Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China
<p>The study area and Sentinel-1/2 data used in this study: (<b>a</b>) the spatial distribution of total observation numbers for Sentinel-1 data covering the study area; (<b>b</b>) the spatial distribution of clear observation numbers for Sentinel-2 data covering the study area.</p> "> Figure 2
<p>Temporal variability of (<b>a</b>) NDVI and the (<b>b</b>) SWIR1 band for training pixels of mangroves and other land cover types whose spectral signature is similar to that of mangroves in single-date imagery.</p> "> Figure 3
<p>The F1-score of each classification map derived from Sentinel-1 SAR imagery (S1), Sentinel-2 MSI imagery (S2), and a combination of Sentinel-1 and 2 data (S3).</p> "> Figure 4
<p>Subsets of classification results derived from S1, S2, and S3. The purple color represents the mangrove extraction results. S1 represents Scenario 1 using Sentinel-1 SAR imagery, S2 represents Scenario 2 using Sentinel-2 imagery, and S3 represents Scenario 3 using both Sentine-1 and Sentinel-2 data.</p> "> Figure 5
<p>The spatial distribution of mangrove forests in China at a common unit of 0.1°. The grey color represents a 10 km buffer zone along the coastline.</p> "> Figure 6
<p>(<b>a</b>) The area percentage of mangrove patches with different size; (<b>b</b>) the frequency of mangrove patches with different size.</p> "> Figure 7
<p>(<b>a</b>) The spatial distribution of mangrove patches smaller than 1 ha in China where the grey color represents a 10 km buffer zone along the coastline. (<b>b</b>) Spatial distribution of small mangrove patches in Zhanjiang zone. (<b>c</b>) The subset of mangroves along coastlines in a narrow strip and their classification result in our study. (<b>d</b>) The subset of mangroves with small size scattered in ponds and their extraction result in our study.</p> "> Figure 8
<p>The spatial and number distribution of mangrove area difference between our 10-m map and existing 30-m products at a common unit of 0.1°. The grey color in a1, b1, and c1 represents a 10 km buffer zone along the coastline. (<b>a1</b>,<b>a2</b>) Difference of mangrove area between 10-m result and MFM_2015; (<b>b1</b>,<b>b2</b>) Difference of mangrove area between 10-m result and MFP_2015; (<b>c1</b>,<b>c2</b>) Difference of mangrove area between 10-m result and GMW_2016.</p> "> Figure 9
<p>A comparison of mangrove extraction results derived from our 10-m map and 30-m products in the Zhanjiang region, Guangdong province, where mangrove area differences for all 30-m products are larger than 100 ha. The green and orange color represents the boundary of the 10-m and 30-m mangrove map. (<b>a</b>–<b>d</b>) are comparison results for a subset dominated by mangroves in narrow strips; (<b>e</b>–<b>h</b>) are comparison results for a subset dominated by sparse mangroves; (<b>i</b>–<b>l</b>) are comparison results for a subset dominated by mangroves with small patches.</p> "> Figure 10
<p>A comparison of mangrove extraction results derived from our 10-m map and 30-m products in regions where mangrove area differences are smaller than 100 ha. The green and orange color represents the boundary of the 10-m and 30-m mangrove map. (<b>a</b>,<b>b</b>) are the comparison results between our 10-m map and MFM_2015; (<b>c</b>,<b>d</b>) are the comparison results between our 10-m map and MFP_2015; (<b>e</b>,<b>f</b>) are the comparison results between our 10-m map and GMW_2016.</p> "> Figure 11
<p>Comparison of classification accuracies between S4 excluding four red edge bands and S5 including four red edge bands. (<b>a</b>) F1-score comparison; (<b>b</b>) UA and PA comparison.</p> "> Figure 12
<p>Misclassified pixels of our 10-m map at the edge of rivers (<b>a</b>) and ponds (<b>b</b>).</p> "> Figure 13
<p>Boxplots of (<b>a</b>) NDVI, (<b>b</b>) SWIR 1, (<b>c</b>) VH, and (<b>d</b>) VV for mangroves (RM) and misclassified mangroves (MM).</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data
2.2.1. Sentinel-1 Imagery
2.2.2. Sentinel-2 Imagery
2.2.3. Other Auxiliary Data
3. Methods
3.1. Preprocessing
3.1.1. Cloud Mask
3.1.2. Spectral Indices Calculation
3.1.3. Texture Information Extraction
3.2. Spectral/Backscatter-Temporal Variability Features Extraction
3.3. Mapping Mangrove Forests with Random Forest
3.4. Accuracy Estimation
3.5. Comparison with Existing 30-m Mangrove Forests Products
4. Results
4.1. Accuracy Assessment of Mangrove Forests Maps
4.2. Distribution of Mangroves in China in 2015 Derived from 10-m Map
4.2.1. Area and Spatial Distribution of Mangroves in China in 2015 Derived from 10-m Map
4.2.2. Area and Distribution of Small Mangrove Patches with Sizes Smaller than 1 Ha in China
4.3. Comparison of Sentinel-1/2 Derived Mangrove Forest Maps with Existing 30-m Products
5. Discussion
5.1. Whether Four Red Edge Bands in Sentinel-2 Data Improves the Capability of Msi Imagery on Extracting Mangrove Forest
5.2. Error Sources of 10-m Mangrove Map
5.3. Implications for Mangrove Ecosystems and Future Research
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aslan, A.; Rahman, A.F.; Warren, M.W.; Robeson, S.M. Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data. Remote Sens. Environ. 2016, 183, 65–81. [Google Scholar] [CrossRef]
- Rahman, A.F.; Dragoni, D.; Didan, K.; Barreto-Munoz, A.; Hutabarat, J.A. Detecting large scale conversion of mangroves to aquaculture with change point and mixed-pixel analyses of high-fidelity MODIS data. Remote Sens. Environ. 2013, 130, 96–107. [Google Scholar] [CrossRef]
- Siikamäki, J.; Sanchirico, J.N.; Jardine, S.L. Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc. Natl. Acad. Sci. USA 2012, 109, 14369–14374. [Google Scholar] [CrossRef] [Green Version]
- Duarte, C.M.; Losada, I.J.; Hendriks, I.E.; Mazarrasa, I.; Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 2013, 3, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Arkema, K.K.; Guannel, G.; Verutes, G.; Wood, S.A.; Guerry, A.; Ruckelshaus, M.; Kareiva, P.; Lacayo, M.; Silver, J.M. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 2013, 3, 913–918. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Twilley, R.R.; Chen, R.H.; Hargis, T. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut. 1992, 64, 265–288. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Anton, A.; Raven, J.A.; Beaumont, N.; Connolly, R.M.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Kuwae, T.; Lavery, P.S.; et al. The future of Blue Carbon science. Nat. Commun. 2019, 10, 3998. [Google Scholar] [CrossRef] [Green Version]
- Atwood, T.B.; Connolly, R.M.; Almahasheer, H.; Carnell, P.E.; Duarte, C.M.; Lewis, C.J.E.; Irigoien, X.; Kelleway, J.J.; Lavery, P.S.; Macreadie, P.I.; et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 2017, 7, 523–528. [Google Scholar] [CrossRef]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Carbon sequestration in mangrove forests. Carbon Manag. 2012, 3, 313–322. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Purbopuspito, J.; Kauffman, J.B.; Warren, M.W.; Sasmito, S.D.; Donato, D.C.; Manuri, S.; Krisnawati, H.; Taberima, S.; Kurnianto, S. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Chang. 2015, 5, 1089–1092. [Google Scholar] [CrossRef]
- Harris, N.L.; Brown, S.; Hagen, S.C.; Saatchi, S.S.; Petrova, S.; Salas, W.; Hansen, M.C.; Potapov, P.V.; Lotsch, A. Baseline Map of Carbon Emissions from Deforestation in Tropical Regions. Science 2012, 336, 1573. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2015, 113, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton and Stuart. Assessing the Role of Commercial Aquaculture in Displacing Mangrove Forest. Bull. Mar. Sci. 2013, 89, 585–601. [Google Scholar] [CrossRef]
- Hamilton, S.E.; Friess, D.A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang. 2018, 8, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Osland, M.J.; Enwright, N.M.; Day, R.H.; Gabler, C.A.; Stagg, C.L.; Grace, J.B. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob. Chang. Biol. 2016, 22, 1–11. [Google Scholar] [CrossRef]
- Valiela, I.; Bowen, J.L.; York, J.K. Mangrove Forests: One of the World’s Threatened Major Tropical Environments. Bioscience 2001, 51, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Gong, P. Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sens. Environ. 2016, 179, 196–209. [Google Scholar] [CrossRef]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Lucas, R.M.; Rebelo, L.-M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C.M. The global mangrove watch—A new 2010 global baseline of mangrove extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Shi, S. The State of the World’s Mangrove Forests: Past, Present, and Future. Annu. Rev. Environ. Resour. 2019, 44, 89–115. [Google Scholar] [CrossRef] [Green Version]
- Guimares, A.S.; Travassos, P.; Filho, P.W.M.E.S.; Gonalves, F.D.; Costa, F. Impact of aquaculture on mangrove areas in the northern Pernambuco Coast (Brazil) using remote sensing and geographic information system. Aquac. Res. 2010, 41, 828–838. [Google Scholar] [CrossRef]
- Cárdenas, N.Y.; Joyce, K.E.; Maier, S.W. Monitoring mangrove forests: Are we taking full advantage of technology? Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Li, W.; Xu, B. Monitoring mangrove forest change in China from 1990 to 2015 using Landsat-derived spectral-temporal variability metrics. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 88–98. [Google Scholar] [CrossRef]
- EoPortal Directory. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/missions/ (accessed on 30 August 2020).
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High resolution wheat yield mapping using Sentinel-2. Remote Sens. Environ. 2019, 233, 111410. [Google Scholar] [CrossRef]
- Chen, N. Mapping mangrove in Dongzhaigang, China using Sentinel-2 imagery. J. Appl. Remote Sens. 2020, 14, 014508. [Google Scholar] [CrossRef]
- Manna, S.; Raychaudhuri, B. Mapping distribution of Sundarban mangroves using Sentinel-2 data and new spectral metric for detecting their health condition. Geocarto Int. 2020, 35, 434–452. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Zhang, Y.; Mao, D.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- Yi, Y. Evaluating the Spatial Vulnerability of Mangroves from Reclamation in Mainland China’s Coastal Area, in College of the Environment and Ecology. Master’s Thesis, Xiamen University, Xiamen, China, 2018; pp. 8–9. [Google Scholar]
- Sentinel-1 Algorithms. Available online: https://developers.google.com/earth-engine/guides/sentinel1 (accessed on 30 August 2020).
- Kobrick, M. The Shuttle Radar Topography Mission: A Global DEM. Am. Geophys. Union 1999, 45, 37–55. [Google Scholar]
- Open Street Map Data. Available online: http://openstreetmapdata.com/data/coastlines (accessed on 30 August 2020).
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1978, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Hill, M.J. Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect. Remote Sens. Environ. 2013, 137, 94–111. [Google Scholar] [CrossRef]
- Marceau, D.J.; Howarth, P.J.; Dubois, J.-M.M.; Gratton, D.J. Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery. IEEE Trans. Geosci. Remote Sens. 1990, 28, 513–519. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhang, H.; Lin, H.; Fang, C. Textural–Spectral Feature-Based Species Classification of Mangroves in Mai Po Nature Reserve from Worldview-3 Imagery. Remote Sens. 2015, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Kupidura, P. The Comparison of Different Methods of Texture Analysis for Their Efficacy for Land Use Classification in Satellite Imagery. Remote Sens. 2019, 11, 1233. [Google Scholar] [CrossRef] [Green Version]
- Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Li, C.; Gong, P.; Wang, J.; Zhu, Z.; Biging, G.S.; Yuan, C.; Hu, T.; Zhang, H.; Wang, Q.; Li, X.; et al. The first all-season sample set for mapping global land cover with Landsat-8 data. Sci. Bull. 2017, 62, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Loozen, Y.; Rebel, K.T.; de Jong, S.M.; Lu, M.; Ollinger, S.V.; Wassen, M.J.; Karssenberg, D. Mapping canopy nitrogen in European forests using remote sensing and environmental variables with the random forests method. Remote Sens. Environ. 2020, 247, 111933. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Hurskainen, P.; Adhikari, H.; Siljander, M.; Pellikka, P.K.E.; Hemp, A. Auxiliary datasets improve accuracy of object-based land use/land cover classification in heterogeneous savanna landscapes. Remote Sens. Environ. 2019, 233, 111354. [Google Scholar] [CrossRef]
- ISPRS Journal of Photogrammetry and Remote Sensing. Available online: http://dx.doi.org/10.1016/j.isprsjprs.2017.07.011 (accessed on 30 August 2020).
- International Journal of Applied Earth Observation and Geoinformation. Available online: https://doi.org/10.1016/j.jag.2018.04.001 (accessed on 30 August 2020).
- Ocean Data Viewer. Available online: https://data.unep-wcmc.org/datasets/45 (accessed on 30 August 2020).
- Zhang, W.; Brandt, M.; Wang, Q.; Prishchepov, A.V.; Tucker, C.J.; Li, Y.; Lyu, H.; Fensholt, R. From woody cover to woody canopies: How Sentinel-1 and Sentinel-2 data advance the mapping of woody plants in savannas. Remote Sens. Environ. 2019, 234, 111465. [Google Scholar] [CrossRef]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, W.J.; Kauffman, J.B.; Marbà, N.; et al. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curnick, D.; Pettorelli, N.; Amir, A.; Balke, T.; Barbier, E.; Crooks, S.; Dahdouh-Guebas, F.; Duncan, C.; Endsor, C.; Friess, D. The value of small mangrove patches. Science 2019, 363, 239. [Google Scholar]
- Van der Stocken, T.; Carroll, D.; Menemenlis, D.; Simard, M.; Koedam, N. Global-scale dispersal and connectivity in mangroves. Proc. Natl. Acad. Sci. USA 2019, 116, 915–922. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Hamilton, S.; Barbier, E.B.; Primavera, J.; Lewis, R.R. Better restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 2019, 3, 870–872. [Google Scholar] [CrossRef]
Band | Central Frequency (GHz) | Spatial Resolution (m) |
---|---|---|
VV | 5.405 | 10 |
VH |
Band | Abbreviation | Central Wavelength (nm) | Spatial Resolution (m) |
---|---|---|---|
2 blue | B2 | 490 | 10 |
3 green | B3 | 560 | 10 |
4 red | B4 | 665 | 10 |
5 red edge 1 | B5 | 705 | 20 |
6 red edge 2 | B6 | 740 | 20 |
7 red edge 3 | B7 | 783 | 20 |
8 NIR | B8 | 842 | 10 |
8A red edge 4 | B8A | 865 | 20 |
11 SWIR 1 | B11 | 1610 | 20 |
12 SWIR 2 | B12 | 2190 | 20 |
Vegetation Indices | Abbreviation | Equations | Reference |
---|---|---|---|
Normalized Difference Vegetation Index | NDVI | [37] | |
Normalized Difference Water Index | NDWI | [38] | |
Modified Normalized Difference Water Index | MNDWI | [39] | |
Plant Senescence Reflectance Index 1 | [40] | ||
Plant Senescence Reflectance Index 2 | [40] | ||
Plant Senescence Reflectance Index 3 | [40] | ||
Plant Senescence Reflectance Index 4 | [40] |
Scenario | Abbreviation | Input Features |
---|---|---|
1 | S1 | Backscatter-temporal features derived from Sentinel-1 SAR imagery (10%, 25%, 50%, 75%, and 90% quantiles of VV, VH; CON, ENT, and COR calculated from the above bands); Latitude and longitude; elevation, aspect, and slope derived from SRTM data |
2 | S2 | Spectral-temporal features derived from Sentinel-2 MSI imagery (10%, 25%, 50%, 75%, and 90% quantiles of B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12, NDVI, NDWI, MNDWI, PSRI1, PSRI2, PSRI3, and PSRI4; CON, ENT, and COR calculated from the above bands); Latitude and longitude; elevation, aspect, and slope derived from SRTM data |
3 | S3 | Spectral/backscatter-temporal features derived from a combination of Sentinel-1 and Sentinel-2 data (10%, 25%, 50%, 75%, and 90% quantiles of B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12, NDVI, NDWI, MNDWI, PSRI1, PSRI2, PSRI3, PSRI4, VV, and VH; CON, ENT, and COR calculated from all the above bands); Latitude and longitude; elevation, aspect, and slope derived from SRTM data |
S1 | S2 | S3 | |
---|---|---|---|
PA (%) | 87 | 90 | 94 |
UA (%) | 89 | 89 | 94 |
Area of Mangrove Patches (ha) | Percentage in Total Area of Small Mangrove Patches (%) | Percentage in the Whole Mangrove Area of Province (%) | |
---|---|---|---|
Macao | 0.7 | 0.04 | 8.8 |
Fujian | 61.8 | 3.56 | 11.4 |
Guangdong | 818.6 | 47 | 10.5 |
Guangxi | 441.6 | 25.4 | 6.3 |
Hainan | 344.3 | 19.8 | 8.8 |
Taiwan | 47.4 | 2.7 | 16.7 |
Hong Kong | 20.7 | 1.2 | 4.7 |
Zhejiang | 6.0 | 0.3 | 46.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Xu, N.; Liang, J.; Li, Z.; Chen, L.; Zhao, F. Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China. Remote Sens. 2020, 12, 3120. https://doi.org/10.3390/rs12193120
Hu L, Xu N, Liang J, Li Z, Chen L, Zhao F. Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China. Remote Sensing. 2020; 12(19):3120. https://doi.org/10.3390/rs12193120
Chicago/Turabian StyleHu, Luojia, Nan Xu, Jian Liang, Zhichao Li, Luzhen Chen, and Feng Zhao. 2020. "Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China" Remote Sensing 12, no. 19: 3120. https://doi.org/10.3390/rs12193120
APA StyleHu, L., Xu, N., Liang, J., Li, Z., Chen, L., & Zhao, F. (2020). Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China. Remote Sensing, 12(19), 3120. https://doi.org/10.3390/rs12193120