Radar Satellite Image Time Series Analysis for High-Resolution Mapping of Man-Made Forest Change in Chongming Eco-Island
"> Figure 1
<p>This figure shows Chongming eco-island and all three strictly protected forest-based eco-tourism areas that were chosen for quantifying forest change in the island. The detailed locations used for quantitative research are labeled with red polygons, namely Dongtan National Wetland Park, Xisha National Wetland Park, and Dongping National Forest Park.</p> "> Figure 2
<p>Metasequoias planted in wetland and forest park in Chongming island.</p> "> Figure 3
<p>Radar principal backscattering responses in forests [<a href="#B43-remotesensing-12-03438" class="html-bibr">43</a>]: (1) Scattering from trunk to ground (T2G) and from ground to trunk (G2T); (2) scattering from canopy to ground (C2G) and from ground to canopy (G2C); (3) canopy volume scattering (C2C); (4) direct scattering from ground (G2G); and (5) direct scattering from tree trunks (T2T).</p> "> Figure 4
<p>Temporal variations of rainfall rate and vegetation index for Chongming island in the period of 2015–2019. Here, enhanced vegetation index (EVI) is used for the vegetation cover data derived from Landsat 8. The precipitation data are sourced from Tropical Rainfall Measuring Mission (TRMM) 3B43 rainfall products [<a href="#B45-remotesensing-12-03438" class="html-bibr">45</a>,<a href="#B46-remotesensing-12-03438" class="html-bibr">46</a>].</p> "> Figure 5
<p>This figure shows the definition of the threshold in the distribution of a ratio image for detecting forest change.</p> "> Figure 6
<p>Flowchart of the forest change mapping steps applied to Sentinel-1 synthetic aperture radar (SAR) data.The data pre-processing step had been conducted by Google. The other steps were performed in the Google Earth Engine (GEE) platform. Reproducible code information for this work has been provided in the Supplementary Materials.</p> "> Figure 7
<p>VH multi-temporal surface reflectance composites for Chongming island. RGB:2015/2016/ 2017 denotes the combinations of VH image bands from 2015 to 2017. Specifically, 2015, 2016, and 2017 represent the channels of R, G, and B, respectively.</p> "> Figure 8
<p>This figure shows radar vegetation index retrieved by Sentinel-1 SAR data for indicating the forest growth level of Chongming island from 2015 to 2019.</p> "> Figure 8 Cont.
<p>This figure shows radar vegetation index retrieved by Sentinel-1 SAR data for indicating the forest growth level of Chongming island from 2015 to 2019.</p> "> Figure 9
<p>This figure shows the distribution of the radar vegetation index (RVI) on the different study sites with statistical parameters. These sites are well known and strictly protected forest areas. The different distributions in the same study region indicate forest area change.</p> "> Figure 10
<p>This figure shows the distributions of the ratio images with statistical parameters using VH band from 2015 to 2019. As the time series SAR images are in logarithmic scale, subtraction was performed for image rationing, producing negative or positive mean <math display="inline"><semantics> <mi>μ</mi> </semantics></math>. A positive mean value can used to indicate an increase in forest area, and vice versa. 2015∼2016 denotes that the image rationing are performed on the two images collected from 2015 and 2016, respectively.</p> "> Figure 11
<p>This figure shows the area of the forest change over three strictly portered forest regions from 2015 to 2019. The three famous forest parks are highlighted with polygonal white edges. Regions in the green mask indicate the increase of forest area. Regions in the red mask indicate the decrease of forest area.</p> "> Figure 12
<p>One of the subjective evaluations of the credibility of the fine forest change methods proposed in this paper. Optical images collected by Sentinel 2 have the same spatial resolution with SAR data.</p> "> Figure 13
<p>Linear regression lines with red color between radar vegetation index calculated from SAR and the vegetation index (reference) data in 2019. The spaces between the two green lines are the 95% prediction interval.</p> "> Figure 14
<p>Available VV and VH data from 2015 to 2019 for Chongming island.</p> "> Figure 15
<p>Comparisons of ratio image.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Dataset
2.3. Forest Change Detection Using Sentinel-1 SAR Data
2.4. Data Processing Using GEE
2.5. Cross-Comparison between Radar Vegetation Index and Optical Vegetation Index
3. Results
3.1. Yearly Radar Vegetation Index Distribution
3.2. Yearly Forest Change Cover
3.3. Cross-Comparison of Radar Vegetation Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RGB | Red Green Blue |
SAR | Synthetic Aperture Radar |
RVI | Radar Vegetation Index |
EVI | Enhanced Vegetation Index |
NDVI | Normalized Difference Vegetation Index |
GEE | Google Earth Engine |
References
- Yau, K.K.Y.; Loke, A.Y. Effects of forest bathing on pre-hypertensive and hypertensive adults: A review of the literature. Environ. Health Prev. Med. 2020, 25, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mansour, S.; Al-Awhadi, T.; Al-Hatrushi, S. Geospatial based multi-criteria analysis for ecotourism land suitability using GIS & AHP: A case study of Masirah Island, Oman. J. Ecotourism 2020, 19, 148–167. [Google Scholar]
- Ceccherini, G.; Duveiller, G.; Grassi, G.; Lemoine, G.; Avitabile, V.; Pilli, R.; Cescatti, A. Abrupt increase in harvested forest area over Europe after 2015. Nature 2020, 583, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.C.C.; Sheppard, E. China’s eco-cities as variegated urban sustainability: Dongtan eco-city and Chongming eco-island. J. Urban Technol. 2013, 20, 57–75. [Google Scholar] [CrossRef]
- Government of Chongming District. Chongming Eco-Island Construction Outline (2010–2020)—Overall Strategy for Chongming Eco-Island Construction. 2010. Available online: http://www.shcm.gov.cn/cmmh_web/html/eng_cmzf/Eng_cmzf_cmzf_fzjh/2010-12-21/Detail_1454578.htm (accessed on 30 July 2020).
- Government of Chongming District. Chongming Eco-Island Construction Outline (2010–2020): Actions of Chongming Eco-Island Construction. 2010. Available online: http://www.shcm.gov.cn/cmmh_web/html/eng_cmzf/Eng_cmzf_cmzf_fzjh/2010-12-21/Detail_1454580.htm (accessed on 30 July 2020).
- Government of Chongming District. Master Plan and General Land-Use Plan of Chonging District, Shanghai, 2017–2035. 2017. Available online: http://www.shcm.gov.cn/cmmh_web/HTML/shcm/SHCM_ZJCM_PLANN/List/mobile/index.html (accessed on 30 July 2020).
- Carle, J.; Holmgren, P. Definitions related to planted forests. In Proceedings of the UNFF Intercessional Expert Meeting on the Role of Planted Forests in Sustainable Forest Management, Wellington, New Zealand, 25–27 March 2003; pp. 329–343. [Google Scholar]
- Caporale, F.; Mateo-Martín, J.; Usman, M.F.; Smith-Hall, C. Plant-Based Sustainable Development—The Expansion and Anatomy of the Medicinal Plant Secondary Processing Sector in Nepal. Sustainability 2020, 12, 5575. [Google Scholar] [CrossRef]
- Marogel-Popa, T.; Marcu, M.V.; Borz, S.A. Postural Risk in Manual Planting Operations of Poplar: Two Options Compared. Sustainability 2020, 12, 5531. [Google Scholar] [CrossRef]
- Ghosh, S.; Ali, S.; Bandopadhyaya, P. Sustainable biodiversity in natural V/s man-made forest of West Bengal: An assessment. Excell. Int. J. Educ. Res. 2014, 2, 759–768. [Google Scholar]
- Sheng, R.; Lin, T. Evolutionary Assessment of the Ecological Governance under the Metropolitan Background: Evidence from Chongming Eco-Island, Shanghai, China. Sustainability 2019, 11, 5327. [Google Scholar] [CrossRef] [Green Version]
- Katzir, R. Chongming Island ecological conservation project. J. Geogr. Reg. Plan. 2008, 1, 001–003. [Google Scholar]
- Ma, X.; De Jong, M.; Den Hartog, H. Assessing the implementation of the Chongming Eco Island policy: What a broad planning evaluation framework tells more than technocratic indicator systems. J. Clean. Prod. 2018, 172, 872–886. [Google Scholar] [CrossRef]
- Wu, S.; Chen, R.; Meadows, M.E. Evolution of an Estuarine Island in the Anthropocene: Complex Dynamics of Chongming Island, Shanghai, PR China. Sustainability 2019, 11, 6921. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Ma, X.; de Jong, M.; Bao, X. Assessment on Island Ecological Vulnerability to Urbanization: A Tale of Chongming Island, China. Sustainability 2019, 11, 2536. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, Y.; Zhang, L.; Kuang, R. Shoreline change of Chongming Dongtan and response to river sediment load: A remote sensing assessment. J. Hydrol. 2014, 511, 432–442. [Google Scholar] [CrossRef]
- Shen, G.; Ibrahim, A.N.; Wang, Z.; Ma, C.; Gong, J. Spatial–temporal land-use/land-cover dynamics and their impacts on surface temperature in Chongming Island of Shanghai, China. Int. J. Remote Sens. 2015, 36, 4037–4053. [Google Scholar] [CrossRef]
- He, Y.; Wang, P.; Sheng, H.; Wang, D.; Huang, M.; Cao, C. Sustainability of riparian zones for non-point source pollution control in Chongming Island: Status, challenges, and perspectives. J. Clean. Prod. 2020, 244, 118804. [Google Scholar] [CrossRef]
- Xue, R.; Wang, S.; Li, D.; Zou, Z.; Chan, K.L.; Valks, P.; Saiz-Lopez, A.; Zhou, B. Spatio-temporal variations in NO2 and SO2 over Shanghai and Chongming Eco-Island measured by Ozone Monitoring Instrument (OMI) during 2008–2017. J. Clean. Prod. 2020, 258, 120563. [Google Scholar] [CrossRef]
- Wagner, F.H.; Dalagnol, R.; Tagle Casapia, X.; Streher, A.S.; Phillips, O.L.; Gloor, E.; Aragão, L.E. Regional mapping and spatial distribution analysis of canopy palms in an amazon forest using deep learning and VHR images. Remote Sens. 2020, 12, 2225. [Google Scholar] [CrossRef]
- Sanchez, A.H.; Picoli, M.C.A.; Camara, G.; Andrade, P.R.; Chaves, M.E.D.; Lechler, S.; Soares, A.R.; Marujo, R.F.; Simões, R.E.O.; Ferreira, K.R.; et al. Comparison of Cloud Cover Detection Algorithms on Sentinel–2 Images of the Amazon Tropical Forest. Remote Sens. 2020, 12, 1284. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.; Ibrahim Abdoul, N.; Zhu, Y.; Wang, Z.; Gong, J. Remote sensing of urban growth and landscape pattern changes in response to the expansion of Chongming Island in Shanghai, China. Geocarto Int. 2017, 32, 488–502. [Google Scholar] [CrossRef]
- Podest, E.; McDonald, K.C.; Kimball, J.S. Multisensor microwave sensitivity to freeze/thaw dynamics across a complex boreal landscape. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6818–6828. [Google Scholar] [CrossRef]
- Avtar, R.; Suzuki, R.; Sawada, H. Natural forest biomass estimation based on plantation information using PALSAR data. PLoS ONE 2014, 9, e86121. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Podest, E.; Jensen, K.; McDonald, K.C. Classifying inundation in a tropical wetlands complex with GNSS-R. Remote Sens. 2019, 11, 1053. [Google Scholar] [CrossRef] [Green Version]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Hansen, J.N.; Mitchard, E.T.; King, S. Assessing Forest/Non-Forest Separability Using Sentinel-1 C-Band Synthetic Aperture Radar. Remote Sens. 2020, 12, 1899. [Google Scholar] [CrossRef]
- Gulácsi, A.; Kovács, F. Sentinel-1-Imagery-Based High-Resolution Water Cover Detection on Wetlands, Aided by Google Earth Engine. Remote Sens. 2020, 12, 1614. [Google Scholar] [CrossRef]
- Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for crop mapping: A case study for Belgium. Remote Sens. 2018, 10, 1642. [Google Scholar] [CrossRef] [Green Version]
- Agapiou, A. Estimating Proportion of Vegetation Cover at the Vicinity of Archaeological Sites Using Sentinel-1 and-2 Data, Supplemented by Crowdsourced OpenStreetMap Geodata. Appl. Sci. 2020, 10, 4764. [Google Scholar] [CrossRef]
- Heckel, K.; Urban, M.; Schratz, P.; Mahecha, M.D.; Schmullius, C. Predicting Forest Cover in Distinct Ecosystems: The Potential of Multi-Source Sentinel-1 and-2 Data Fusion. Remote Sens. 2020, 12, 302. [Google Scholar] [CrossRef] [Green Version]
- Hirschmugl, M.; Deutscher, J.; Sobe, C.; Bouvet, A.; Mermoz, S.; Schardt, M. Use of SAR and Optical Time Series for Tropical Forest Disturbance Mapping. Remote Sens. 2020, 12, 727. [Google Scholar] [CrossRef] [Green Version]
- Niculescu, S.; Boissonnat, J.B.; Lardeux, C.; Roberts, D.; Hanganu, J.; Billey, A.; Constantinescu, A.; Doroftei, M. Synergy of High-Resolution Radar and Optical Images Satellite for Identification and Mapping of Wetland Macrophytes on the Danube Delta. Remote Sens. 2020, 12, 2188. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Homayouni, S.; Gill, E. The first wetland inventory map of newfoundland at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform. Remote Sens. 2019, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- LaRocque, A.; Phiri, C.; Leblon, B.; Pirotti, F.; Connor, K.; Hanson, A. Wetland Mapping with Landsat 8 OLI, Sentinel-1, ALOS-1 PALSAR, and LiDAR Data in Southern New Brunswick, Canada. Remote Sens. 2020, 12, 2095. [Google Scholar] [CrossRef]
- Musthafa, M.; Khati, U.; Singh, G. Sensitivity of PolSAR decomposition to forest disturbance and regrowth dynamics in a managed forest. Adv. Space Res. 2020, 66, 1863–1875. [Google Scholar] [CrossRef]
- Akhtar, A.M.; Qazi, W.A.; Ahmad, S.R.; Gilani, H.; Mahmood, S.A.; Rasool, A. Integration of high-resolution optical and SAR satellite remote sensing datasets for aboveground biomass estimation in subtropical pine forest, Pakistan. Environ. Monit. Assess. 2020, 192, 1–17. [Google Scholar] [CrossRef]
- Chongming Statistical Bureau. Chongming Statistical Yearbook 2018. 2019. Available online: https://www.yearbookchina.com/navibooklist-n3020020216-1.html (accessed on 30 July 2020).
- Chongming Statistical Bureau. Chongming Statistical Yearbook 2015. 2016. Available online: https://www.yearbookchina.com/navibooklist-n3018111127-1.html (accessed on 30 July 2020).
- Chongming Statistical Bureau. Chongming Statistical Yearbook 2016. 2017. Available online: https://www.yearbookchina.com/navibooklist-n3018111126-1.html (accessed on 30 July 2020).
- Chongming Statistical Bureau. Chongming Statistical Yearbook 2017. 2018. Available online: https://www.yearbookchina.com/navibooklist-n3018111125-1.html (accessed on 30 July 2020).
- Ulaby, F.; Long, D. Microwave Radar and Radiometric Remote Sensing; Artech House: Boston, MA, USA, 2015. [Google Scholar]
- Kim, Y.; van Zyl, J.J. A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2519–2527. [Google Scholar]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.H. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. (ATBD) Version 2015, 4, 26. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Google. Google Earth Engine Sentinel-1 Algorithms. Available online: https://developers.google.com/earth-engine/sentinel1 (accessed on 30 July 2020).
- Cruz, A.F.; Almeida, G.M.d.; Wadt, P.G.S.; Pires, M.d.C.; Ramos, M.L.G. Seasonal Variation of Plant Mineral Nutrition in Fruit Trees. Braz. Arch. Biol. Technol. 2019, 62, e19180340. [Google Scholar] [CrossRef]
- Xu, Z.; Li, H.C.; Shi, Q.; Wang, H.; Wei, M.; Shi, J.; Shao, Y. Effect Analysis and Spectral Weighting Optimization of Sidelobe Reduction on SAR Image Understanding. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3434–3444. [Google Scholar] [CrossRef]
- Canty, M.J.; Nielsen, A.A.; Skriver, H.; Conradsen, K. Wishart-based adaptive temporal filtering of polarimetric SAR imagery. Remote Sens. 2020, 12, 2454. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, Q.; Chen, Y.; Feng, W.; Shao, Y.; Sun, L.; Huang, X. Non-stationary speckle reduction in high resolution SAR images. Digit. Signal Process. 2018, 73, 72–82. [Google Scholar] [CrossRef]
- Lee, J.S.; Wen, J.H.; Ainsworth, T.L.; Chen, K.S.; Chen, A.J. Improved sigma filter for speckle filtering of SAR imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 202–213. [Google Scholar]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Shanghai Forestry Bureau. 2016–2018 Shanghai Ecological Corridor Construction Project Implementation Management Measures; Shanghai Landscaping and City Appearance Administrative Bureau: Shanghai, China, 2016. Available online: http://lhsr.sh.gov.cn/lh1/20200616/08d3a777e6bf4d4898ac4b8b397ae902.html (accessed on 30 July 2020).
- Shanghai Municipal Agricultural Rural Committee. Chongming Plans to Add 70,000 Acres of Forest Land within Five Years to Create an Ecological Corridor of “One Town, One Tree” So That the People Can Share the Achievements of Ecological Island Construction; Shanghai Municipal Agricultural Rural Committee: Shanghai, China, 2016; Available online: http://obridge.eastday.com/shjs/node5/node34/u1ai100034.html (accessed on 30 July 2020).
- Molijn, R.A.; Iannini, L.; López Dekker, P.; Magalhães, P.S.; Hanssen, R.F. Vegetation characterization through the use of precipitation-affected SAR signals. Remote Sens. 2018, 10, 1647. [Google Scholar] [CrossRef] [Green Version]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Kapur, J.N.; Sahoo, P.K.; Wong, A.K. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 1985, 29, 273–285. [Google Scholar] [CrossRef]
- Kittler, J.; Illingworth, J. On threshold selection using clustering criteria. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 652–655. [Google Scholar] [CrossRef]
Year | ||||
---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | |
Area afforested (ha) | 490 | 1382 | 1278 | 2712 |
Number of trees planted | 156,000 | 170,200 | 158,600 | 816,900 |
Bamboo forest area (ha) | 953 | 893 | 824 | 885 |
Year | Image Acquisition | ||
---|---|---|---|
Sentinel 1 | Sentinel 2 | Landsat 8 | |
2015 | 8 July, 1 August. | 8 August. | 26 June, 4 July, 12 July, 20 July, 28 July, 5 August, 13 August. |
2016 | 26 July, 19 August. | 23 June, 30 June, 3 July, 10 July, 13 July, 20 July, 23 July, 30 July, 2 August, 9 August, 12 August, 19 August. | 25 June, 3 July, 11 July, 19 July, 27 July, 4 August, 12 August. |
2017 | 27 June, 9 July, 21 July, 2 August, 14 August. | 25 June, 28 June, 30 June, 3 July, 5 July, 10 July, 13 July,18 July, 20 July, 23 July, 25 July, 28 July, 30 July, 2 August,4 August, 7 August, 9 August, 12 August, 14 August, 17 August. | 26 June, 7 July, 12 July, 20 July, 28 July, 5 August, 13 August. |
2018 | 22 June, 4 July, 16 July, 28 July, 9 August. | 23 June, 25 June, 28 June, 30 June, 3 July, 5 July, 10 July, 13 July, 18 July, 20 July, 23 July, 25 July, 28 July, 30 July, 2 August, 4 August, 7 August, 9 August, 12 August, 14 August, 17 August, 19 August. | 26 June, 4 July, 12 July, 20 July, 28 July, 5 August, 13 August. |
2019 | 23 June, 29 June, 5 July, 11 July, 17 July, 23 July, 29 July, 4 August, 10 August, 16 August. | 23 June, 25 June, 28 June, 30 June, 3 July, 5 July, 10 July, 13 July, 18 July, 20 July, 23 July, 25 July, 28 July, 30 July, 2 August, 4 August, 7 August, 9 August, 12 August, 14 August, 17 August, 19 August. | 26 June, 4 July, 12 July, 20 July, 28 July, 5 August, 13 August. |
Code | Corresponding Results |
---|---|
1. ChongmingIslandS2Landsat8 | Table 2; Figure 12. |
2. ChongmingIslandRainfallandEVI | Figure 4. |
3. ChongmingIslandRVI | Table 2; Figure 7, Figure 8 and Figure 9. |
4. ChongmingIslandForestChange | Table 4 and Table 5; Figure 10, Figure 11, Figure 12 and Figure 13 and Figure 15. |
Year | Dongping National Forest Park | Dongtan National Wetland Park | Xisha National Wetland Park |
---|---|---|---|
2015–2016 | +1.68 ha | +0.58 ha | +3.43 ha |
2016–2017 | +3.13 ha | +1.06 ha | +5.54 ha |
2017–2018 | −2.59 ha | −1.35 ha | +4.95 ha |
2018–2019 | +2.57 ha | +0.48 ha | +6.27 ha |
Year | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|
Landsat 8 EVI | 0.2925 | 0.2966 | 0.3223 | 0.3989 | 0.4414 |
Landsat 8 NDVI | 0.3178 | 0.1778 | 0.3720 | 0.4422 | 0.5049 |
Sentinel-2 NDVI | NULL | 0.2032 | 0.3215 | 0.5216 | 0.5694 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Wang, Y. Radar Satellite Image Time Series Analysis for High-Resolution Mapping of Man-Made Forest Change in Chongming Eco-Island. Remote Sens. 2020, 12, 3438. https://doi.org/10.3390/rs12203438
Xu Z, Wang Y. Radar Satellite Image Time Series Analysis for High-Resolution Mapping of Man-Made Forest Change in Chongming Eco-Island. Remote Sensing. 2020; 12(20):3438. https://doi.org/10.3390/rs12203438
Chicago/Turabian StyleXu, Zhihuo, and Yuexia Wang. 2020. "Radar Satellite Image Time Series Analysis for High-Resolution Mapping of Man-Made Forest Change in Chongming Eco-Island" Remote Sensing 12, no. 20: 3438. https://doi.org/10.3390/rs12203438
APA StyleXu, Z., & Wang, Y. (2020). Radar Satellite Image Time Series Analysis for High-Resolution Mapping of Man-Made Forest Change in Chongming Eco-Island. Remote Sensing, 12(20), 3438. https://doi.org/10.3390/rs12203438