Monitoring and Detecting Archaeological Features with Multi-Frequency Polarimetric Analysis
"> Figure 1
<p>Gebel Barkal archaeological site © Google Earth.</p> "> Figure 2
<p>Gebel Barkal and the sites of the Napatan region © UNESCO.</p> "> Figure 3
<p>The Holy Mountain and the temple of Amun (B1500). © Max Farrar.</p> "> Figure 4
<p>Pyramids at Gebel Barkal (Courtesy of L. Perotti).</p> "> Figure 5
<p>Archaeological area of Gebel Barkal, Sudan: wide view (<b>a</b>) and arcaheological area (<b>b</b>).</p> "> Figure 6
<p>Erosion pebble conglomerate © Max Farrar.</p> "> Figure 7
<p>Left image illustrates the Pauli decomposition RGB image: |S<sub>hh</sub> + S<sub>vv</sub>| |S<sub>hh</sub> − S<sub>vv</sub>| |S<sub>hv</sub>|. Right image shows the Google Earth image available for 2006.</p> "> Figure 8
<p>Model-based Freeman decomposition. <b>f<sub>SB</sub></b>, f<sub>DB</sub> and <b>f</b><sub>vs</sub> represent Freeman-Durden components for single bounce, double bounce and volume scattering respectively, represented in blue, red and green colors. Plane is contained in normal direction to the line-of-sight of the satellite.</p> "> Figure 9
<p>Model-based Yamaguchi 4 component decomposition.</p> "> Figure 10
<p>Yamaguchi Y4O (top), Yamaguchi Y4R (middle) and Yamaguchi G4U1 (bottom) decomposition RGB images.</p> "> Figure 11
<p>Diagram listing pre-processing steps of ground range detected (GRD) scenes in Google Earth Engine (GEE).</p> "> Figure 12
<p>ALOS PALSAR Pauli RGB (left: 2006; rigth: 2009) and KOMPSAT-2 overlay.</p> "> Figure 13
<p>ALOS PALSAR Yamaguchi RGB images ((<b>a</b>): 2006; (<b>b</b>): 2009). Top, middle and bottom figures correspond to Y4O, Y4R and GU41 Yamaguchi decomposition respectively.</p> "> Figure 14
<p>G4U1 decomposition single channels 2006 (<b>a</b>) and 2009 (<b>b</b>) acquisitions. Double bounce (top); single bounce (middle); volume scattering (bottom).</p> "> Figure 15
<p>Pauli RGB decomposition ((<b>a</b>): 04/2012, (<b>b</b>): 11/2012, (<b>c</b>): 01/2013, (<b>d</b>): 07/2013) overlaid with Google Earth image (11/2012).</p> "> Figure 16
<p>Yamaguchi G4U1 decomposition RGB image ((<b>a</b>): 2012/04/28, (<b>b</b>): 2012/11/06, (<b>c</b>): 2013/01/17, (<b>d</b>): 2013/07/07).</p> "> Figure 17
<p>Incident wave on the pyramids.</p> "> Figure 18
<p>Yamaguchi G4U1 decomposition: double bounce (top), single bounce (middle) and volume scattering (bottom) for each acquisition date: 04/2012 (<b>a</b>), 11/2012 (<b>b</b>), 01/2013 (<b>c</b>), 07/2013 (<b>d</b>).</p> "> Figure 18 Cont.
<p>Yamaguchi G4U1 decomposition: double bounce (top), single bounce (middle) and volume scattering (bottom) for each acquisition date: 04/2012 (<b>a</b>), 11/2012 (<b>b</b>), 01/2013 (<b>c</b>), 07/2013 (<b>d</b>).</p> "> Figure 19
<p>Regions of interest (ROIs) in the archaeological area of Jebel Barkal.</p> "> Figure 20
<p>Radar backscatter values (<math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold">σ</mi> <mn mathvariant="bold">0</mn> </msub> </mrow> </semantics> </math> in VV) evolution for ROIs.</p> "> Figure 21
<p>Radar backscatter values (<math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mn>0</mn> </msub> <mrow> <mtext> </mtext> <mi>in</mi> <mtext> </mtext> <mi>VH</mi> </mrow> </mrow> </semantics> </math>) evolution for ROIs.</p> "> Figure 22
<p>Layout performed in the GIS project with the representation of excavations areas and the anomaly.</p> "> Figure 23
<p>Gebel Barkal investigated area. Courtesy of E. Ciampini (Dec, 2013).</p> "> Figure 24
<p>Yamaguchi decomposition. High amplitude values recorded for the anomaly (white arrow).</p> ">
Abstract
:1. Introduction
1.1. Context of the Study
1.2. Study Area—the UNESCO Site of Gebel Barkal (Sudan)
1.3. Geology and Geomorphology
2. Materials and Methods
2.1. Polarimetric Decomposition Theory
2.1.1. Pauli Decomposition
2.1.2. Yamaguchi 4 Components Decomposition
2.2. Polarimetric Analysis
2.3. Dual Polarisation Time Series Analysis
3. Results
3.1. ALOS PALSAR Polarimetric Analysis
3.2. RADARSAT-2 Polarimetric Analysis
3.3. Sentinel-1 Multi-Temporal Backscatter Analysis
4. Discussion
5. Conclusions and Outlooks
- -
- General complexity of data analysis and interpretation
- -
- Need of a specific technical knowledge for archaeologists
- -
- Inexistence of an automatic procedure designated to the recognition and extraction of archaeological features
- -
- Lack of visual communication between the well-known aerial photographs or optical data and SAR satellite data.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Baz, F.; Robinson, C.A.; Al-Saud, T.S.M. SAR images in geoarchaeology of Eastern Sahara. In Remote Sensing in Archaeology; Wisemann, J., El Baz, F., Eds.; Springer: Berlin, Germany, 2007; pp. 47–70. [Google Scholar]
- Blom, R.; Clapp, N.; Zarins, J.; Hedges, G. Space technology and the discovery of the lost city of Ubar. In Proceedings of the IEEE Aerospace Conference, Snowmass, CO, USA, 13–13 February 1997. [Google Scholar]
- Xinqiao, L.; Huadong, G.; Yun, S. Detection of the Great Wall using SIR-C data in north-western China. In Proceedings of the 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997. [Google Scholar]
- Moore, E.; Freeman, T.; Hensley, S. Spaceborne and airborne SAR at Angkor. Introducing new technology to the ancient site. In Remote Sensing in Archaeology; Wiseman, J., El Baz, F., Eds.; Springer: Berlin, Germany, 2007; pp. 185–216. ISBN 10-0-387-44615-X. [Google Scholar]
- Cigna, F.; Tapete, D.; Lasaponara, R.; Masini, N. Amplitude change detection with ENVISAT ASAR to Image the Cultural Landscape of the Nazca region, Peru. In Archaeological Prospection; Wiley Online Library: Hoboken, NJ, USA, 2013; Volume 20, pp. 117–131. [Google Scholar] [CrossRef]
- Masini, N.; Lasaponara, R. Satellite Synthetic Aperture Radar in Archaeology and Cultural Landscape: An Overview. In Archaeological Prospection; Wiley Online Library: Hoboken, NJ, USA, 2013; Volume 20. [Google Scholar] [CrossRef]
- Stewart, C.; Eliezer, O.; Cohen Sasson, E. Satellite Remote Sensing Analysis of the Qasrawet Archaeological Site in North Sinai. Remote Sens. 2018, 10, 1090. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. Djebel Barkal and the Sites of the Napatan Region, Description. Available online: http://whc.unesco.org/en/list/1073/ (accessed on 20 October 2019).
- Kendall, T.K. Napatan Temples: A Case Study from Gebel Barkal. The Mythological Nubian Origin of Egyptian Kingship and the Formation of the Napatan State. In Proceedings of the 10th International Conference of Nubian Studies, Rome, Italy, 9–14 September 2002. [Google Scholar]
- Société des Culture Nubiennes—Archaeological Site—Gebel Barkal. Available online: http://nubie-international.fr/accueil.php?a=page163010 (accessed on 20 October 2019).
- Worrall, G.A. A simple introduction to the geology of the Sudan. In Sudan Notes and Records; University of Khartoum: Khartoum, Sudan, 1957; Volume 38, pp. 2–9. [Google Scholar]
- Ulaby, T.; Moore, K.; Fung, K. Microwave Remote Sensing. In Microwave Remote Sensing Fundamentals and Radiometry; Artech House: Norwood, MA, USA, 1981; Volume 1. [Google Scholar]
- Stewart, C.; Montanaro, R.; Sala, M.; Riccardi, P. Feature Extraction in the North Sinai Desert Using Spaceborne Synthetic Aperture Radar: Potential Archaeological Applications. Remote Sens. 2016, 8, 825. [Google Scholar] [CrossRef] [Green Version]
- Gaber, A.; Koch, M.; Griesh, M.H.; Sato, M.; El-Baz, F. Near-surface imaging of a buried foundation in the Western Desert, Egypt, using space-borne and ground penetrating radar. J. Archaeol. Sci. 2013, 40, 1946–1955. [Google Scholar] [CrossRef]
- Chen, F.; Masini, N.; Liu, J.; You, J.; Lasaponara, R. Multi-frequency satellite radar imaging of cultural heritage: The case studies of the Yumen Frontier Pass and Niya ruins in the Western Regions of the Silk Road Corridor. Int. J. Digit. Earth 2016, 9, 1224–1241. [Google Scholar] [CrossRef]
- Linck, R.; Busche, T.; Buckreuss, S.; Fassbinder, J.W.; Seren, S. Possibilities of Archaeological Prospection by High-resolution X-band Satellite Radar—A Case Study from Syria. Archaeol. Prospect. 2013, 20, 97–108. [Google Scholar] [CrossRef]
- Elachi, C.; Granger, J. Spaceborne imaging radars probe “in depth”. IEEE Spectr. 1982, 19, 24–29. [Google Scholar] [CrossRef]
- GIS Bretel Bretagne Télédétection. Available online: http://recherche.telecom-bretagne.eu/bretel (accessed on 10 February 2014).
- PolSARpro Software. Available online: http://earth.eo.esa.int/polsarpro/ (accessed on 20 January 2017).
- Borgogno Mondino, E.; Perotti, L.; Piras, M. High resolution satellite images for archaeological applications: The Karima case study (Nubia region, Sudan). Eur. J. Remote Sens. 2012, 45, 243–259. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; Taylor & Francis Group: Boca Raton, FL, USA, 2009; ISBN 978-1-4200-5497-2. [Google Scholar]
- Freeman, A.; Durden, S. A three-component scattering model to describe polarimetric SAR data. In Proceedings of the SPIE Conference Radar Polarimetry, San Diego, CA, USA, 19–21 July 1992; Volume SPIE-1748, pp. 213–225. [Google Scholar]
- Freeman, A.; Durden, S.L. A Three-Component Scattering Model for Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 1998, 36. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Yamaguchi, Y.; Park, S.E. General four-component scattering power decomposition with unitary transformation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2013, 51. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Weather Online, Karima, History. Available online: http://www.weatheronline.co.uk (accessed on 3 June 2019).
ALOS PALSAR | RADARSAT-2 |
---|---|
2006/08/14 | 2012/04/28 |
2012/11/06 | |
2009/11/05 | 2013/01/17 |
2013/07/04 |
SENTINEL-1 | |
---|---|
Start date | 11/01/2016 |
Stop date | 16/10/2019 |
Orbit path | descending |
Track | 94 |
Incident angle [degrees] | 35.5 |
Number of images | 85 |
Date | θ | G4U1_Dbl | G4U1_Odd | G4U1_Vol |
---|---|---|---|---|
2006/08/14 | 26.70° | −16.99 dB | −10.97 dB | −20 dB |
2009/11/05 | 23.10° | −13.01 dB | −6.77 dB | −16.99 dB |
Date | θ | G4U1_Dbl | G4U1_Odd | G4U1_Vol |
---|---|---|---|---|
2012/04/28 | 27.6° | −16.99 dB | −4.97 dB | −20 dB |
2012/11/06 | 27.6° | −16.99 dB | −8.24 dB | −20 dB |
2013/01/17 | 27.6° | −15.23 dB | −5.68 dB | −20 dB |
2013/07/04 | 27.6° | −16.99 dB | −8.54 dB | −16.99 dB |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patruno, J.; Fitrzyk, M.; Delgado Blasco, J.M. Monitoring and Detecting Archaeological Features with Multi-Frequency Polarimetric Analysis. Remote Sens. 2020, 12, 1. https://doi.org/10.3390/rs12010001
Patruno J, Fitrzyk M, Delgado Blasco JM. Monitoring and Detecting Archaeological Features with Multi-Frequency Polarimetric Analysis. Remote Sensing. 2020; 12(1):1. https://doi.org/10.3390/rs12010001
Chicago/Turabian StylePatruno, Jolanda, Magdalena Fitrzyk, and Jose Manuel Delgado Blasco. 2020. "Monitoring and Detecting Archaeological Features with Multi-Frequency Polarimetric Analysis" Remote Sensing 12, no. 1: 1. https://doi.org/10.3390/rs12010001
APA StylePatruno, J., Fitrzyk, M., & Delgado Blasco, J. M. (2020). Monitoring and Detecting Archaeological Features with Multi-Frequency Polarimetric Analysis. Remote Sensing, 12(1), 1. https://doi.org/10.3390/rs12010001