Novel Combined Spectral Indices Derived from Hyperspectral and Laser-Induced Fluorescence LiDAR Spectra for Leaf Nitrogen Contents Estimation of Rice
<p>LiDAR systems used for reflectance and fluorescence spectra measurement.</p> "> Figure 2
<p>Spectra of <span class="html-italic">S<sub>r</sub></span> and <span class="html-italic">S<sub>f</sub></span> collected with (<b>a</b>) Hyperspectral LiDAR and (<b>b</b>) laser-induced fluorescence LiDAR system under different rice LNCs. Stripes on <span class="html-italic">S<sub>r</sub></span> and <span class="html-italic">S<sub>f</sub></span> curves represent prior band distribution ranked based on the FW and GSI values, which will be discussed in the Results section.</p> "> Figure 3
<p>Overview of the analysis methods in this study.</p> "> Figure 4
<p>Performance of <span class="html-italic">PRI</span> in LNC estimation, the <span class="html-italic">R</span><sup>2</sup> and RMSE are the mean values of 2014- and 2015-year data.</p> "> Figure 5
<p>Estimation results of LNC using ANN with different training functions in 2015. Subgraph (<b>a</b>) shows the predicted versus measured LNC with FW-based <span class="html-italic">NCI<sub>H-F</sub></span> in four prior bands; (<b>b</b>) is that using GSIs. Histograms show the corresponding <span class="html-italic">R</span><sup>2</sup> and RMSE values for 2014-B, 2014-H and 2015-T respectively.</p> ">
Abstract
:1. Introduction
2. Experimental Materials and Data Measurements
2.1. Samples Preparation
2.2. LiDAR Systems and Data Measurement
3. Methods
3.1. Overview of the Analysis Method
3.2. Two Methods for NCIH-F Factor Calculation
3.2.1. Feature Weights for Each Spectral Band
3.2.2. Global Sensitivity Indices for Each Spectral Band
3.3. Artificial Neural Networks for LNC Estimation
4. Results
4.1. LNC Estimation Using FW-Based NCIH-F
4.2. LNC Estimation Using GSI-Based NCIH-F
4.3. NCIH-F in Ranked Bands for LNC Estimation
5. Discussion
5.1. Comparison with Previously Published Methods
5.2. Prior Bands Selection
5.3. Limitation and Future Research
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clevers, J.G.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Kergoat, L.; Lafont, S.; Arneth, A.; Le Dantec, V.; Saugier, B. Nitrogen controls plant canopy light-use efficiency in temperate and boreal ecosystems. J. Geophys. Res. Biogeosci. 2008, 113, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ikawa, H.; Chen, C.P.; Sikma, M.; Yoshimoto, M.; Sakai, H.; Tokida, T.; Usui, Y.; Nakamura, H.; Ono, K.; Maruyama, A.; et al. Increasing canopy photosynthesis in rice can be achieved without a large increase in water use-A model based on free-air CO2 enrichment. Glob. Chang. Biol. 2018, 24, 1321–1341. [Google Scholar] [CrossRef] [PubMed]
- Dechant, B.; Cuntz, M.; Vohland, M.; Schulz, E.; Doktor, D. Estimation of photosynthesis traits from leaf reflectance spectra: Correlation to nitrogen content as the dominant mechanism. Remote Sens. Environ. 2017, 196, 279–292. [Google Scholar] [CrossRef]
- Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 2012, 33, 219–241. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electr. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Delegido, J.; Pasqualotto, N.; van Wittenberghe, S.; Verrelst, J.; Rivera, J.P.; Moreno, J. Retrieval of canopy water content of different crop types with two new hyperspectral indices: Water Absorption Area Index and Depth Water Index. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 69–78. [Google Scholar]
- Wang, C.; Nie, S.; Xi, X.; Luo, S.; Sun, X. Estimating the biomass of maize with hyperspectral and LiDAR data. Remote Sens. 2016, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Yi, Q.X.; Huang, J.F.; Wang, F.M.; Wang, X.Z.; Zhan, Y. Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network. Environ. Sci. Tech. 2007, 41, 6770–6775. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Schull, M.A.; Stenberg, P.; Mõttus, M.; Rautiainen, M.; Yang, Y.; Marshak, A.; Carmona, P.L.; Kaufmann, R.K.; Lewis, P.; et al. Hyperspectral remote sensing of foliar nitrogen content. Proc. Natl. Acad. Sci. USA 2013, 110, E185–E192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; Oxford University Press: Oxford, UK, 2010; p. 134. [Google Scholar]
- Li, F.; Mistele, B.; Hu, Y.; Chen, X.; Schmidhalter, U. Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. Eur. J. Agron. 2014, 52, 198–209. [Google Scholar] [CrossRef]
- Johnson, L.F. Nitrogen influence on fresh-leaf NIR spectra. Remote Sens. Environ. 2001, 78, 314–320. [Google Scholar] [CrossRef]
- Curran, P.J.; Dungan, J.L.; Peterson, D.L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies. Remote Sens. Environ. 2001, 76, 349–359. [Google Scholar] [CrossRef]
- Portz, G.; Molin, J.; Jasper, J. Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields. Precis. Agric. 2012, 13, 33–44. [Google Scholar] [CrossRef]
- Gong, P.; Pu, R.; Heald, R. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. Int. J. Remote Sens. 2002, 23, 1827–1850. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Hennig, S.D.; Gnyp, M.L.; Chen, X.; Jia, L.; Bareth, G. Eevaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis. Agric. 2010, 11, 335–357. [Google Scholar] [CrossRef]
- Pengfei, C.; Jihua, W.; Wenjiang, H.; Baoguo, L. Research of new vegetation index for estimating crop canopy biomass. Spectrosc. Spectr. Anal. 2010, 2, 512–517. [Google Scholar]
- Tian, Y.C.; Gu, K.J.; Chu, X.; Yao, X.; Cao, W.X.; Zhu, Y. Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice. Plant Soil 2014, 376, 193–209. [Google Scholar] [CrossRef]
- Du, L.; Wei, G.; Shuo, S.; Jian, Y.; Jia, S.; Bo, Z.; Shalei, S. Estimation of rice leaf nitrogen contents based on hyperspectral LIDAR. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 136–143. [Google Scholar] [CrossRef]
- Liu, L.; Guan, L.; Liu, X. Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence. Agric. For. Meteorol. 2017, 232, 1–9. [Google Scholar] [CrossRef]
- Grace, J.; Nichol, C.; Disney, M.; Lewis, P.; Quaife, T.; Bowyer, P. Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? Glob. Chang. Biol. 2010, 13, 1484–1497. [Google Scholar] [CrossRef]
- Živčák, M.; Olšovská, K.; Slamka, P.; Galambošová, J.; Rataj, V.; Shao, H.; Brestič, M. Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. Plant Soil Environ. 2014, 60, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Apostol, S.; Viau, A.A.; Tremblay, N. A comparison of multiwavelength laser-induced fluorescence parameters for the remote sensing of nitrogen stress in field-cultivated corn. Can. J. Remote Sens. 2007, 33, 150–161. [Google Scholar] [CrossRef]
- Janušauskaite, D.; Feiziene, D. Chlorophyll fluorescence characteristics throughout spring triticale development stages as affected by fertilization. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2012, 62, 7–15. [Google Scholar]
- Günther, K.; Dahn, H.-G.; Lüdeker, W. Remote sensing vegetation status by laser-induced fluorescence. Remote Sens. Environ. 1994, 47, 10–17. [Google Scholar] [CrossRef]
- Subhash, N.; Mohanan, C. Laser-induced red chlorophyll fluorescence signatures as nutrient stress indicator in rice plants. Remote Sens. Environ. 1994, 47, 45–50. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, P.; Zhao, J.; Yu, Z. Effect of nitrogen application rate on flag leaf chlorophyll fluorescence characteristics and yield in wheat under integration of water and fertilizer. J. Triticeae Crop. 2018, 38, 988–994. [Google Scholar]
- Yang, Y.; Wang, X.; Li, C.; Zhao, B.; Bai, R. Detection of pepper leaves nitrogen contents in greenhouse based on chlorophyll fluorescence image. J. Hunan Agric. Univ. (Nat. Sci.) 2017, 43, 108–111. [Google Scholar]
- Yang, J.; Shi, S.; Gong, W.; Du, L.; Ma, Y.Y.; Zhu, B.; Song, S.L. Application of fluorescence spectrum to precisely inverse paddy rice nitrogen content. Plant Soil Environ. 2015, 61, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Jasper, J.; Reusch, S.; Link, A. Active sensing of the N status of wheat using optimized wavelength combination: Impact of seed rate, variety and growth stage, in Precision Agriculture’09: Papers. In Proceedings of the the 7th European Conference on Precision Agriculture, Wageningen, The Netherlands, 6–8 July 2009; Volume 2009, p. 923. [Google Scholar]
- Chen, P.; Haboudane, D.; Tremblay, N.; Wang, J.; Vigneault, P.; Li, B. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens. Environ. 2010, 114, 1987–1997. [Google Scholar] [CrossRef]
- Chappelle, E.W.; Wood, F.M.; McMurtrey, J.E.; Newcomb, W.W. Laser-induced fluorescence of green plants. 1: A technique for the remote detection of plant stress and species differentiation. Appl. Opt. 1984, 23, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Zarco-Tejada, P.J.; Miller, J.R.; Mohammed, G.H.; Noland, T.L. Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf-level measurements and model simulation. Remote Sens. Environ. 2000, 74, 582–595. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Mohammed, G.H.; Noland, T.L.; Sampson, P.H. Chlorophyll fluorescence effects on vegetation apparent reflectance: II. Laboratory and airborne canopy-level measurements with hyperspectral data. Remote Sens. Environ. 2000, 74, 596–608. [Google Scholar] [CrossRef]
- Du, S.S.L.; Jian, Y.; Jia, S.; Wei, G. Using different regression methods to estimate leaf nitrogen content in rice by fusing hyperspectral LiDAR data and laser-induced chlorophyll fluorescence data. Remote Sens. 2016, 8, 526. [Google Scholar] [CrossRef] [Green Version]
- Jian, Y.; Du, L.; Jia, S.; Zhengbing, Z.; Biwu, C.; Shi, S.; Wei, G.; Shalei, S. Estimating the leaf nitrogen content of paddy rice by using the combined reflectance and laser-induced fluorescence spectra. Opt. Express 2016, 24, 19354–19365. [Google Scholar]
- Weersink, R.; Patterson, M.S.; Diamond, K.; Silver, S.; Padgett, N. Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique. Appl. Opt. 2001, 40, 6389–6395. [Google Scholar] [CrossRef]
- Du, S.S.L.; Jian, Y.; Wei, W.; Jia, S.; Biwu, C.; Wei, G. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents. Opt. Express 2017, 25, 6539–6549. [Google Scholar] [CrossRef]
- Huang, R.; He, M. Band selection based on feature weighting for classification of hyperspectral data. IEEE Geosci. Remote Sens. Lett. 2005, 2, 156–159. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Mather, P.M. The role of feature selection in artificial neural network applications. Int. J. Remote Sens. 2002, 23, 2919–2937. [Google Scholar] [CrossRef]
- Serpico, S.B.; Bruzzone, L. A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1360–1367. [Google Scholar] [CrossRef]
- Cannavó, F. Sensitivity analysis for volcanic source modeling quality assessment and model selection. Comput. Geosci. 2012, 44, 52–59. [Google Scholar] [CrossRef]
- Li, P.; Wang, Q. Retrieval of leaf biochemical parameters using PROSPECT inversion: A new approach for alleviating ill-posed problems. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2499–2506. [Google Scholar]
- Stocker, T.; Qin, D.; Plattner, G.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, B.; Midgley, B. IPCC, 2013: Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Ceolato, R.; Riviere, N.; Hespel, L. Reflectances from a supercontinuum laser-based instrument: Hyperspectral, polarimetric and angular measurements. Opt. Express 2012, 20, 29413–29425. [Google Scholar] [CrossRef]
- Nevalainen, O.; Hakala, T.; Suomalainen, J.; Mäkipää, R.; Mikko, P.; Anssi, K.; Sanna, K. Fast and nondestructive method for leaf level chlorophyll estimation using hyperspectral LiDAR. Agric. For. Meteorol. 2014, 198, 250–258. [Google Scholar] [CrossRef]
- Jian, Y.; Wei, G.; Shi, S.; Du, L.; Sun, J.; Zhu, B.; Yingying, M.; Shalei, S. Vegetation identification based on characteristics of fluorescence spectral spatial distribution. RSC Adv. 2015, 5, 56932–56935. [Google Scholar]
- Wutzke, K.; Heine, W. A century of Kjeldahl’s nitrogen determination. Z. Fur Med. Lab. 1984, 26, 383–388. [Google Scholar]
- Paul-Limoges, E.; Damm, A.; Hueni, A.; Liebisch, F.; Eugster, W.; Schaepman, M.E.; Buchmann, N. Effect of environmental conditions on sun-induced fluorescence in a mixed forest and a cropland. Remote Sens. Environ. 2018, 219, 310–323. [Google Scholar]
- Yegnanarayana, B. Artificial Neural Networks; PHI Learning Pvt. Ltd.: Delhi, India, 2009. [Google Scholar]
- Lichtenthaler, H.K.; Rinderle, U. The role of chlorophyll fluorescence in the detection of stress conditions in plants. Crit. Rev. Anal. Chem. 1988, 19, S29–S85. [Google Scholar] [CrossRef]
- Wang, Z.; Skidmore, A.K.; Wang, T.; Darvishzadeh, R.; Hearne, J. Applicability of the PROSPECT model for estimating protein and cellulose + lignin in fresh leaves. Remote Sens. Environ. 2015, 168, 205–218. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Pedrós, R.; Verhoef, W.; Berger, M. FluorMODgui: A graphic user interface for the spectral simulation of leaf and canopy fluorescence effects. In Proceedings of the 2nd International Workshop on Remote Sensing of Vegetation Fluorescence, Montreal, QC, Canada, 17–19 November 2004. [Google Scholar]
- Van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 3109–3129. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; van der Tol, C. Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance. Remote Sens. Environ. 2018, 209, 456–467. [Google Scholar] [CrossRef]
- Vilfan, N.; van der Tol, C.; Muller, O.; Rascher, U.; Verhoef, W. Fluspect-B: A model for leaf fluorescence, reflectance and transmittance spectra. Remote Sens. Environ. 2016, 186, 596–615. [Google Scholar] [CrossRef]
- Celesti, M.; van der Tol, C.; Cogliati, S.; Cinzia, P.; Yang, P.; Francisco, P.; Uwe, R.; Franco, M.; Roberto, C.; Micol, R. Exploring the physiological information of Sun-induced chlorophyll fluorescence through radiative transfer model inversion. Remote Sens. Environ. 2018, 215, 97–108. [Google Scholar] [CrossRef]
- Vilfan, N.; Van der Tol, C.; Yang, P.; Wyber, R.; Malenovský, Z.; Robinson, S.A.; Verhoef, W. Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics. Remote Sens. Environ. 2018, 211, 345–356. [Google Scholar] [CrossRef]
- Muhammed, S.E.; Coleman, K.; Wu, L.; Bell, V.A.; Davies, J.A.; Quinton, J.N.; Carnell, E.J.; Tomlinson, S.J.; Dore, A.J.; Dragosits, U.; et al. Impact of two centuries of intensive agriculture on soil carbon, nitrogen and phosphorus cycling in the UK. Sci. Total Environ. 2018, 634, 1486–1504. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 modis land-surface temperature/emissivity.product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Wang, M.M.; Guojin, H.; Zhaoming, Z.; Guizhou, W.; Zhengjia, Z.; Xiaojie, C.; Zhijie, W.; Xiuguo, L. Comparison of spatial interpolation and regression analysis models for an estimation of monthly near surface air temperature in China. Remote Sens. 2017, 9, 1278. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Zhengjia, Z.; Chao, W.; Hong, Z.; Yixian, T.; Xiuguo, L. Analysis of permafrost region coherence variation in the Qinghai–Tibet Plateau with a high-resolution TerraSAR-X image. Remote Sens. 2018, 10, 298. [Google Scholar] [CrossRef] [Green Version]
- Genxu, W.; Guangsheng, L.; Chunjie, L.; Yang, Y. The variability of soil thermal and hydrological dynamics with vegetation cover in a permafrost region. Agric. For. Meteorol. 2012, 162, 44–57. [Google Scholar] [CrossRef]
NCIH-F | 2014-B | 201402-H | 2015-T | Spectral Variables | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |||
NCIH-F 0_W | 0.74 c | 0.28 | 0.70 c | 0.45 | * | * | ||
NCIH-F 1_W | 0.72 a | 0.15 | 0.72 c | 0.32 | 0.61 d | 0.28 | ||
NCIH-F 2_W | 0.51 b | 0.18 | 0.62 c | 0.30 | 0.79 c | 0.23 | H685 | F685 |
PRIfraction_W | 0.57 c | 0.32 | 0.74 c | 0.23 | 0.70 c | 0.13 | / | F740 |
NCIH-F | 2014-B | 201402-H | 2015-T | Spectral Variables | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |||
NCIH-F 1_S | 0.76 c | 0.31 | 0.82 d | 0.27 | 0.70 c | 0.2 | ||
NCIH-F 2_S | 0.75 c/0.71 d | 0.18/0.29 | 0.63 d | 0.35 | 0.45 c | 0.36 | H740 | F740 |
PRIfraction_S | 0.58 a | 0.35 | 0.67 d | 0.26 | 0.74 b | 0.16 | / | F740 |
NCIH-F | |||||
---|---|---|---|---|---|
FW-based | NCIH-F 0_W | 0.50 | 0.50 | ||
NCIH-F 1_W | 0.52 | 0.48 | |||
NCIH-F 2_W | H685 | 0.27 | F685 | 0.73 | |
PRIfraction_W | & | / | F740 | 0.35 | |
GSI-based | NCIH-F 1_S | 0.52 | 0.48 | ||
NCIH-F 2_S | H740 | 0.50 | F740 | 0.50 | |
PRIfraction_S | & | / | F740 | 0.24 |
Combined Index | 2014-B | 201402-H | 2015-T | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
N(H685, F685) | 0.408 | 0.479 | 0.698 | 0.269 | 0.479 | 0.499 |
N(H740, F740) | 0.488 | 0.579 | 0.597 | 0.358 | 0.498 | 0.491 |
HL-NormIndex_W | 0.74 a/0.71 d | 0.11/0.16 | 0.81 b | 0.15 | 0.72 c | 0.14 |
HL-NormIndex_S | 0.73 c | 0.22 | 0.70 d | 0.23 | 0.82 c | 0.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, L.; Yang, J.; Chen, B.; Sun, J.; Chen, B.; Shi, S.; Song, S.; Gong, W. Novel Combined Spectral Indices Derived from Hyperspectral and Laser-Induced Fluorescence LiDAR Spectra for Leaf Nitrogen Contents Estimation of Rice. Remote Sens. 2020, 12, 185. https://doi.org/10.3390/rs12010185
Du L, Yang J, Chen B, Sun J, Chen B, Shi S, Song S, Gong W. Novel Combined Spectral Indices Derived from Hyperspectral and Laser-Induced Fluorescence LiDAR Spectra for Leaf Nitrogen Contents Estimation of Rice. Remote Sensing. 2020; 12(1):185. https://doi.org/10.3390/rs12010185
Chicago/Turabian StyleDu, Lin, Jian Yang, Bowen Chen, Jia Sun, Biwu Chen, Shuo Shi, Shalei Song, and Wei Gong. 2020. "Novel Combined Spectral Indices Derived from Hyperspectral and Laser-Induced Fluorescence LiDAR Spectra for Leaf Nitrogen Contents Estimation of Rice" Remote Sensing 12, no. 1: 185. https://doi.org/10.3390/rs12010185