Individual Tree Position Extraction and Structural Parameter Retrieval Based on Airborne LiDAR Data: Performance Evaluation and Comparison of Four Algorithms
"> Figure 1
<p>Location of the study area and investigated plots: (<b>a</b>,<b>b</b>) the study area of Dayekou forestry site in Gansu, China; (<b>c</b>) Digital Elevation Model (DEM) map; (<b>d</b>) distribution of LiDAR points and field data; (<b>e</b>) individual trees distribution in the field measurements, the numbers on this figure are the super plot numbers.</p> "> Figure 2
<p>The profile of ground point separation results (orange ones indicate the ground points, and white ones are the non-ground point.).</p> "> Figure 3
<p>The determination coefficient trend variance of correlation with the treetop and crown for different radius with cosine function.</p> "> Figure 4
<p>The error histogram of the four interpolation algorithms: (<b>a</b>) inverse distance weighted (IDW), (<b>b</b>) thin spline, (<b>c</b>) trend surface, and (<b>d</b>) Kriging algorithms (<span class="html-italic">X</span>-axis = the difference between the measured and interpolated elevation; <span class="html-italic">Y</span>-axis = frequency).</p> "> Figure 5
<p>The canopy height model (CHM) of the study area.</p> "> Figure 6
<p>The distribution of the individual trees extracted by five different algorithms: (<b>a</b>) Max_H, (<b>b</b>) Max_CHM, (<b>c</b>) watershed, (<b>d</b>) cosine-template-matching, and (<b>e</b>) cone-template-matching algorithms.</p> "> Figure 7
<p>The scatter plot of the measured and extracted tree heights by (<b>a</b>) Max_H, (<b>b</b>) Max_CHM, (<b>c</b>) watershed, (<b>d</b>) cosine-template-matching, and (<b>e</b>) cone-template-matching algorithms (<span class="html-italic">X</span>-axis is measured tree height; <span class="html-italic">Y</span>-axis is extracted tree height).</p> "> Figure 7 Cont.
<p>The scatter plot of the measured and extracted tree heights by (<b>a</b>) Max_H, (<b>b</b>) Max_CHM, (<b>c</b>) watershed, (<b>d</b>) cosine-template-matching, and (<b>e</b>) cone-template-matching algorithms (<span class="html-italic">X</span>-axis is measured tree height; <span class="html-italic">Y</span>-axis is extracted tree height).</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Its Preprocessing
3. Methodology
3.1. Ground Point Extraction
3.2. DEM Extraction Based on Interpolation Algorithms
3.3. Individual Tree Parameter Inversion Algorithm
4. Results
4.1. DEM
4.2. CHM
4.3. Individual Tree Position, Tree Height, and Crown Width
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hense, S.; Lucht, W.; Schmullius, C.; Barnsley, M.; Dubayah, R.; Knorr, D.; Neumann, K.; Riedel, T.; Schröter, K. Global biomass mapping for an improved understanding of the CO2 balance—The Earth observation mission Carbon-3D. Remote Sens. Environ. 2005, 94, 94–104. [Google Scholar]
- Chen, W.; Jiang, H.Z.; Moriya, K.; Sakai, T.; Cao, C.X. Monitoring of post-fire forest regeneration under different restoration treatments based on ALOS/PALSAR data. New Forest. 2018, 49, 105–121. [Google Scholar] [CrossRef]
- Bao, Y.F.; Cao, C.X.; Zhang, H.; Chen, E.X.; He, Q.S.; Huang, H.B.; Li, Z.; Li, X.; Gong, P. Synchronous estimation of DTM and fractional vegetation cover in forested area from airborne LiDAR height and intensity data. Sci. China Ser. E 2008, 51, 176–187. [Google Scholar] [CrossRef]
- Cao, C.X.; Bao, Y.F.; Xu, M.; Chen, W.; Zhang, H.; He, Q.S.; Li, Z.Y.; Guo, H.D.; Li, J.H.; Li, X.W.; et al. Retrieval of forest canopy attributes based on Geometric-Optical model using airborne LiDAR and optical remote sensing data. Int. J. Remote Sens. 2012, 33, 692–709. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, J.; Cao, C.X.; Tian, H.J. Shrub biomass estimation in semi-arid sandland ecosystem based on remote sensing technology. Glob. Ecol. Conserv. 2018, 16, e00479. [Google Scholar] [CrossRef]
- Huang, H.B. The Forest Structural Parameter Extraction using LiDAR. Ph.D. Thesis, Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing, China, 2008. [Google Scholar]
- Hollaus, M.; Wagner, W.; Eberhoefer, C.; Karel, W. Accuracy of large–scale canopy heights derived from LiDAR data under operational constraints in a complex alpine environment. ISPRS J. Photogramm. 2006, 60, 323–338. [Google Scholar] [CrossRef]
- Dong, L.X.; Tang, S.H.; Min, M.; Veroustraete, F.; Cheng, J. Aboveground forest biomass based on OLSR and an ANN model integrating LiDAR and optical data in a mountainous region of China. Int. J. Remote Sens. 2019, 40, 6059–6083. [Google Scholar] [CrossRef]
- Hopkinson, C.; Chasmer, L.; Hall, R.J. The uncertainty in conifer plantation growth prediction from multi-temporal lidar datasets. Remote Sens. Environ. 2008, 112, 1168–1180. [Google Scholar] [CrossRef]
- Cao, C.X.; Bao, Y.F.; Chen, W.; Dang, Y.F.; Li, L.; Tian, R.; Li, G.H. Extraction of forest structural parameters based on the intensity information of high-density airborne LiDAR. J Appl. Remote Sens. 2012, 6, 063533. [Google Scholar]
- Wu, X.; Shen, X.; Cao, L.; Wang, G.; Cao, F. Assessment of Individual Tree Detection and Canopy Cover Estimation using Unmanned Aerial Vehicle based Light Detection and Ranging (UAV-LiDAR) Data in Planted Forests. Remote Sens. 2019, 11, 908. [Google Scholar] [CrossRef] [Green Version]
- Holmgren, J.; Persson, Å. Identifying species of individual trees using airborne laser scanning. Remote Sens. Environ. 2004, 90, 415–423. [Google Scholar] [CrossRef]
- Chen, Q.; Baldocchi, D.; Gong, P. Isolating Individual Trees on Savanna woodland using small footprint LIDAR data. Photogramm. Eng. Rem. S. 2006, 72, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Kathuria, A.; Turner, R.; Stone, C.; Duque-Lazo, J.; West, R. Development of an automated individual tree detection model using point cloud LiDAR data for accurate tree counts in a Pinus radiata plantation. Aust. For. 2016, 79, 126–136. [Google Scholar] [CrossRef]
- Yin, D.M.; Wang, L. Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges. Remote Sens. Environ. 2019, 223, 34–49. [Google Scholar] [CrossRef]
- Suarez, J.C.; Ontiveros, C.; Smith, S.; Snape, S. Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry. Comput. Geosci.-UK 2005, 31, 253–262. [Google Scholar] [CrossRef]
- Andersen, H.E.; Reutebuch, S.E.; McGaughey, R.J. A rigorous assessment of tree height measurements obtained using airborne LiDAR and conventional field methods. Can. J. Remote Sens. 2006, 32, 355–366. [Google Scholar] [CrossRef]
- Bao, Y.F. Study on Methods of forest Parameters Extraction from Multi-Source Remote Sensing Data. Ph.D. Thesis, Institute of Remote Sensing Applications of Chinese Academy Sciences, Beijing, China, 2009. [Google Scholar]
- Liu, Q.W. Study on the Estimation Method of Forest Parameters Using Airborne LIDAR. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2009. [Google Scholar]
- Burt, A.; Disney, M.; Calders, K. Extracting individual trees from lidar point clouds using treeseg. Methods Ecol. Evol. 2019, 10, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can. J. Remote Sens. 2003, 29, 564–577. [Google Scholar] [CrossRef]
- Takahashi, T.; Yamamoto, K.; Senda, Y.; Tsuzuku, M. Estimating individual tree heights of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. J. Forest Res.-JPN 2005, 10, 135–142. [Google Scholar] [CrossRef]
- Kwak, D.A.; Lee, W.K.; Lee, J.H.; Biging, G.S.; Gong, P. Detection of individual trees and estimation of tree height using LiDAR data. J. For. Res.-JPN 2007, 12, 425–434. [Google Scholar] [CrossRef]
- Goodwin, N.R.; Coops, N.C.; Culvenor, D.S. Assessment of forest structure with airborne LiDAR and the effects of platform altitude. Remote Sens. Environ. 2006, 103, 140–152. [Google Scholar] [CrossRef]
- Dalponte, M.; Frizzera, L.; Gianelle, D. Individual tree crown delineation and tree species classification with hyperspectral and LiDAR data. Peerj 2019, 6, e6227. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A New Method for Segmenting Individual Trees from the Lidar Point Cloud. Photogramm. Eng. Remote Sens. 2012, 78, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.J.; Liu, R.F.; Cheng, L. A Concave Hull Methodology for Calculating the Crown Volume of Individual Trees Based on Vehicle-Borne LiDAR Data. Remote Sens. 2019, 11, 623. [Google Scholar] [CrossRef] [Green Version]
- Morsdorf, F.; Koetz, B.; Meier, E.; Itten, K.I.; Allgöwer, B. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens. Environ. 2006, 104, 50–61. [Google Scholar] [CrossRef]
- Lee, H.; Slatton, K.C.; Roth, B.E.; Cropper, W.P. Adaptive clustering of airborne LiDAR data to segment individual tree crowns in managed pine forests. Int. J. Remote Sens. 2010, 31, 117–139. [Google Scholar] [CrossRef]
- Edson, C.; Wing, M.G. Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass Measurements. Remote Sens. 2011, 3, 2494–2528. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.J.; Eo, Y.D.; Kim, Y.M.; Kim, Y. Identification of individual tree crowns from LiDAR data using a circle fitting algorithm with local maxima and minima filtering. Remote Sens. Lett. 2013, 4, 29–37. [Google Scholar] [CrossRef]
- Tang, S.J.; Dong, P.L.; Buckles, B.P. Three-dimensional surface reconstruction of tree canopy from lidar point clouds using a region-based level set method. Int. J. Remote Sens. 2013, 34, 1373–1385. [Google Scholar] [CrossRef]
- Dai, W.X.; Yang, B.S.; Dong, Z.; Shaker, A. A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds. ISPRS J. Photogramm. 2018, 144, 400–411. [Google Scholar] [CrossRef]
- Brandtberg, T.; Warner, T.A.; Landenberger, R.E.; McGraw, J.B. Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sens. Environ. 2003, 85, 290–303. [Google Scholar] [CrossRef]
- Swinfield, T.; Lindsell, J.A.; Williams, J.V.; Harrison, R.D.; Agustiono; Habibi; Gemita, E.; Schönlieb, C.B.; Coomes, D.A. Accurate Measurement of Tropical Forest Canopy Heights and Aboveground Carbon Using Structure From Motion. Remote Sens. 2019, 11, 928. [Google Scholar] [CrossRef] [Green Version]
Parameters | Data |
---|---|
Max. Measurement range | 1800 m |
Laser wavelength | 1550 nm |
Max. pulse repetition frequency | 200 kHz |
Multiple target separation within single shot | 0.6 m |
Measurement accuracy | 20 mm |
Return pulse width resolution | 0.15 m |
Scan speed | 10–160 scans/s |
Scan angle accuracy | 0.001° |
Laser beam divergence | ≤0.5 m rad |
Plot No. | Number of Trees | Average Tree Height (m) | Average Crown Width (m) | Average DBH (cm) | Average Height Under Branches (m) |
---|---|---|---|---|---|
1 | 98 | 8 | 3.02 | 12.15 | 2.86 |
2 | 113 | 9.47 | 3.26 | 13.12 | 4.47 |
3 | 77 | 11.49 | 3.14 | 16.25 | 5.02 |
4 | 80 | 11.62 | 3.21 | 15.69 | 5.24 |
5 | 69 | 10 | 3.67 | 16.13 | 3.95 |
6 | 90 | 9.51 | 2.97 | 14.04 | 4.25 |
7 | 120 | 9.56 | 3.07 | 13.95 | 4.39 |
8 | 153 | 6.42 | 2.59 | 9.69 | 2.69 |
9 | 86 | 9.34 | 3.17 | 14.52 | 3.34 |
10 | 99 | 8.21 | 3.12 | 11.96 | 2.76 |
11 | 110 | 8.22 | 3.27 | 13.47 | 2.99 |
12 | 92 | 10.6 | 3.48 | 15.25 | 4.79 |
13 | 61 | 10.73 | 3.97 | 17.38 | 3.6 |
14 | 93 | 9.81 | 3.39 | 14.55 | 3.82 |
15 | 76 | 7.85 | 3.64 | 12.93 | 2.15 |
16 | 36 | 10.8 | 4.21 | 19.62 | 2.62 |
Total | 1453 | - | - | - | - |
Parameter Type | Parameter Name | Setting |
---|---|---|
Common parameters | Input point features | Input file, las.shp |
Z value field | Shape.Z | |
Output raster | Output file | |
Output cell size | 0.5 | |
IDW algorithm | Power | 2 |
Trend algorithm | Polynomial order | 2 |
Type of regression | linear | |
Spline algorithm | Weight | 0.1 |
Spline type | tension | |
Kriging algorithm | Kriging method | Universal |
Semivariogram model | Linear with linear drift |
Statistical Data | IDW | Spline | Trend | Kriging |
---|---|---|---|---|
Average | 0.17 | 0.14 | 17.30 | 0.16 |
Mean Standard Error | 0.00651 | 0.00588 | 0.09114 | 0.00595 |
Standard Deviation | 0.25037 | 0.22592 | 3.50260 | 0.22858 |
Variance | 0.063 | 0.051 | 12.268 | 0.052 |
Skewness | 1.409 | 1.953 | −5.509 | 1.962 |
Kurtosis | 15.232 | 22.294 | 46.086 | 24.610 |
Range | 3.70 | 3.40 | 47.20 | 3.50 |
Minimum | −1.40 | −1.20 | −25.40 | −1.20 |
Maximum | 2.30 | 2.20 | 21.80 | 2.30 |
Plot No. | Number of Trees | Max_H | Max_CHM | Watershed | Cosine Template Matching | Cone Template Matching |
---|---|---|---|---|---|---|
1 | 98 | 47 | 20 | 24 | 18 | 18 |
2 | 113 | 63 | 24 | 27 | 25 | 26 |
3 | 77 | 49 | 25 | 30 | 29 | 29 |
4 | 80 | 45 | 24 | 24 | 22 | 20 |
5 | 69 | 36 | 18 | 20 | 20 | 17 |
6 | 90 | 43 | 19 | 19 | 21 | 17 |
7 | 120 | 58 | 25 | 28 | 28 | 22 |
8 | 153 | 80 | 24 | 27 | 20 | 19 |
9 | 86 | 44 | 20 | 23 | 21 | 21 |
10 | 99 | 44 | 20 | 23 | 21 | 15 |
11 | 110 | 45 | 17 | 19 | 21 | 17 |
12 | 92 | 51 | 24 | 26 | 28 | 20 |
13 | 61 | 38 | 21 | 23 | 36 | 24 |
14 | 93 | 47 | 20 | 25 | 23 | 23 |
15 | 76 | 41 | 13 | 16 | 19 | 16 |
16 | 36 | 27 | 15 | 18 | 18 | 26 |
Plot No. | Number of Trees | Measured Tree Height (m) | Extracted Tree Height (m) | Measured Crown Width (m) | Extracted Crown Width (m) |
---|---|---|---|---|---|
1 | 24 | 13.35 | 13.98 | 4.45 | 5.47 |
2 | 27 | 14.45 | 13.98 | 4.50 | 5.32 |
3 | 30 | 15.66 | 14.90 | 4.46 | 4.96 |
4 | 24 | 15.40 | 15.38 | 4.20 | 5.13 |
5 | 20 | 15.65 | 15.54 | 5.09 | 5.93 |
6 | 19 | 15.12 | 15.24 | 4.36 | 5.42 |
7 | 28 | 13.73 | 13.70 | 4.16 | 5.48 |
8 | 27 | 10.05 | 9.92 | 3.37 | 5.09 |
9 | 23 | 14.32 | 13.63 | 4.39 | 6.33 |
10 | 23 | 13.64 | 12.99 | 4.22 | 5.45 |
11 | 19 | 15.61 | 15.56 | 5.38 | 6.43 |
12 | 26 | 16.13 | 16.30 | 4.56 | 5.17 |
13 | 23 | 17.12 | 17.43 | 5.59 | 5.87 |
14 | 25 | 15.79 | 15.39 | 4.60 | 5.56 |
15 | 16 | 14.99 | 15.56 | 5.46 | 6.73 |
16 | 18 | 15.69 | 14.53 | 5.19 | 6.49 |
Average Error | 0.39 | 1.05 | |||
RMSE | 0.51 | 1.13 |
Plot No. | Number of Trees | Measured Tree Height (m) | Extracted Tree Height (m) | Measured Crown Width (m) | Extracted Crown Width (m) |
---|---|---|---|---|---|
1 | 18 | 11.66 | 8.57 | 4.26 | 4.50 |
2 | 25 | 12.59 | 8.87 | 4.42 | 3.30 |
3 | 29 | 13.4 | 10.33 | 4.57 | 4.02 |
4 | 22 | 13.49 | 10.22 | 4.01 | 4.05 |
5 | 20 | 13.54 | 11.08 | 4.51 | 5.00 |
6 | 21 | 10.8 | 9.48 | 3.60 | 4.88 |
7 | 28 | 13.36 | 9.83 | 4.22 | 4.29 |
8 | 20 | 7.38 | 5.40 | 2.82 | 3.50 |
9 | 21 | 13.13 | 8.01 | 4.48 | 4.31 |
10 | 21 | 11.49 | 9.37 | 3.78 | 4.93 |
11 | 21 | 13.22 | 8.99 | 4.74 | 4.50 |
12 | 28 | 13.13 | 10.12 | 3.97 | 3.54 |
13 | 36 | 14.88 | 12.66 | 4.94 | 4.86 |
14 | 23 | 14.64 | 10.88 | 4.32 | 5.15 |
15 | 19 | 12 | 8.71 | 4.66 | 4.82 |
16 | 18 | 14.02 | 9.64 | 4.69 | 4.94 |
Average Error | 3.16 | 0.48 | |||
RMSE | 3.30 | 0.63 |
Plot No. | Number of Trees | Measured Tree Height (m) | Extracted Tree Height (m) | Measured Crown Width (m) | Extracted Crown Width (m) |
---|---|---|---|---|---|
1 | 18 | 12.2 | 8.6 | 4.5 | 5.1 |
2 | 26 | 12.4 | 8.5 | 4.4 | 4.5 |
3 | 29 | 13.5 | 9.7 | 4.5 | 4.5 |
4 | 20 | 12.9 | 9.7 | 3.8 | 4.6 |
5 | 17 | 12.7 | 11.2 | 4.2 | 4.9 |
6 | 17 | 11.2 | 9.3 | 3.8 | 4.8 |
7 | 22 | 13.0 | 9.4 | 4.1 | 5.0 |
8 | 19 | 7.7 | 5.2 | 2.9 | 3.8 |
9 | 21 | 13.7 | 8.3 | 4.5 | 5.0 |
10 | 15 | 11.3 | 9.6 | 3.8 | 4.6 |
11 | 17 | 12.4 | 9.0 | 4.5 | 5.0 |
12 | 20 | 13.6 | 10.4 | 4.1 | 4.2 |
13 | 24 | 15.6 | 12.6 | 5.0 | 4.7 |
14 | 23 | 15.0 | 10.8 | 4.4 | 5.7 |
15 | 16 | 11.5 | 8.7 | 4.5 | 4.5 |
16 | 26 | 13.4 | 9.6 | 4.8 | 5.3 |
Average Error | 3.22 | 0.56 | |||
RMSE | 3.36 | 0.67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Xiang, H.; Moriya, K. Individual Tree Position Extraction and Structural Parameter Retrieval Based on Airborne LiDAR Data: Performance Evaluation and Comparison of Four Algorithms. Remote Sens. 2020, 12, 571. https://doi.org/10.3390/rs12030571
Chen W, Xiang H, Moriya K. Individual Tree Position Extraction and Structural Parameter Retrieval Based on Airborne LiDAR Data: Performance Evaluation and Comparison of Four Algorithms. Remote Sensing. 2020; 12(3):571. https://doi.org/10.3390/rs12030571
Chicago/Turabian StyleChen, Wei, Haibing Xiang, and Kazuyuki Moriya. 2020. "Individual Tree Position Extraction and Structural Parameter Retrieval Based on Airborne LiDAR Data: Performance Evaluation and Comparison of Four Algorithms" Remote Sensing 12, no. 3: 571. https://doi.org/10.3390/rs12030571
APA StyleChen, W., Xiang, H., & Moriya, K. (2020). Individual Tree Position Extraction and Structural Parameter Retrieval Based on Airborne LiDAR Data: Performance Evaluation and Comparison of Four Algorithms. Remote Sensing, 12(3), 571. https://doi.org/10.3390/rs12030571