Quality Assessment and Practical Interpretation of the Wave Parameters Estimated by HF Radars in NW Spain
"> Figure 1
<p>Northwestern coast of Galicia (NW Spain) with seven mean direction wave roses and two wind roses obtained from different data sources. Sampling from January, 2014–April, 2015. <b>Wave roses: VB</b>: Vilano-Sisargas buoy. <b>VILA</b>: Vilán high-fequency (HF) radar—wave rose for range cell at 10 km (RC 10 km). <b>S24</b>: SIMAR point 3002024. <b>S20</b>: SIMAR point 3004020. <b>SB</b>: Silleiro buoy. <b>SILL</b>: Silleiro HF radar—wave rose for RC 10 km. <b>S02</b>: SIMAR point 3014002. <b>Red buoy symbol</b>: buoys location. <b>Red triangle</b>: SIMAR points location. <b>Blue squares</b>: radars location. <b>Continuous black circles</b>: radars range cells (until 25 km). <b>Continuous straight line</b>: radar coastline limits (CL). <b>Wind roses: CW</b>: Camariñas meteorological station (true data source location at red squared symbol). <b>VBW</b>: Vilano-Sisargas buoy.</p> "> Figure 2
<p>Spectral significant wave height (Hm0) time series: RC 10 km of Vilán radar (VILA, blue) and Vilano-Sisargas buoy (VB, red). Hm0 correlation index: 0.88.</p> "> Figure 3
<p>Comparison between time paired data of Vilán radar (VILA) and Vilano-Sisargas buoy (VB). (<b>a</b>) Percentage of VILA nulls at each combination of VB mean wave direction (Dm) and Hm0 (resolution 5°× 1 m). (<b>b</b>) Hm0 histograms of VB (black), VILA RC 5 km (blue), RC 10 km (red) and RC should says 30 km.</p> "> Figure 4
<p>Validation of wave parameters for ten Vilán radar (<b>VILA</b>) range cells (5–50 km) with Vilano-Sisargas buoy estimates: (<b>a</b>) Hm0 correlation index (R); (<b>b</b>) Hm0 mean absolute percent error (MAPE); (<b>c</b>) period R; (<b>d</b>) period MAPE; (<b>e</b>) Dm circular R; (<b>f</b>) Dm mean absolute error (MAE).</p> "> Figure 5
<p>Wave parameters scatter plots of Vilán radar (<b>VILA</b>) RC 10 km vs. Vilano-Sisargas buoy (<b>a</b>) Hm0 regression line; R = 0.88; slope = 0.96. (<b>b</b>) Regression line between VILA centroid period (Tc) and VB peak period (Tp); R = 0.78; slope = 0.73. (<b>c</b>) Dm scatter plot; Circ.R = 0.66</p> "> Figure 6
<p>Vilano-Sisargas buoy mean direction wave rose of data paired with only Vilán radar clean samples—no nulls. Arrow with bearing 330° is the threshold of NW and NNE wave regimes. Arrow 265° delimits SW and NW wave regimes.</p> "> Figure 7
<p>Two Vilano-Sisargas buoy (<b>VB</b>) power spectral density and directional frequency spectra. Mean wave direction (<b>Dm</b>) of VB and Vilán HF radar (<b>VILA</b>). (<b>a</b>) Sample 18:00 h. 13 November 2014. (<b>b</b>) Sample 17:00 h. 11 March 2014.</p> "> Figure 8
<p>Wave roses of the paired clean samples of Vilán radar (VILA) NNE2 wave regime and Vilano-Sisargas buoy (VB). (<b>a</b>) VILA NE2 wave regimen. (<b>b</b>) VB mean direction. (<b>c</b>) VB peak direction.</p> "> Figure 9
<p>Wave roses of paired clean samples of Vilán radar (VILA) NE6 wave regime and Vilano-Sisargas buoy (VB). (<b>a</b>) VILA NE6 wave regime. (<b>b</b>) VB mean direction. (<b>c</b>) VB peak direction.</p> "> Figure 10
<p>Wave roses of paired clean samples of Vilán radar (VILA) SW4 wave regime and Vilano-Sisargas buoy (VB). (<b>a</b>) VILA SW4 wave regime. (<b>b</b>) VB mean direction. (<b>c</b>) VB peak direction.</p> "> Figure 11
<p>Camariñas meteorological station (CW) wind roses: (<b>a</b>) CW samples paired with VILA SW wave regimes. (<b>b</b>) CW samples paired with VILA waves with Dm = 221°—saturation at VILA southern CL.</p> "> Figure 12
<p>Comparison between the validations of the wave parameters for the ten Vilán radar (VILA) range cells with Vilano-Sisargas buoy estimates, processed using 120 (blue circles) or 180 min (red squares) of cross spectra (CSS) files. (<b>a</b>) Hm0 correlation index (R); (<b>b</b>) Hm0 mean absolute percent error (MAPE); (<b>c</b>) period R; (<b>d</b>) period MAPE; (<b>e</b>) Dm circular R; (<b>f</b>) Dm mean absolute error (MAE).</p> "> Figure 13
<p>Comparison between the validations of the wave parameters of the 9 wave regimes (WRs) of VILA RC 10 km, processed using 120 (blue circles) and 180 min (red squares) of CSS files. (<b>a</b>) Hm0 correlation index (R); (<b>b</b>) Hm0 mean absolute percent error (MAPE); (<b>c</b>) period R; (<b>d</b>) period MAPE; (<b>e</b>) Dm circular R; (<b>f</b>) Dm mean absolute error (MAE).</p> "> Figure A1
<p>Percentage of Silleiro radar nulls at each combination of Dm and Hm0 (resolution 1°× 1 m), of the time paired data of Silleiro buoy (SB).</p> "> Figure A2
<p>Validation of wave parameters for ten Silleiro radar (SILL) range cells (5–50 km) with Vilano-Sisargas buoy estimates: (<b>a</b>) Hm0 correlation Index (R). (<b>b</b>) Hm0 mean absolute percent error (MAPE). (<b>c</b>) Period R. (<b>d</b>) Period MAPE. (<b>e</b>) Dm circular R. (<b>f</b>) Dm mean absolute error (MAE).</p> "> Figure A3
<p>Wave parameters scatter plots of Silleiro radar (SILL) RC 10 km vs. Silleiro buoy (VB). (<b>a</b>) Hm0 regression line; R = 0.82; Slope = 0.93. (<b>b</b>) Regression line between VILA centroid period (Tc) and VB peak period (Tp); R = 0.70; slope = 0.67. (<b>c</b>) Dm scatter plot; Circ.R = 0.5. <b>Red points:</b> samples related to waves >4 m and direction between 180–235° with very large MAPEs.</p> "> Figure A4
<p>Wave roses of paired clean samples of Vilán radar (VILA) wave regimes (<b>1–9</b>) and Vilano-Sisargas buoy (VB). (<b>a</b>) VILA wave regime. (<b>b</b>) VB mean direction wave rose. (<b>c</b>) VB peak direction wave rose.</p> "> Figure A5
<p>Hm0 mean absolute percentage error (MAPE) between Silleiro radar (SILL) and Silleiro buoy (SB) for each SILL wave regime defined by Hm0 and Dm (1 m × 5°).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
- Selection of sampling period to be introduced in the model fitting, which will determine the delayed time between the wave detection and the equation of the spectral wave parameters—Tc, Hm0 and Dm. The CSS files of Vilán radar were processed twice, using 180 and 120 min. Silleiro radar CSS files were processed over 180 min.
- The periodicity of the resulting wave parameters was fixed to thirty minutes.
- Definition of coastline limits (CL) of the coverage area, and the wave bearing limits (WB) according to the shoreline and the open sea surrounding the radar. In this case, due to the coastline facing open sea and the waves from land being considered negligible, CL and WB coincide. Hence, for Vilán radar these were fixed to 221° and 41° (all directions are defined as clockwise from the true north) and for Silleiro radar to 180° and 350°. On the other hand, to define the range, the number of range cells was fixed to ten. Since the first 5 km from the radar’s location are not included in the sampled area, the total radar range is 55 Km.
- Minimum and maximum wave period were fixed to 5 and 17 s, following CODAR recommendations [33].
3. Results and Discussion
3.1. Analysis of HF-Radar Data Loss
3.2. Wave Parameters Validation in Terms of Radar Range Cells
3.3. Wave Regime Description
3.4. Wave Parameters Validation in Terms of Wave Regimes
3.4.1. Buoy Wave Regimes
3.4.2. Radar Wave Regimes
3.5. Reduction of Data Processing Time
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Paduan, J.D.; Kim, K.C.; Cook, M.S.; Chavez, F.P. Calibration and validation of direction-finding high-frequency radar ocean surface current Observations. IEEE J. Ocean. Eng. 2006, 31, 862–875. [Google Scholar] [CrossRef]
- Wyatt, L.R.; Green, J.; Middleditch, A.; Moorhead, M.D.; Howarth, J.; Holt, M.; Keogh, S. Operational wave, current, and wind measurements with the Pisces HF radar. IEEE J. Ocean. Eng. 2006, 31, 819–834. [Google Scholar] [CrossRef]
- Cochin, V.; Mariette, V.; Garello, R. Sea surface current–wave–wind interactions measured by coastal ground wave HF radars. IEEE Geosci. Remote Sens. Lett. 2008, 5, 227–230. [Google Scholar] [CrossRef]
- Lipa, B.; Barrick, D.; Alonso-Martirena, A.; Fernandes, M.; Ferrer, M.I.; Nyden, B. The Brahan Project high frequency radar ocean measurements: Currents, winds, waves and their interactions. Remote Sens. 2014, 6, 12094–12117. [Google Scholar] [CrossRef] [Green Version]
- López, G.; Conley, D.; Greaves, D. Calibration, validation and analysis if an empirical algorithm for the retrieval of wave spectra from HF radar sea echo. J. Atmos. Ocean. Technol. 2016, 33, 245–261. [Google Scholar] [CrossRef]
- Crombie, D. Doppler spectrum of sea echo at 13.56 MHz. Nature 1955, 175, 681–682. [Google Scholar] [CrossRef]
- Hasselmann, K. Determination of ocean wave spectra from Doppler radio return from the sea surface. Nat. Phys. Sci. 1971, 229, 16–17. [Google Scholar] [CrossRef]
- Lipa, B.; Barrick, D. Wave Propagation Laboratory. Analysis methods for Narrow-Beam High-Frequency Radar Sea Echo. In NOAA Technical Report ERL 420-WP 56; U.S. Dept. of Commerce; National Oceanic and Atmospheric Administration; Environmental Research Laboratories: Boulder, CO, USA, 1982. [Google Scholar]
- Heron, M.L.; Dexter, P.E.; Mc Gann, B.T. Parameters of the air-sea interface by high-frequency ground wave Doppler radar. Mar. Freshwater Res. 1985, 36, 655–670. [Google Scholar] [CrossRef]
- Wyatt, L.R. Progress in the interpretation of HF sea echo: HF radar as a remote sensing tool. IEE Proc. 1990, 137, 139–147. [Google Scholar] [CrossRef]
- Chapman, R.D.; Graber, H.C. Validation of hf radar measurements. Oceanography 1997, 10, 76–79. [Google Scholar] [CrossRef] [Green Version]
- Gurgel, K.W.; Antonischki, G.; Essen, H.H.; Schlick, T. Wellen Radar (WERA): A new ground-wave HF radar for ocean remote sensing. Coast. Eng. 1999, 37, 219–234. [Google Scholar] [CrossRef]
- Lipa, B. Inversion of second—order radar echoes from the sea. J. Geophys. Res. 1978, 83-C2, 959–962. [Google Scholar] [CrossRef]
- Lipa, B.; Nyden, B. Directional wave information from the SeaSonde. IEEE J. Ocean. Eng. 2005, 30, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Forney, R.; Roarty, H.; Glenn, S. Measuring Waves with a Compact HF Radar. In Proceedings of the OCEANS 2015 - MTS/IEEE, Washington, DC, USA, 19–22 October 2016. [Google Scholar]
- CODAR. Ocean Sensors SeaSonde® Remote Unit System Specification. Versión 6, Revision 06/2017. Available online: http://www.codar.com/images/products/SeaSonde/1B-CODARspec_SSRS-100_v6-20170609.pdf (accessed on 20 January 2020).
- Wyatt, L.R. Limits to the inversion of HF Radar backscatter for ocean wave measurement. J. Atmos. Ocean. Technol. 1999, 17, 1651–1665. [Google Scholar] [CrossRef]
- Gurgel, K.W.; Essen, H.H.; Schlick, T. An empirical method to derive ocean waves from second-order bragg scattering: Prospects and limitations. IEEE J. Ocean. Eng. 2006, 31, 804–811. [Google Scholar] [CrossRef]
- Hisaki, Y. Quality control of surface wave data estimated from low signal-to-noise ratio HF radar Doppler-Spectra. J. Atmos. Ocean. Technol. 2009, 26, 2444–2461. [Google Scholar] [CrossRef]
- Barrick, D.; Lipa, B. When are HF-radar observed wave heights modulated by periodic tidal and inertial currents? In Proceedings of the IEEE/OES Eleveth Current, Waves and Turbulence Measurement (CWTM), St. Petersburg, FL, USA, 2–6 March 2015. [Google Scholar]
- Barrick, D.E. Extraction of wave parameters from measured HF radar sea-echo Doppler spectra. Radio Sci. 1977, 12, 415–424. [Google Scholar] [CrossRef]
- Lipa, B.; Barrick, D. Extraction of sea state from HF radar sea echo: Mathematical theory and modeling. Radio Sci. 1986, 21, 81–100. [Google Scholar] [CrossRef]
- Toffoli, A.; Onorato, M.; Monbaliu, J. Wave statistics in unimodal and bimodal seas from a second-order model. Eur. J. Mech. B/Fluids 2006, 25, 649–661. [Google Scholar] [CrossRef]
- Lipa, B.; Daugharty, M.; Fernandes, M.; Barrick, D.; Alonso-Martirena, A.; Roarty, H.; Dicopoulos, J.; Whelan, C. Developments in Compact HF radar Ocean Wave Measurements. In Physical Sensors, Sensor Networks and Remote Sensing. Book Series: Advances in Sensors: Reviews, Vol. 5; Yurish, S., Ed.; International Frequency Sensor Association Publishing (IFSA): Castelldefels, Barcelona, Spain, 2018; Chapter 20; pp. 469–495. [Google Scholar]
- Kohut, J.; Roarty, H.; Licthenwalner, S.; Glenn, S.; Barrick, D.; Lipa, B.; Allen, A. Surface Currents and Wave Validation of a Nested Regional HF radar Network in the Mid-Atlantic Bight. In Proceedings of the IEEE/OES/CMTC 9th Working Conference on Current Measurement Technology, Charleston, SC, USA, 17–19 March 2008. [Google Scholar]
- Long, R.; Barrick, D.; Largier, J.; Garfield, N. Wave observations from central California: SeaSonde Systems and in situ wave buoys. J. Sens. 2011, 2011, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Atan, R.; Goggins, J.; Hartnett, M.; Nash, S.; Agostinho, P. Assessment of Extreme Wave Height Events in Galway Bay Using High Frequency Radar (CODAR) Data. In Proceedings of the 1st International Conference on Renewable Energies Offshore (RENEW), Lisbon, Portugal, 24–26 November 2014. [Google Scholar]
- Falco, P.; Buonocore, B.; Cianelli, D.; De Luca, L.; Giordano, A.; Iermano, I.; Kalampokis, A.; Saviano, S.; Uttieri, M.; Zambardino, G.; et al. Dynamics and sea state in the Gulf of Naples: Potential use of high-frequency radar data in an operational oceanographic context. J. Operat. Oceanogr. 2016, 9 (Suppl. 1), 33–45. [Google Scholar] [CrossRef] [Green Version]
- CODAR. The Unique Nature of HF Radar. Available online: http://www.codar.com/intro_hf_radar.shtml (accessed on 20 January 2020).
- Lorente, P.; Basañez Mercader, A.; Piedracoba, S.; Pérez-Muñuzuri, V.; Montero, P.; Sotillo, M.G.; Álvarez-Fanjul, E. Long-term skill assessment of SeaSonde radar-derived wave parameters in the Galician coast (NW Spain). Int. J. Remote Sens. 2019, 10, 9208–9236. [Google Scholar] [CrossRef]
- Alfonso, M.; Álvarez-Fanjul, E.; López, J.D. Comparison of CODAR SeaSonde HF Radar Operational Waves and Currents Measurements with Puertos Del Estado Buoys; Final Report of Puertos del Estado; Puertos del Estado: Madrid, Spain, 2006. [Google Scholar]
- Copernicus Marine in Situ Team. Copernicus in Situ TAC, Real Time Quality Control for WAVES; Copernicus in Situ TAC: Toulouse, France, 2017; pp. 1–19. [Google Scholar]
- CODAR. Configuration File Formats. Available online: http://support.codar.com/ (accessed on 20 January 2020).
- Puertos del Estado. Conjunto de Datos REDEXT. Available online: http://calipso.puertos.es/BD/informes/INT_REDEXT.pdf (accessed on 20 January 2020).
- Puertos del Estado. Conjunto de Datos SIMAR. Available online: http://calipso.puertos.es/BD/informes/INT_8.pdf (accessed on 20 January 2020).
- Meteogalicia. Histórico de la Red Meteorológica. Available online: https://www.meteogalicia.gal/observacion/estacionshistorico/historico.action?idEst=10800 (accessed on 20 January 2020).
- Saviano, P.; Kalampokis, A.; Zambianchi, E.; Uttieri, M. A year-long assessment of wave measurements retrieved from an HF radar network in the Gulf of Naples (Tyrrhenian Sea, Western Mediterranean Sea). J. Operat. Oceanogr. 2019, 12, 1–15. [Google Scholar] [CrossRef]
- Teague, C.; Vesecky, J.; Fernandez, D. HF Radar instrumentes, past to present. Oceanography 1997, 10-2, 40–44. [Google Scholar]
- Forget, P. Noise properties of HF radar measurement of ocean surface currents. Radio Sci. 2015, 50, 764–777. [Google Scholar] [CrossRef]
- Lopez, G.; Conley, D. Comparison of HF Radar fields of directional wave spectra against in situ measurements at multiple locations. J. Mar. Sci. Eng. 2019, 7, 271. [Google Scholar] [CrossRef] [Green Version]
- Hardman, R.; Wyatt, L. Inversion of HF Radar Doppler spectra using a neural network. J. Mar. Sci. Eng. 2019, 7, 255. [Google Scholar] [CrossRef] [Green Version]
01/01/2014–30/04/15 | VILA Range Cells | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VB | 5 Km | 10 Km | 15 Km | 20 Km | 25 Km | 30 Km | 35 Km | 40 Km | 45 Km | 50 Km | |
Ideal 1 h/30’ samples | 11,640 | 23,279 | 23,279 | 23,279 | 23,279 | 23,279 | 23,279 | 23,279 | 23,279 | 23,279 | 23,279 |
Total samples | 10,580 | 21,826 | 21,826 | 21,826 | 21,826 | 21,826 | 21,826 | 21,826 | 21,826 | 21,826 | 21,826 |
% of gaps | 9.10% | 6.44% | 6.44% | 6.44% | 6.44% | 6.44% | 6.44% | 6.44% | 6.44% | 6.44% | 6.44% |
% of nulls | – | 61.13% | 52.99% | 52.25% | 53.83% | 55.79% | 60.33% | 62.87% | 66.37% | 68.84% | 72.04% |
Screened outliers | 25 | 99 | 55 | 67 | 93 | 64 | 90 | 106 | 131 | 86 | 67 |
Time paired raw samples | 9833 | 9833 | 9833 | 9833 | 9833 | 9833 | 9833 | 9833 | 9833 | 9833 | 9833 |
Time paired clean samples | – | 3449 | 4276 | 4345 | 4173 | 3976 | 3510 | 3245 | 2916 | 2685 | 2399 |
Wave Regime Name | Wave Regime Description Dm (°) & Hm0 (m) |
---|---|
NW2 | 265 ≤ Dm < 330 0 ≤ Hm0 < 2 |
NW4 | 265 ≤ Dm < 330 2 ≤ Hm0 < 6 |
NW6 | 265 ≤ Dm < 330 6 ≤ Hm0 |
NE2 | 330 ≤ Dm < 90 0 ≤ Hm0 < 2 |
NE4 | 330 ≤ Dm < 90 2 ≤ Hm0 < 6 |
NE6 | 330 ≤ Dm < 90 6≤ Hm0 |
SW2 | 180 ≤ Dm < 265 0 ≤ Hm0 < 2 |
SW4 | 180 ≤ Dm < 265 2≤ Hm0 <6 |
SW6 | 180 ≤ Dm < 265 6 ≤ Hm0 |
Data Period: Jan 2014 – May 2015 | Samples Count | Hm0 | Tc vs. Tp | Dm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WR Type Name | WR Description Dm (°) & Hm0 (m) | Time Paired Raw Samples | Time Paired Clean Samples | VILA Nulls (%) | R | MAPE (%) | Bias (m) | RMSE (m) | R | MAPE (%) | Bias (sec) | R | MAE (°) |
NW2 | 265 ≤ Dm < 330 0 ≤ Hm0 < 2 | 1536 | 315 | 79.49 | 0.48 | 18.59 | 0.09 | 0.39 | 0.53 | 10.25 | 0.33 | −0.05 | 20.59 |
NW4 | 265 ≤ Dm < 330 2 ≤ Hm0 < 6 | 4021 | 2468 | 38.62 | 0.79 | 15.68 | 0.19 | 0.80 | 0.66 | 9.37 | 0.26 | 0.33 | 19.32 |
NW6 | 265 ≤ Dm < 330 6 ≤ Hm0 | 359 | 352 | 1.95 | 0.67 | 10.56 | −0.17 | 1.02 | 0.63 | 7.11 | −0.62 | 0.71 | 19.37 |
NE2 | 330 ≤ Dm < 90 0 ≤ Hm0 < 2 | 1300 | 72 | 94.46 | 0.24 | 24.42 | 0.09 | 0.54 | 0.74 | 22.18 | 1.46 | 0.11 | 42.91 |
NE4 | 330 ≤ Dm < 90 2 ≤ Hm0 < 6 | 1622 | 807 | 50.25 | 0.76 | 23.02 | −0.54 | 0.89 | 0.69 | 12.55 | −0.04 | 0.41 | 47.46 |
NE6 | 330 ≤ Dm < 90 6≤ Hm0 | 3 | 2 | 33.33 | −1.00 | 4.06 | −0.15 | 0.30 | 0.00 | 4.55 | −0.25 | −1.00 | 24.85 |
SW2 | 180 ≤ Dm < 265 0 ≤ Hm0 < 2 | 402 | 14 | 96.52 | 0.63 | 22.38 | 0.14 | 0.41 | 0.80 | 19.57 | 1.49 | 0.65 | 27.68 |
SW4 | 180 ≤ Dm < 265 2≤ Hm0 <6 | 581 | 243 | 58.18 | 0.79 | 17.88 | −0.14 | 0.68 | 0.63 | 16.67 | 0.98 | 0.50 | 15.27 |
SW6 | 180 ≤ Dm < 265 6 ≤ Hm0 | 3 | 3 | 0.00 | 0.86 | 6.18 | −0.39 | 0.46 | 0.87 | 6.93 | 0.80 | 0.91 | 16.04 |
Total Data | ———– | 9827 | 4276 | 56.49 | 0.88 | 17.14 | 0.00 | 0.81 | 0.78 | 10.50 | 0.20 | 0.67 | 24.63 |
Data Period: Jan 2014–May 2015 | Samples Count | Hm0 | Tc vs. Tp | Dm | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
WR Type Name | WR Description Dm(°) & Hm0 (m) | Time Paired Clean Samples | R | MAPE (%) | Bias (m) | RMSE (m) | R | MAPE (%) | Bias (sec) | R | MAE (°) |
NW2 | 265 ≤ Dm < 330 0 ≤ Hm0 < 2 | 429 | 0.40 | 18.40 | −0.28 | 0.51 | 0.52 | 13.16 | 0.11 | 0.42 | 26.53 |
NW4 | 265 ≤ Dm < 330 2 ≤ Hm0 < 6 | 2409 | 0.82 | 14.30 | 0.05 | 0.65 | 0.71 | 9.27 | 0.23 | 0.55 | 20.32 |
NW6 | 265 ≤ Dm < 330 6 ≤ Hm0 | 369 | 0.73 | 15.56 | 0.41 | 1.19 | 0.54 | 7.73 | −0.24 | 0.49 | 15.14 |
NE2 | 330 ≤ Dm < 90 0 ≤ Hm0 < 2 | 178 | −0.01 | 38.53 | -0.96 | 1.12 | 0.36 | 12.23 | −0.40 | 0.04 | 45.52 |
NE4 | 330 ≤ Dm < 90 2 ≤ Hm0 < 6 | 310 | 0.54 | 21.63 | −0.20 | 0.92 | 0.68 | 12.15 | 0.13 | −0.14 | 35.18 |
NE6 | 330 ≤ Dm < 90 6≤ Hm0 | 29 | −0.17 | 88.61 | 3.12 | 3.54 | 0.72 | 13.25 | 1.29 | 0.35 | 50.71 |
SW2 | 180 ≤ Dm < 265 0 ≤ Hm0 < 2 | 60 | 0.44 | 21.56 | −0.27 | 0.55 | 0.49 | 15.10 | 0.83 | 0.42 | 42.16 |
SW4 | 180 ≤ Dm < 265 2≤ Hm0 <6 | 435 | 0.77 | 16.37 | −0.04 | 0.70 | 0.63 | 14.85 | 0.63 | 0.33 | 35.60 |
SW6 | 180 ≤ Dm < 265 6 ≤ Hm0 | 57 | 0.55 | 11.46 | 0.24 | 0.92 | 0.65 | 7.23 | −0.05 | 0.52 | 31.87 |
Total Data | ————– | 4276 | 0.88 | 17.14 | 0.00 | 0.81 | 0.78 | 10.50 | 0.2 | 0.67 | 24.63 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basañez, A.; Lorente, P.; Montero, P.; Álvarez-Fanjul, E.; Pérez-Muñuzuri, V. Quality Assessment and Practical Interpretation of the Wave Parameters Estimated by HF Radars in NW Spain. Remote Sens. 2020, 12, 598. https://doi.org/10.3390/rs12040598
Basañez A, Lorente P, Montero P, Álvarez-Fanjul E, Pérez-Muñuzuri V. Quality Assessment and Practical Interpretation of the Wave Parameters Estimated by HF Radars in NW Spain. Remote Sensing. 2020; 12(4):598. https://doi.org/10.3390/rs12040598
Chicago/Turabian StyleBasañez, Ana, Pablo Lorente, Pedro Montero, Enrique Álvarez-Fanjul, and Vicente Pérez-Muñuzuri. 2020. "Quality Assessment and Practical Interpretation of the Wave Parameters Estimated by HF Radars in NW Spain" Remote Sensing 12, no. 4: 598. https://doi.org/10.3390/rs12040598