Terrestrial Water Storage Change Retrieved by GRACE and Its Implication in the Tibetan Plateau: Estimating Areal Precipitation in Ungauged Region
<p>Map of the study area. QT denotes the Qiangtang Plateau (68.26 × 10<sup>4</sup> km<sup>2</sup>). UYA denotes the upper Yangtze River (69.47 × 10<sup>4</sup> km<sup>2</sup>). UYE denotes the upper Yellow River (12.20 × 10<sup>4</sup> km<sup>2</sup>). YZ denotes the Yarlung Zangbo River (18.93 × 10<sup>4</sup> km<sup>2</sup>). The data for the National Meteorological Stations were updated to 2012.</p> "> Figure 2
<p>Monthly variation in terrestrial water storage (TWS) in the four basins: (<b>a</b>) QT, (<b>b</b>) UYA, (<b>c</b>) UYE, and (<b>d</b>) YZ. The general trend of TWS change and the significance level is shown in the figure. TWS had slightly increased in the QT, the UYA, and the UYE, and sharply decreased in the YZ in general. Before 2006, the TWS in TP showed an increasing trend, and then different basins change in different patterns.</p> "> Figure 3
<p>Precipitation estimated from WBE and CGDPA: (<b>a</b>) QT, (<b>b</b>) UYA, (<b>c</b>) UYE, and (<b>d</b>) YZ. The shades indicate the monthly precipitation uncertainty range calculated from the WBE method. The time series begins in January 2003, and there are 174 months in total for QT, UYA, and UYE, 144 months for YZ.</p> "> Figure 4
<p>Analysis of monthly precipitation from WBE and CGDPA: (<b>a</b>) QT, (<b>b</b>) UYA, (<b>c</b>) UYE, and (<b>d</b>) YZ. The bar represents precipitation from WBE, and the curve represents precipitation from CGDPA. The contribution of each component in the water balance equation is shown in different colors.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Data
2.2. Precipitation Estimation Based on Water Balance
3. Results
3.1. Terrestrial Water Storage Variations
3.2. Estimated Precipitation Based on Water Balance
4. Discussion
4.1. TWS in Different Basins
4.2. Precipitation from the Water Balance Equation
5. Conclusions
- The TWS varies seasonally, with higher values in summer and autumn, lower values in spring and winter. From 2003 to 2017, the TWS exhibits an upward trend in the upper Yellow River (UYE), the upper Yangtze River (UYA), and the Qiangtang Plateau (QT), at rates of approximately 2.2 mm/year, while it shows a downward trend in the Yarlung Zangbo River (YZ), at rates of −13.2 mm/year. The sharp decline in the YZ indicates rapidly depleted water reserves.
- Different basins have different reactions to the meltwater, leading to different TWS changes. The QT (an endorheic basin) along with the UYA and the UYE (outflow basins with cryolithozone) have fairly strong water-holding capacity to store meltwater. Oppositely, in the YZ (an outflow basin in the canyon area), the meltwater mainly generates runoff, which leads to a decrease of TWS.
- The mean annual areal precipitation was estimated using the water balance equation as 260 ± 19 mm/year in the QT, 697 ± 26 mm/year in the UYA, 541 ± 36 mm/year in the UYE, and 1160 ± 39 mm/year in the YZ. CGDPA presumably has an underestimation of precipitation in YZ, especially in the summer (~430 mm/year). A potential explanation is that the low number of gauge stations could not consistently capture convective and orographic rainfall. From another perspective, this study provides an effective method to estimate precipitation in poorly gauged and ungauged basins according to runoff and remote sensing ET.
Author Contributions
Funding
Conflicts of Interest
Appendix A. The Extend Triple Collocation (ETC) Method
References
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Fraedrich, K.; Min, J.; Kang, S.; Zhu, X.; Pepin, N.; Zhang, L. Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes. Int. J. Clim. 2013, 34, 1873–1882. [Google Scholar] [CrossRef]
- Cui, X.; Graf, H.-F. Recent land cover changes on the Tibetan Plateau: A review. Clim. Chang. 2009, 94, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Liu, W.; Wang, L.; Chen, D.; Tu, K.; Ruan, C.; Hu, Z. Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau. Clim. Dyn. 2015, 46, 3481–3497. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Q. Research progress of groundwater deep circulation. Water Resour. Prot. 2015, 31, 8–17, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Jiang, J.; Huang, Q. The distribution characteristics of lakes in Tibetan Plateau and comparison with lakes over the whole China. Water Resourc. Prot. 2004, 20, 24–27. [Google Scholar]
- Ma, Y.; Zhang, Y.; Yang, D.; Farhan, S.B. Precipitation bias variability versus various gauges under different climatic conditions over the Third Pole Environment (TPE) region. Int. J. Climatol. 2015, 35, 1201–1211. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Han, Z.; Tang, G.; Maguire, L.; Chu, Z.; Hong, Y. Comprehensive evaluation of Ensemble Multi-Satellite Precipitation Dataset using the Dynamic Bayesian Model Averaging scheme over the Tibetan plateau. J. Hydrol. 2018, 556, 634–644. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A. Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Clim. 2015, 36, 252–265. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, D.; Gao, B.; Wang, T.; Chen, J.; Chen, Y.; Wang, Y.; Zheng, G. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region China. Sci. Total Environ. 2017, 605–606, 830–841. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Cong, Z.; Lei, H. Evaluating the impact of climate and underlying surface change on runoff within the Budyko framework: A study across 224 catchments in China. J. Hydrol. 2017, 554, 251–262. [Google Scholar] [CrossRef]
- Wang, A.; Zeng, X. Evaluation of multireanalysis products within site observations over the Tibetan Plateau. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Liu, W.; Sun, F.; Li, Y.; Zhang, G.; Sang, Y.-F.; Lim, W.H.; Liu, J.; Wang, H.; Bai, P. Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets. Hydrol. Earth Syst. Sci. 2018, 22, 351–371. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Sun, F.; Li, Y.; Sang, Y.-F.; Wang, H.; Bai, P.; Zhang, G.; Liu, J. Seasonal cycles and trends of water budget components in 18 river basins across Tibetan Plateau: A multiple datasets perspective. Hydrol. Earth Syst. Sci. Discuss. 2016, 1–51. [Google Scholar] [CrossRef]
- Shi, Q.; Liang, S. Characterizing the surface radiation budget over the Tibetan Plateau with ground-measured, reanalysis, and remote sensing data sets: 1. Methodology. J. Geophys. Res. Atmos. 2013, 118, 9642–9657. [Google Scholar] [CrossRef]
- Li, Q.; Zhong, B.; Luo, Z.; Yao, C. GRACE-based estimates of water discharge over the Yellow River basin. Geodesy Geodyn. 2016, 7, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.; Smeed, D.A.; Leuliette, E.; Swenson, S. Seasonal variability of the Red Sea, from satellite gravity, radar altimetry, and in situ observations. J. Geophys. Res. Oceans 2014, 119, 5091–5104. [Google Scholar] [CrossRef] [Green Version]
- Famiglietti, J.S.; Rodell, M. Water in the balance. Science 2013, 340, 1300–1301. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Reager, J.T.; Famiglietti, J.S. Global terrestrial water storage capacity and flood potential using GRACE. Geophys. Res. Lett. 2009, 36, 23402. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.D.; Bettadpur, S.V.; Ries, J.; Thompson, P.F.; Watkins, M.M. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.A.; Jin, S. Water storage changes and balances in Africa observed by GRACE and hydrologic models. Geodesy Geodyn. 2016, 7, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Reginald, M. Water mass loss of the Himalayas from GRACE, ICESat and SRTM. In Proceedings of the European Geosciences Union General Assembly 2010, Vienna, Austria, 2–7 May 2010. [Google Scholar]
- Sato, Y.; Ma, X.; Xu, J.; Matsuoka, M.; Zheng, H.; Liu, C.; Fukushima, Y. Analysis of long-term water balance in the source area of the Yellow River basin. Hydrol. Process. 2008, 22, 1618–1629. [Google Scholar] [CrossRef]
- Jiao, J.J.; Zhang, X.; Liu, Y.; Kuang, X. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data. PLoS ONE 2015, 10, e0141442. [Google Scholar] [CrossRef] [Green Version]
- Swenson, S.; Famiglietti, J.S.; Basara, J.; Wahr, J. Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesonet soil moisture data. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Soni, A.; Syed, T.H. Diagnosing Land Water Storage Variations in Major Indian River Basins using GRACE observations. Glob. Planet. Chang. 2015, 133, 263–271. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Frappart, F.; Ramillien, G. Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Ramillien, G.; Famiglietti, J.S. Water balance of the Arctic drainage system using GRACE gravimetry products. Int. J. Remote Sens. 2011, 32, 431–453. [Google Scholar] [CrossRef] [Green Version]
- Syed, T.H.; Famiglietti, J.S.; Chambers, D. GRACE-Based Estimates of Terrestrial Freshwater Discharge from Basin to Continental Scales. J. Hydrometeorol. 2009, 10, 22–40. [Google Scholar] [CrossRef]
- Ramillien, G.; Frappart, F.; Güntner, A.; Cazenave, A.; Laval, K.; Ngo-Duc, T. Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Pascolini-Campbell, M.A.; Reager, J.T.; Fisher, J.B. GRACE-based mass conservation as a validation target for basin-scale evapotranspiration in the contiguous United States. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
- Behrangi, A.; Gardner, A.; Reager, J.T.; Fisher, J.B. Using GRACE to constrain precipitation amount over cold mountainous basins. Geophys. Res. Lett. 2017, 44, 219–227. [Google Scholar] [CrossRef]
- Available online: https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/ (accessed on 15 February 2019).
- Sakumura, C.; Bettadpur, S.; Bruinsma, S. Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys. Res. Lett. 2014, 41, 1389–1397. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.; De Jeu, R.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, H. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. Discuss. 2010, 7, 8479–8519. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Bechtold, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.R.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res. Space Phys. 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- Alemohammad, S.H.; McColl, K.A.; Konings, A.G.; Entekhabi, D.; Stoffelen, A. Characterization of precipitation product errors across the United States using multiplicative triple collocation. Hydrol. Earth Syst. Sci. 2015, 19, 3489–3503. [Google Scholar] [CrossRef] [Green Version]
- McColl, K.A.; Vogelzang, J.; Konings, A.G.; Entekhabi, D.; Piles, M.; Stoffelen, A. Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophys. Res. Lett. 2014, 41, 6229–6236. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Seneviratne, S.I.; Viterbo, P.; Höll, S.; Famiglietti, J.S.; Chen, J.; Wilson, W.S. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 2004, 31, 20504. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Zhang, P.; Zhao, X. A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau. Sci. Rep. 2019, 9, 1765. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Wang, H.; Steffen, H.; Wu, P.; Jia, L.; Jiang, L.; Shen, Q. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet. Sci. Lett. 2016, 449, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Li, Z.; Tang, Q.; Zhang, X.; Liu, X.; Cui, H. Evaluation of satellite-based evapotranspiration estimates in China. J. Appl. Remote Sens. 2017, 11, 026019. [Google Scholar] [CrossRef]
- Liu, R.; Wen, J.; Wang, X.; Wang, Z. Validation of evapotranspiration and its long-term trends in the Yellow River source region. J. Water Clim. Chang. 2017, 8, 495–509. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, J.; Liang, S.; Feng, J.; Fisher, J.B.; Li, X.; Li, X.; Liu, S.; Ma, Z.; Miyata, A.; et al. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sens. Environ. 2014, 140, 279–293. [Google Scholar] [CrossRef]
- Cui, Z.-Y.; Li, Z.-W.; Li, J.; Wang, C.-C.; Zhou, W.-M. A preliminary study of the volume variation of the glaciers in the Qinghai-Tibetan Plateau Interior Area between 1970 and 2000. Chin. J. Geophys. 2014, 57, 1440–1450. [Google Scholar] [CrossRef]
- Wan, W.; Xiao, P.F.; Feng, X.Z.; Li, H.; Ma, R.H.; Duan, H.T. Remote sensing analysis for changes of lakes in the southeast of Qiangtang area, Qinghai-Tibetan Plateau in recent 30 years. J. Lake Sci. 2010, 22, 874–881. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Zhang, Y.; Guo, Y.; Li, X.; Liu, W. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003–2012 from a basin-wide hydrological modeling. Water Resour. Res. 2015, 51, 8060–8086. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Huang, B.; Richards, K.; Ke, L.; Phan, V.H. Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes? Water Resour. Res. 2014, 50, 3170–3186. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Yang, D.; Qin, Y.; Wang, Y.; Li, H.; Zhang, Y.; Zhang, T. Change in Frozen Soils and its Effect on Regional Hydrology in the Upper Heihe Basin, the Northeast Qinghai-Tibetan Plateau. Cryosphere 2018, 12, 657–673. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Tang, G.; Hong, Y. Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: Applicability of the Triple Collocation method across Mainland China. J. Hydrol. 2018, 562, 71–83. [Google Scholar] [CrossRef]
- Li, X.; Long, D.; Han, Z.; Scanlon, B.R.; Sun, Z.; Han, P.; Hou, A. Evapotranspiration Estimation for Tibetan Plateau Headwaters Using Conjoint Terrestrial and Atmospheric Water Balances and Multisource Remote Sensing. Water Resour. Res. 2019, 55, 8608–8630. [Google Scholar] [CrossRef]
- Changjiang &Southwest Rivers Water Resources Bulletin, Changjiang Water Resources Commission of the Ministry of Water Resources. 2010. Available online: http://www.cjw.gov.cn/zwzc/bmgb (accessed on 3 June 2018).
- Chen, J.S.; Li, L.; Wang, J.Y.; Barry, D.A.; Sheng, X.F.; Zu Gu, W.; Zhao, X.; Chen, L. Groundwater maintains dune landscape. Nature 2004, 432, 459–460. [Google Scholar] [CrossRef]
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Roebeling, R.; Wolters, E.L.A.; Meirink, J.F.; Leijnse, H. Triple Collocation of Summer Precipitation Retrievals from SEVIRI over Europe with Gridded Rain Gauge and Weather Radar Data. J. Hydrometeorol. 2012, 13, 1552–1566. [Google Scholar] [CrossRef]
- Hain, C.R.; Crow, W.T.; Mecikalski, J.R.; Anderson, M.C.; Holmes, T. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling. J. Geophys. Res. Space Phys. 2011, 116, 15. [Google Scholar] [CrossRef]
- Draper, C.; Reichle, R.; De Jeu, R.; Naeimi, V.; Parinussa, R.; Wagner, W. Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sens. Environ. 2013, 137, 288–298. [Google Scholar] [CrossRef] [Green Version]
- van Dijk, A.I.J.M.; Renzullo, L.J.; Wada, Y.; Tregoning, P. A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol. Earth Syst. Sci. 2014, 18, 2955. [Google Scholar] [CrossRef] [Green Version]
- Zwieback, S.; Scipal, K.; Dorigo, W.; Wagner, W. Structural and statistical properties of the collocation technique for error characterization. Nonlinear Process. Geophys. 2012, 19, 69–80. [Google Scholar] [CrossRef]
△TWS | ET | R | P | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CSR | JPL | GFZ | GLEAM | NOAH | ERA | CGDPA | WBE | |||
QT | AVE | * 1.9 | 1.9 | 1.7 | * 259 | 236 | 220 | 0 | 264 | 261 |
T | −0.23 ++ | −0.20 ++ | −0.25 ++ | 3.2 ++ | 3.8 ++ | 3.7 ++ | - | 0.12 ++ | 0.20 ++ | |
U | 0.14 | 0.15 | 0.17 | 19.4 | 30.2 | 22.6 | 0.0 | - | 19.4 | |
UYA | AVE | * 7.2 | 6.5 | 6.4 | * 358 | 311 | 372 | 333 | 634 | 697 |
T | −0.07 + | −0.07 + | −0.08 + | 9.5 +++ | 9.4 +++ | 9.8 +++ | −1.9 + | 0.12 ++ | 0.40 ++ | |
U | 0.21 | 0.23 | 0.26 | 20.5 | 28.0 | 41.7 | 16.7 | - | 26.4 | |
UYE | AVE | * 4.3 | 4.5 | 3.9 | * 370 | 374 | 364 | 167 | 543 | 541 |
T | −0.32 ++ | −0.33 ++ | −0.31 ++ | 6.0 +++ | 5.1 +++ | 5.5 +++ | −5.0 + | 0.48 ++ | 0.44 ++ | |
U | 0.12 | 0.15 | 0.14 | 35.5 | 67.3 | 44.1 | 8.4 | - | 36.5 | |
YZ | AVE | * −8.8 | −8.2 | −8.6 | * 487 | 447 | 444 | 683 | 730 | 1160 |
T | −0.26 ++ | −0.25 ++ | −0.28 ++ | −1.6 ++ | −1.5 ++ | −1.6 ++ | 33.0 ++ | 1.68 ++ | 2.64 ++ | |
U | 0.18 | 0.20 | 0.27 | 18.2 | 54.4 | 27.9 | 34.2 | - | 38.7 |
Metric | QT | UYA | UYE | YZ |
---|---|---|---|---|
r | 0.82 | 0.96 | 0.95 | 0.98 |
Rbias (%) | −1.14 | 9.94 | −0.37 | 58.90 |
NSE | 0.51 | 0.86 | 0.73 | 0.22 |
KGE | 0.53 | 0.90 | 0.79 | 0.28 |
RMSE (mm/month) | 17.36 | 22.68 | 29.85 | 51.04 |
Discrepancy (mm/year) | −3 | 63 | −2 | 430 |
Region | Number of Stations | Density (/104km2) | Station Elevation (m) | ||
---|---|---|---|---|---|
Average | Maximum | Minimum | |||
QT | 4 | 0.06 | 4646.7 | 4800 | 4414.9 |
UYA | 42 | 0.99 | 2921.2 | 4612.2 | 1009.7 |
UYE | 35 | 1.81 | 2927.7 | 4272.3 | 1813.9 |
YZ | 16 | 0.70 | 3668.5 | 4488.8 | 2736 |
TP | 148 | 0.58 | 3062.1 | 4800 | 1009.7 |
China | 2416 | 2.52 | 630.3 | 4800 | −48.7 |
Region | Area (104km2) | Elevation (m) | 0–2000 | 2000–3000 | 3000–4000 | 4000–5000 | 5000–6000 | 6000–8000 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AVG | Max | Min | Pct. (%) | Num. | Pct. (%) | Num. | Pct. (%) | Num. | Pct. (%) | Num. | Pct. (%) | Num. | Pct. (%) | Num. | ||
QT | 68.26 | 4998 | 6736 | 3840 | 0.00 | 0 | 0.00 | 0 | 0.56 | 0 | 51.48 | 4 | 47.50 | 0 | 0.46 | 0 |
UYA | 42.39 | 4217 | 6904 | 1071 | 0.57 | 8 | 5.91 | 14 | 23.13 | 13 | 64.40 | 6 | 5.97 | 0 | 0.02 | 0 |
UYE | 19.38 | 3820 | 6009 | 1794 | 0.14 | 3 | 9.75 | 17 | 47.83 | 13 | 42.20 | 2 | 0.08 | 0 | 0.00 | 0 |
YZ | 22.83 | 4628 | 7182 | 135 | 3.51 | 0 | 2.54 | 3 | 10.07 | 10 | 43.65 | 3 | 39.65 | 0 | 0.58 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Lei, H.; Yang, H.; Hu, Q. Terrestrial Water Storage Change Retrieved by GRACE and Its Implication in the Tibetan Plateau: Estimating Areal Precipitation in Ungauged Region. Remote Sens. 2020, 12, 3129. https://doi.org/10.3390/rs12193129
Jia Y, Lei H, Yang H, Hu Q. Terrestrial Water Storage Change Retrieved by GRACE and Its Implication in the Tibetan Plateau: Estimating Areal Precipitation in Ungauged Region. Remote Sensing. 2020; 12(19):3129. https://doi.org/10.3390/rs12193129
Chicago/Turabian StyleJia, Yao, Huimin Lei, Hanbo Yang, and Qingfang Hu. 2020. "Terrestrial Water Storage Change Retrieved by GRACE and Its Implication in the Tibetan Plateau: Estimating Areal Precipitation in Ungauged Region" Remote Sensing 12, no. 19: 3129. https://doi.org/10.3390/rs12193129