sci. Unions 1996, 56, 69–100. [Google Scholar]
- Solbrig, O.T. The diversity of the savanna ecosystem. In Biodiversity and Savanna Ecosystem Processes; Springer: Berlin/Heidelberg, Germany, 1996; pp. 1–27. [Google Scholar]
- Gillson, L. Evidence of Hierarchical Patch Dynamics in an East African Savanna? Landsc. Ecol. 2004, 19, 883–894. [Google Scholar] [CrossRef]
- Marchant, R. Understanding complexity in savannas: Climate, biodiversity and people. Curr. Opin. Environ. Sustain. 2010, 2, 101–108. [Google Scholar] [CrossRef]
- Sano, E.E.; Rosa, R.; Scaramuzza, C.A.M.; Adami, M.; Bolfe, E.L.; Coutinho, A.C.; Esquerdo, J.C.D.M.; Maurano, L.E.P.; da Narvaes, I.S.; de Oliveira Filho, F.J.B.; et al. Land use dynamics in the Brazilian Cerrado in the period from 2002 to 2013. Pesqui. Agropecuária Bras. 2019, 54. [Google Scholar] [CrossRef]
- Ribeiro, J.F.; Walter, B.M.T. Fitofisionomia do Bioma Cerrado. In Cerrado: Ambiente e Flora; Sano, S.M., Almeida, S.P., Eds.; Embrapa: Brasilia, Brazil, 1998; pp. 89–166. [Google Scholar]
- Mittermeier, R.A.; Turner, W.R.; Larsen, F.W.; Brooks, T.M.; Gascon, C. Global Biodiversity Conservation: The Critical Role of Hotspots. In Biodiversity Hotspots; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–22. [Google Scholar]
- Strassburg, B.B.N.; Brooks, T.; Feltran-Barbieri, R.; Iribarrem, A.; Crouzeilles, R.; Loyola, R.; Latawiec, A.E.; Oliveira Filho, F.J.B.; Scaramuzza, C.A.M.; Scarano, F.R.; et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 2017, 1, 99. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, M.; Nardoto, G.; Pinto, A.; Resende, J.; Takahashi, F.; Vieira, L. Potential impacts of climate change on biogeochemical functioning of Cerrado ecosystems. Braz. J. Biol. 2012, 72, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Chang. Biol. 2016, 22, 3405–3413. [Google Scholar] [CrossRef]
- INPE (Instituto Nacional de Pesquisas Espaciais). Programa de Monitoramento da Amazônia e Demais Biomas—Bioma Cerrado. Available online: http://terrabrasilis.dpi.inpe.br/downloads/ (accessed on 10 November 2018).
- Rocha, G.F.; Ferreira, L.G.; Ferreira, N.C.; Ferreira, M.E. Detecção de desmatamentos no bioma Cerrado entre 2002 e 2009: Padrões, tendências e impactos. Rev. Bras. Cart. 2011, 3, 341–349. [Google Scholar]
- Dias, L.C.P.; Macedo, M.N.; Costa, M.H.; Coe, M.T.; Neill, C. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. J. Hydrol. Reg. Stud. 2015, 4, 108–122. [Google Scholar] [CrossRef] [Green Version]
- Sano, E.E.; Rosa, R.; Brito, J.L.S.; Ferreira, L.G. Land cover mapping of the tropical savanna region in Brazil. Environ. Monit. Assess. 2010, 166, 113–124. [Google Scholar] [CrossRef]
- Glenn, E.; Huete, A.; Nagler, P.; Nelson, S. Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us about the Landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacon, A.D.; Galvão, L.S.; dos Santos, J.R.; Sano, E.E. Seasonal characterization and discrimination of savannah physiognomies in Brazil using hyperspectral metrics from Hyperion/EO-1. Int. J. Remote Sens. 2017, 38, 4494–4516. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Giglio, L. Remote Sensing of Global Savana Fire Occurrence, Extent, and Properties. In Ecosystem Function in Savannas: Measurement and Modeling at Landscape to Global Scales; Hill, M.J., Hanan, N.P., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 239–254. [Google Scholar]
- Gomes, L.; Miranda, H.S.; Silvério, D.V.; Bustamante, M.M.C. Effects and behaviour of experimental fires in grasslands, savannas, and forests of the Brazilian Cerrado. For. Ecol. Manage. 2020, 458, 117804. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Huete, A.R. Assessing the seasonal dynamics of the Brazilian Cerrado vegetation through the use of spectral vegetation indices. Int. J. Remote Sens. 2004, 25, 1837–1860. [Google Scholar] [CrossRef]
- Ratana, P.; Huete, A.R.; Ferreira, L. Analysis of Cerrado Physiognomies and Conversion in the MODIS Seasonal–Temporal Domain. Earth Interact. 2005, 9, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.E.; Ferreira, L.G.; Sano, E.E.; Shimabukuro, Y.E. Spectral linear mixture modelling approaches for land cover mapping of tropical savanna areas in Brazil. Int. J. Remote Sens. 2007, 28, 413–429. [Google Scholar] [CrossRef]
- Beuchle, R.; Grecchi, R.C.; Shimabukuro, Y.E.; Seliger, R.; Eva, H.D.; Sano, E.; Achard, F. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl. Geogr. 2015, 58, 116–127. [Google Scholar] [CrossRef]
- Schwieder, M.; Leitão, P.J.; da Cunha Bustamante, M.M.; Ferreira, L.G.; Rabe, A.; Hostert, P. Mapping Brazilian savanna vegetation gradients with Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 361–370. [Google Scholar] [CrossRef]
- Hill, M.J.; Zhou, Q.; Sun, Q.; Schaaf, C.B.; Palace, M. Relationships between vegetation indices, fractional cover retrievals and the structure and composition of Brazilian Cerrado natural vegetation. Int. J. Remote Sens. 2017, 38, 874–905. [Google Scholar] [CrossRef]
- Müller, H.; Rufin, P.; Griffiths, P.; Barros Siqueira, A.J.; Hostert, P. Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens. Environ. 2015, 156, 490–499. [Google Scholar] [CrossRef] [Green Version]
- Brazil, M. TerraClass: Mapeamento do Uso e Cobertura do Cerrado: Projeto TerraClass Cerrado 2013; Ministério do Meio Ambiente (MMA): Brasilia, Brazil, 2015.
- Fbds, F.B.; Para, D.S. Projeto de Mapeamento em Alta Resolução dos Biomas Brasileiros. Available online: http://geo.fbds.org.br/ (accessed on 1 November 2019).
- Ministério da Ciência, Tecnologia e Inovação. III Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa não Controlados pelo Protocolo de Montreal; MCTIC: Brasilia, Brazil, 2015.
- IBGE. Monitoramento da Cobertura e uso da Terra—2000, 2010, 2012, 2014, 2015—Em Grade Territorial Estatística; IBGE: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Parente, L.; Mesquita, V.; Miziara, F.; Baumann, L.; Ferreira, L. Assessing the pasturelands and livestock dynamics in Brazil, from 1985 to 2017: A novel approach based on high spatial resolution imagery and Google Earth Engine cloud computing. Remote Sens. Environ. 2019, 232, 111301. [Google Scholar] [CrossRef]
- IBGE. Biomas e Sistema Costeiro-Marinho do Brasil: Compatível com a Escala 1:250.000; IBGE: Rio de Janeiro, Brazil, 2019. [Google Scholar]
- Assad, E.D. Chuva nos Cerrados: Análise e Espacialização; Embrapa-CPAC: Brasilia, Brazil, 1994. [Google Scholar]
- Coutinho, L.M. O bioma do cerrado. In Eugen Warming e o Cerrado Brasileiro: Um Século Depois; UNESP: São Paulo, Brazil, 2002; pp. 77–91. [Google Scholar]
- Roitman, I.; Bustamante, M.M.C.; Haidar, R.F.; Shimbo, J.Z.; Abdala, G.C.; Eiten, G.; Fagg, C.W.; Felfili, M.C.; Felfili, J.M.; Jacobson, T.K.B.; et al. Optimizing biomass estimates of savanna woodland at different spatial scales in the Brazilian Cerrado: Re-evaluating allometric equations and environmental influences. PLoS ONE 2018, 13, e0196742. [Google Scholar] [CrossRef]
- Housman, I.; Chastain, R.; Finco, M. An Evaluation of Forest Health Insect and Disease Survey Data and Satellite-Based Remote Sensing Forest Change Detection Methods: Case Studies in the United States. Remote Sens. 2018, 10, 1184. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.M.; Roberts, D.A.; Cochrane, M.A. Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sens. Environ. 2005, 98, 329–343. [Google Scholar] [CrossRef]
- Diniz, C.; Cortinhas, L.; Nerino, G.; Rodrigues, J.; Sadeck, L.; Adami, M.; Souza-Filho, P. Brazilian Mangrove Status: Three Decades of Satellite Data Analysis. Remote Sens. 2019, 11, 808. [Google Scholar] [CrossRef] [Green Version]
- Swain, P.H.; Hauska, H. The decision tree classifier: Design and potential. IEEE Trans. Geosci. Electron. 1977, 15, 142–147. [Google Scholar] [CrossRef]
- Safavian, S.R.; Landgrebe, D. Separating and tracking multiple beacon sources for deep space optical communications. Free. Laser Commun. Technol. XXII 1991, 21, 660–674. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Parente, L.; Ferreira, L. Assessing the Spatial and Occupation Dynamics of the Brazilian Pasturelands Based on the Automated Classification of MODIS Images from 2000 to 2016. Remote Sens. 2018, 10, 606. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, S.H.M.; Parente, L.L.; Ferreira, L.G. Temporal Visual Inspection: Uma Ferramenta Destinada À Inspeção Visual De Pontos Em Séries Históricas De Imagens De Sensoriamento Remoto. In Proceedings of the Anais do XXVII Congresso Brasileiro de Cartografia e XXVI Exposicarta, Rio de Janeiro, Brazil, 6–9 November 2017; pp. 624–628. [Google Scholar]
- Stehman, S.V. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. Int. J. Remote Sens. 2014, 35, 4923–4939. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Macedo, M.N.; DeFries, R.S.; Morton, D.C.; Stickler, C.M.; Galford, G.L.; Shimabukuro, Y.E. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl. Acad. Sci. USA 2012, 109, 1341–1346. [Google Scholar] [CrossRef] [Green Version]
- Zalles, V.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Tyukavina, A.; Pickens, A.; Song, X.P.; Adusei, B.; Okpa, C.; Aguilar, R.; et al. Near doubling of Brazil’s intensive row crop area since 2000. Proc. Natl. Acad. Sci. USA 2019, 116, 428–435. [Google Scholar] [CrossRef] [Green Version]
- Azzari, G.; Lobell, D.B. Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring. Remote Sens. Environ. 2017, 202, 64–74. [Google Scholar] [CrossRef]
- Deines, J.M.; Kendall, A.D.; Crowley, M.A.; Rapp, J.; Cardille, J.A.; Hyndman, D.W. Mapping three decades of annual irrigation across the US High Plains Aquifer using Landsat and Google Earth Engine. Remote Sens. Environ. 2019, 233, 111400. [Google Scholar] [CrossRef]
- Grecchi, R.C.; Gwyn, Q.H.J.; Bénié, G.B.; Formaggio, A.R. Assessing the spatio-temporal rates and patterns of land-use and land-cover changes in the Cerrados of southeastern Mato Grosso, Brazil. Int. J. Remote Sens. 2013, 34, 5369–5392. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Urban, T.J.; Neuenschawander, A.; de Araújo, F.M. Use of Orbital LIDAR in the Brazilian Cerrado Biome: Potential Applications and Data Availability. Remote Sens. 2011, 3, 2187–2206. [Google Scholar] [CrossRef] [Green Version]
- Zimbres, B.; Shimbo, J.; Bustamante, M.; Levick, S.; Miranda, S.; Roitman, I.; Silvério, D.; Gomes, L.; Fagg, C.; Alencar, A. Savanna vegetation structure in the Brazilian Cerrado allows for the accurate estimation of aboveground biomass using terrestrial laser scanning. For. Ecol. Manage. 2020, 458, 117798. [Google Scholar] [CrossRef]
- Noojipady, P.; Morton, C.D.; Macedo, N.M.; Victoria, C.D.; Huang, C.; Gibbs, K.H.; Bolfe, L.E. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environ. Res. Lett. 2017, 12, 025004. [Google Scholar] [CrossRef]
- Garcia, A.S.; Ballester, M.V.R. Land cover and land use changes in a Brazilian Cerrado landscape: Drivers, processes, and patterns. J. Land Use Sci. 2016, 11, 538–559. [Google Scholar] [CrossRef]
Input Variable | Meaning/Formula | Period | Reference |
---|---|---|---|
Blue band | Band 1 (L5 and L7); Band 2 (L8) | Annual, median OP | [41] |
Green band | Band 2 (L5 and L7); Band 3 (L8) | Annual, median OP | [41] |
Red band | Band 3 (L5 and L7); Band 4 (L8) | Annual, median OP | [41] |
Near infrared (NIR) band | Band 4 (L5 and L7); Band 5 (L8) | Annual, median OP | [41] |
Shortwave infrared (SWIR-1) band | Band 5 (L5 and L7); Band 6 (L8) | Annual, median OP | [41] |
Shortwave infrared (SWIR-2) band | Band 7 (L5 and L7); Band 8 (L8) | Annual, median OP | [41] |
NPV (non-photosynthetic vegetation fraction) | Fraction of abundance of non-photosynthetic vegetation within the pixel | Annual, median OP | [40] |
GV (green vegetation fraction) | Fraction of abundance of green vegetation within the pixel | Annual, median OP | [40] |
Soil fraction | Fraction of abundance of soil within the pixel | Annual, median OP | [40] |
Shade fraction | Annual, median OP | [39] | |
GVS (green vegetation shade fraction) | Annual, median OP | [39] | |
NDVI (normalized difference vegetation index) | Annual, dry, and rainy | [42] | |
SAVI (soil-adjusted vegetation index) | Annual, dry, and rainy | [43] | |
NDWI (normalized difference water index) | Annual, dry, and rainy | [44] | |
EVI2 (enhanced vegetation index 2) | Annual, dry, and rainy | [45] | |
SEFI (savanna ecosystem fraction index) | Annual, dry, and rainy | This study | |
DifNDFI | Annual, dry, and rainy | [39] |
LULC Class | Initial SDT Classification 2000–2016 | Final SDT Classification 1985–2017 |
---|---|---|
Probability Threshold (Number of years) | Probability Threshold (Number of years) | |
Forest | 88% (15) | 100% (33) |
Savanna | 82% (14) | 100% (33) |
Grassland | 88% (15) | 100% (33) |
Agriculture/pasture | 71% (12) | 94% (31) |
Non-vegetated areas | 71% (12) | NA |
Water | 71% (12) | 100% (33) |
NV Type | NV (ha) | NV Net Loss (ha) | NV Net Loss (%) | Annual Net Loss Rate (ha yr−1) | Annual Net Loss Rate (%) | |
---|---|---|---|---|---|---|
1985 | 2017 | |||||
Forest | 49,265,967 | 37,908,046 | 11,357,921 | 23 | 344,179 | 0.7 |
Savanna | 63,810,140 | 52,456,330 | 11,353,810 | 18 | 344,055 | 0.5 |
Grasslands | 24,204,833 | 22,209,899 | 1,994,934 | 8 | 60,453 | 0.2 |
Total NV | 137,280,941 | 112,574,275 | 24,706,666 | 18 | 748,687 | 0.5 |
Consistency | Forest | Savanna | Grassland | |||
---|---|---|---|---|---|---|
Area (ha) | Percent (%) | Area (ha) | Percent (%) | Area (ha) | Percent (%) | |
Low | 24,371,387 | 34 | 31,295,167 | 36 | 21,230,505 | 48 |
Medium | 16,595,370 | 23 | 24,016,090 | 28 | 8,947,041 | 20 |
High | 30,357,159 | 43 | 30,689,708 | 36 | 14,146,397 | 32 |
Native Vegetation in 2017 | Area (ha) | Percentage (%) |
---|---|---|
Stable NV | 75,678,855 | 65 |
NV that changed among NV | 14,474,258 | 12 |
NV that had been previously converted (NV recovery) | 26,357,350 | 23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alencar, A.; Z. Shimbo, J.; Lenti, F.; Balzani Marques, C.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Fernandes Márcico Ribeiro, J.P.; Varela, V.; et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 2020, 12, 924. https://doi.org/10.3390/rs12060924
Alencar A, Z. Shimbo J, Lenti F, Balzani Marques C, Zimbres B, Rosa M, Arruda V, Castro I, Fernandes Márcico Ribeiro JP, Varela V, et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sensing. 2020; 12(6):924. https://doi.org/10.3390/rs12060924
Chicago/Turabian StyleAlencar, Ane, Julia Z. Shimbo, Felipe Lenti, Camila Balzani Marques, Bárbara Zimbres, Marcos Rosa, Vera Arruda, Isabel Castro, João Paulo Fernandes Márcico Ribeiro, Victória Varela, and et al. 2020. "Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform" Remote Sensing 12, no. 6: 924. https://doi.org/10.3390/rs12060924
APA StyleAlencar, A., Z. Shimbo, J., Lenti, F., Balzani Marques, C., Zimbres, B., Rosa, M., Arruda, V., Castro, I., Fernandes Márcico Ribeiro, J. P., Varela, V., Alencar, I., Piontekowski, V., Ribeiro, V., M. C. Bustamante, M., Eyji Sano, E., & Barroso, M. (2020). Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sensing, 12(6), 924. https://doi.org/10.3390/rs12060924