Inter-Calibration of AMSU-A Window Channels
"> Figure 1
<p>Geographical distribution of 23.8 GHz brightness temperature difference where global SNOs occur between (<b>a</b>) N15 and N16, (<b>b</b>) N17 and MOA, (<b>c</b>) N18 and N19. (<b>d</b>) shows normalized histogram of the brightness temperature difference of the three pairs. The SNO is defined as observation from two satellites with time difference within 50 s, and distance within 50 km (NOAA-18 vs. NOAA-19 pair needs larger distance as 75 km). The color bar of ΔTB and associated normalized histogram of these three cases are illustrated in the lower right panel. In the labels of the figures, N15 is short for NOAA-15, and MOA is short for MetOP-A.</p> "> Figure 1 Cont.
<p>Geographical distribution of 23.8 GHz brightness temperature difference where global SNOs occur between (<b>a</b>) N15 and N16, (<b>b</b>) N17 and MOA, (<b>c</b>) N18 and N19. (<b>d</b>) shows normalized histogram of the brightness temperature difference of the three pairs. The SNO is defined as observation from two satellites with time difference within 50 s, and distance within 50 km (NOAA-18 vs. NOAA-19 pair needs larger distance as 75 km). The color bar of ΔTB and associated normalized histogram of these three cases are illustrated in the lower right panel. In the labels of the figures, N15 is short for NOAA-15, and MOA is short for MetOP-A.</p> "> Figure 2
<p>Smoothed brightness temperature differences of SNO pairs between AMSU-A onboard N15 with N16 through N19 and MetOP-A, from their operational time till the end of 2010 for (<b>a</b>) 23.8, (<b>b</b>) 31.4, (<b>c</b>) 50.3 and (<b>d</b>) 89 GHz. The typical uncertainty on the difference is about the same order of the difference. (<b>e</b>) Shows number of SNO matchups between N15 and other satellites, in the logarithm scale.</p> "> Figure 2 Cont.
<p>Smoothed brightness temperature differences of SNO pairs between AMSU-A onboard N15 with N16 through N19 and MetOP-A, from their operational time till the end of 2010 for (<b>a</b>) 23.8, (<b>b</b>) 31.4, (<b>c</b>) 50.3 and (<b>d</b>) 89 GHz. The typical uncertainty on the difference is about the same order of the difference. (<b>e</b>) Shows number of SNO matchups between N15 and other satellites, in the logarithm scale.</p> "> Figure 3
<p>Scatter plot between NOAA-15 and NOAA-16 SNO brightness temperature for 23.8 GHz channel under various ranges of NEΔT, to test the brightness temperature contrast (BTC) threshold.</p> "> Figure 4
<p>Warm target temperature variation between AMSU-A onboard N15 and N16, from their operational time through 2010 for (<b>a</b>) 23.8, (<b>b</b>) 31.4, (<b>c</b>) 50.3, and (<b>d</b>) 89 GHz. Note: the only observations during their SNO period are shown to decrease the sampling.</p> "> Figure 5
<p>Iterative search for <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mrow> <mi>N</mi> <mn>15</mn> </mrow> </msub> </mrow> </semantics></math> of 23.8 GHz channel. The average line is the major criterion to select the optimal <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mrow> <mi>N</mi> <mn>15</mn> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 6
<p>The tropical ocean mean brightness temperature time series of 50.3 GHz channel onboard NOAA-16 versus NOAA-15 displays an upper trend (black curve), a new time series (blue curve) is formed through removing the trend line.</p> "> Figure 7
<p>Characterization of the nonlinearity of 89 GHz channel of NOAA-15 from SNO pairs of NOAA-15 and 16. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>a</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>l</mi> </msub> </mrow> </semantics></math> difference between NOAA-15 and 16. (<b>b</b>) <math display="inline"><semantics> <mi>μ</mi> </semantics></math> of NOAA-15 and -16, calculated from Equation (1).</p> "> Figure 8
<p>Amplitude of the standard deviation of <math display="inline"><semantics> <mrow> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>Tb</mi> <mo>′</mo> </mrow> </mrow> </semantics></math> (Equation (10)) using SNO pairs over the tropical ocean versus the 89 GHz channel of NOAA-15 frequency shift, <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>f</mi> </mrow> </semantics></math>.</p> "> Figure 9
<p>Tropical ocean mean Tb (<b>a</b>–<b>d</b>) and ΔTb (<b>e</b>–<b>h</b>) for 23.8 and 30.4 GHz channels. Left panels display the values of 1b before inter-satellite calibration, while the right panels are FCDRs after inter-satellite calibration.</p> "> Figure 10
<p>Tropical ocean mean Tb (<b>a</b>–<b>d</b>) and ΔTb (<b>e</b>–<b>h</b>) for 50.3 and 89.0 GHz channels. Left panels display the values of 1b before inter-satellite calibration, while the right panels are FCDRs after inter-satellite calibration.</p> "> Figure 11
<p>Retrieved tropical ocean products comparison, note different variables are used in different panels. Left panels display the products produced by MSPPS from 1b before inter-satellite calibration, while right panels are TCDR after inter-satellite calibration. Time series of total precipitable water (TPW) is shown in (<b>a</b>,<b>b</b>), the difference versus N15 is shown in (<b>e</b>,<b>f</b>); time series of cloud liquid water (CLW) is shown in (<b>c</b>,<b>d</b>), the difference versus N15 is shown in (<b>g</b>,<b>h</b>).</p> "> Figure 12
<p>Retrieved tropical land products comparison, note different variables are used in different panels. Left panels display the products produced by MSPPS from 1b before inter-satellite calibration, while right panels are TCDR after inter-satellite calibration. Time series of land surface temperature (Ts) is shown in (<b>a</b>,<b>b</b>), the difference versus N15 is shown in (<b>e</b>,<b>f</b>); time series of land surface emissivity of 50.3 GHz channel (Emis<sub>50</sub>) is shown in (<b>c</b>,<b>d</b>), the difference versus N15 is shown in (<b>g</b>,<b>h</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sno Overview
2.1.1. Temporal Features and Number of SNO Pairs
2.1.2. Spatial Features
2.1.3. Brightness Temperature Time Series of SNO Pairs
2.1.4. Sensitivity Test of Brightness Temperature Difference
2.2. Warm Target Contamination and Correction
2.2.1. Identification of Warm Target Contamination
2.2.2. Correction Utilizing Integrated Microwave Inter-Calibration Approach
2.3. Other Satellite Specific Corrections
2.3.1. Slope Correction on 50.3 GHz, NOAA-16
2.3.2. Possible Frequency Shift in 89 GHz, NOAA-15
3. Results
3.1. Fundamental CDR
3.2. Thematic CDR
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Research Council. Climate Data Records from Environmental Satellites; National Research Council of the National Academies: Washington, DC, USA, 2004; p. 150.
- Goldberg, M.; Ohring, G.; Butler, J.; Cao, C.; Datla, R.; Doelling, D.; Gärtner, V.; Hewison, T.; Iacovazzi, B.; Kim, D.; et al. The global space-based inter-calibration system. Bull. Am. Meteorol. Soc. 2011, 92, 467–475. [Google Scholar] [CrossRef]
- Hewison, T.J.; Wu, X.; Yu, F.; Tahara, Y.; Koenig, M. GSICS Inter-Calibration of Infrared Channels of Geostationary Imagers using Metop/IASI. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1160–1170. [Google Scholar] [CrossRef]
- Chander, G.; Hewison, T.J.; Fox, N.; Wu, X.; Xiong, X.; Blackwell, W.J. Overview of intercalibration of satellite instruments. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1056–1080. [Google Scholar] [CrossRef]
- Iacovazzi, R.A., Jr.; Cao, C.Y. Reducing uncertainties of SNO-estimated inter-satellite AMSU-A brightness temperature biases for surface-sensitive channels. J. Atmos. Ocean. Technol. 2008, 25, 1048–1054. [Google Scholar] [CrossRef]
- Yang, S.; Weng, F.; Yan, B.; Sun, N.; Goldberg, M. Special Sensor Microwave Imager (SSM/I) intersonsor calibration using s simultaneous conical overpass technique. J. Appl. Meteorol. Climatol. 2011, 50, 77–95. [Google Scholar] [CrossRef]
- Ruf, C.S. Detection of calibration drifts in spaceborne microwave radiometers using a vicarious cold reference. IEEE Trans. Geosci. Remote Sens. 2000, 38, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.T.; Ruf, C.S. Determination of an Amazon hot reference target for the on-orbit calibration of microwave radiometers. J. Atmos. Ocean. Technol. 2005, 22, 1340–1352. [Google Scholar] [CrossRef] [Green Version]
- Wilheit, T.; Berg, W.; Jones, L.; Kroodsma, R.; McKague, D.; Ruf, C.; Sapiano, M. A consensus calibration based on TMI and WindSat. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 2641–2644. [Google Scholar]
- Sapiano, M.R.P.; Berg, W.K.; McKague, D.S.; Kummerow, C.D. Toward an intercalibrated fundamental climate data record of the SSM/I sensors. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1492–1503. [Google Scholar] [CrossRef]
- Cardinali, C. Data Assimilation: Observation Impact on the Short Range Forecast. ECMWF Lecture Notes. Available online: https://software.ecmwf.int/wiki/download/attachments/31064618/ObservationImpactForecast.pdf (accessed on 9 September 2020).
- Ferraro, R.R.; Weng, F.; Grody, N.; Zhao, L.; Meng, H.; Kongoli, C.; Pellegrino, P.; Qiu, S.; Dean, C. NOAA operational hydrological products derived from the AMSU. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1036–1049. [Google Scholar] [CrossRef]
- Boukabara, S.A.; Garrett, K.; Chen, W.; Iturbide-Sanchez, F.; Grassotti, C.; Kongoli, C.; Chen, R.; Liu, Q.; Yan, B.; Weng, F.; et al. MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3249–3272. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Moradi, I.; Meng, H.; Ferraro, R.R.; Bilanow, S. Correcting geolocation errors for microwave instruments aboard NOAA satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3625–3637. [Google Scholar] [CrossRef]
- Yang, W.; Meng, H.; Ferraro, R.R.; Moradi, I.; Devaraj, C. Cross scan asymmetry of AMSU-A window channels: Characterization, correction and verification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1514–1530. [Google Scholar] [CrossRef]
- Zou, C.Z.; Wang, W. Inter-satellite calibration of AMSU-A observations for weather and climate applications. J. Geophys. Res. 2011, 116, D23113. [Google Scholar] [CrossRef]
- Zou, C.Z.; Goldberg, M.; Cheng, Z.; Grody, N.; Sullivan, J.; Cao, C.; Tarpley, D. Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J. Geophys. Res. 2006, 111, D19114. [Google Scholar] [CrossRef] [Green Version]
- Christy, J.R.; Spencer, R.W.; Norris, W.B.; Braswell, W.D.; Parker, D.E. Error estimates of version 5.0 of MSU-AMSU bulk atmospheric temperature. J. Atmos. Ocean. Technol. 2003, 20, 613–629. [Google Scholar] [CrossRef]
- Mears, C.A.; Wentz, F.J. Construction of the Remote Sensing Systems V3.2 atmospheric temperature records from the MSU and AMSU microwave sounders. J. Atmos. Ocean. Technol. 2009, 26, 1040–1056. [Google Scholar] [CrossRef] [Green Version]
- Robertson, F.R.; Bosilovich, M.G.; Chen, J.; Miller, T.L. The effect of satellite observing system changes on MERRA water and energy fluxes. J. Clim. 2011, 24, 5197–5217. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Weinreb, M.; Xu, H. Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Ocean. Technol. 2004, 21, 537–542. [Google Scholar] [CrossRef]
- Cao, C.; Xu, H.; Sullivan, J.; McMillin, L.; Ciren, P.; Hou, Y.T. Inter-satellite radiance biases for the High-Resolution infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from simultaneous nadir observations. J. Atmos. Ocean. Technol. 2005, 22, 381–395. [Google Scholar] [CrossRef]
- Wang, L.; Goldberg, M.; Wu, X.; Cao, C.; Iacovazzi, R.; Yu, F.; Li, Y. Consistency assessment of Atmospheric Infrared Sounder and Infrared Atmospheric Sounding Interferometer radiances: Double differences versus simultaneous nadir overpasses. J. Geophys. Res. 2011, 116, D11. [Google Scholar] [CrossRef]
- POSE Operational Status–POSE Status–OSPO. Available online: www.ospo.noaa.gov/Operations/POES/status.html (accessed on 9 September 2020).
- John, V.O.; Holl, G.; Buehler, S.A.; Candy, B.; Saunders, R.W.; Parker, D.E. Understanding intersatellite biases of microwave humidity sounders using global simultaneous nadir overpasses. J. Geophys. Res. 2012, 117, D02305. [Google Scholar] [CrossRef] [Green Version]
- Mo, T. Prelaunch calibration of the Advanced Microwave Sounding Unit-A for NOAA-K. IEEE Trans. Microw. Theory Tech. 1996, 44, 1460–1469. [Google Scholar] [CrossRef]
- Mo, T.; Kigawa, S. A study of lunar contamination and on-orbit performance of the NOAA-18 Advanced Microwave Sounding Unit-A. J. Geophys. Res. 2007, 112, D20124. [Google Scholar] [CrossRef]
- Mo, T. AMSU-A antenna pattern corrections. IEEE Trans. Geosci. Remote Sens. 1999, 37, 103–112. [Google Scholar]
- Zou, C.Z.; Gao, M.; Goldberg, M. Error structure and atmospheric temperature trends in observations from the Microwave sounding Unit. J. Clim. 2009, 22, 1661–1681. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.Z.; Wang, W. Stability of the MSU-derived atmospheric temperature trend. J. Atmos. Ocean. Technol. 2010, 27, 1960–1971. [Google Scholar] [CrossRef]
- Lu, Q.; Bell, W. Characterizing Channel Center Frequencies in AMSU-A and MSU Microwave Sounding Instruments. J. Atmos. Ocean. Technol. 2014, 31, 1713–1732. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Van Delst, P.; Liu, Q.; Weng, F.; Yan, B.; Treadon, R.; Derber, J. JCSDA Community Radiative Transfer Model (CRTM)—Version 1; NOAA Technical Report NESDIS 122; U.S. DOC NOAA: Washington, DC, USA, 2006.
- Meissner, T.; Wentz, F.J. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3004–3026. [Google Scholar] [CrossRef]
- Norouzi, H.; Rossow, W.; Temimi, M.; Prigent, C.; Azarderakhsh, M.; Boukabara, S.; Khanbilvardi, R. Using microwave brightness temperature diurnal cycle to improve emissivity retrievals over land. Remote Sens. Environ. 2012, 123, 470–482. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Zou, X.; Weng, F. Use of Allan Deviation for characterizing satellite microwave sounder noise equivalent differential temperature (NEDT). IEEE Geosci. Remote Sens. Lett. 2015, 12, 2477–2480. [Google Scholar] [CrossRef]
- Ferraro, R.R.; Nelson, B.R.; Smith, T.; Prat, O.P. The AMSU-based hydrological bundle climate data record—Description and comparison with other data sets. Remote Sens. 2018, 10, 1640. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; John, V.O.; Zhao, X.; Lu, H.; Knapp, K.R. Satellite Climate Data Records: Development, Applications, and Societal Benefits. Remote Sens. 2016, 8, 331. [Google Scholar] [CrossRef] [Green Version]
Launch Date | Decommission Date | Altitude (km) | Period (min) | Inclination (deg) | Precession Rate (min/mon) | |
---|---|---|---|---|---|---|
NOAA-15 | 05/13/1998 | 807 | 101.10 | 98.5 | 1.05 | |
NOAA-16 | 09/21/2000 | 06/09/2014 | 849 | 102.00 | 99.0 | 3.00 |
NOAA-17 | 06/24/2002 | 04/10/2013 | 810 | 101.20 | 98.7 | −4.62 |
NOAA-18 | 05/20/2005 | 854 | 102.12 | 98.7 | 3.52 | |
MetOP-A | 10/19/2006 | 817 | 101.36 | 98.7 | ||
NOAA-19 | 02/06/2009 | 870 | 102.14 | 98.7 | 0.77 |
Central Frequency (GHz) | ||||
---|---|---|---|---|
Channel 1 | Channel 2 | Channel 3 | Channel 15 | |
NOAA-15 | 23.800013593 | 31.399992238 | 50.299988043 | 89.000016571 |
NOAA-16 | 23.800013593 | 31.399992238 | 50.299988043 | 89.000016571 |
NOAA-17 | 23.799204154 | 31.399662466 | 50.299178603 | 89.000076529 |
NOAA-18 | 23.799204154 | 31.399662466 | 50.299178603 | 88.999986591 |
MetOP-A | 23.799204154 | 31.399662466 | 50.299178603 | 89.000076529 |
NOAA-19 | 23.799204154 | 31.399662466 | 50.299178603 | 89.000076529 |
NOAA-16 | NOAA-17 | NOAA-18 | MetOP-A | NOAA-19 | |
---|---|---|---|---|---|
NOAA-15 | 1 (8.16) | 4.5 (104) | 1 (7.31) | 1 (31.7) | 1 (7.14) |
NOAA-16 | 1 (8.44) | 3 (82.0) | 1 (11.2) | 2 (66.0) | |
NOAA-17 | 1 (7.66) | 2 (40.0) | 1 (7.52) | ||
NOAA-18 | 1 (9.81) | 8 (326.0) | |||
MetOP-A | 1 (9.62) |
Correlation Coefficients | 23.8 GHz | 31.4 GHz | 50.3 GHz | 89 GHz |
---|---|---|---|---|
(NOBS) | (53,531) | (53,531) | (53,534) | (53,506) |
Distance | 0.19 | 0.18 | 0.15 | 0.18 |
S1 * BTC | 0.53 | 0.53 | 0.47 | 0.43 |
S2 * BTC | 0.55 | 0.55 | 0.5 | 0.44 |
Time Difference | −0.01 | −0.01 | −0.01 | −0.01 |
Ch # | NOAA-15 | NOAA-16 | NOAA 17 | NOAA-18 | MetOP A | NOAA-19 | |
---|---|---|---|---|---|---|---|
1 | −3.00870 | −7.25050 | −7.22996 | −0.88067 | −0.98053 | 0.10012 | |
2 | −1.05123 | −3.35409 | −2.84701 | 1.51212 | −1.28394 | −2.30045 | |
3 | −2.37781 | −2.31567 | −2.20964 | −2.09040 | −2.62705 | −1.28555 | |
15 | 0 | −0.16528 | −0.25743 | 0.36618 | 0.21446 | 0.25637 | |
1 | 0 | −3.874 × | −5.459 × | 1.675 × | −4.635 × | −3.931 × | |
2 | 0 | −6.009 × | −6.199 × | −2.792 × | −5.270 × | −4.772 × | |
3 | 0 | −1.496 × | −1.750 × | 1.051 × | −5.953 × | −4.744 × | |
15 | 0 | 0 | −7.220 × | −2.927 × | −6.715 × | −2.017 × | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | |
2 | 0 | 0 | 0 | 0 | 0 | 0 | |
3 | 0 | 1.448 × | 0 | 0 | 0 | 0 | |
15 | 0 | 0 | 0 | 0 | 0 | 0 |
Before | After | |||||||
---|---|---|---|---|---|---|---|---|
Channel | 1 | 2 | 3 | 15 | 1 | 2 | 3 | 15 |
N16-N15 | 0.374 | 0.263 | 0.267 | 0.315 | 0.217 | 0.193 | 0.126 | 0.227 |
N17-N15 | 0.285 | 0.217 | 0.191 | 0.225 | 0.191 | 0.191 | 0.171 | 0.132 |
N18-N15 | 0.386 | 0.259 | 0.168 | 0.337 | 0.239 | 0.197 | 0.13 | 0.242 |
M02-N15 | 0.37 | 0.384 | 0.167 | 0.328 | 0.215 | 0.207 | 0.108 | 0.227 |
N19-N15 | 0.424 | 0.276 | 0.174 | 0.374 | 0.263 | 0.187 | 0.115 | 0.208 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Meng, H.; Ferraro, R.R.; Chen, Y. Inter-Calibration of AMSU-A Window Channels. Remote Sens. 2020, 12, 2988. https://doi.org/10.3390/rs12182988
Yang W, Meng H, Ferraro RR, Chen Y. Inter-Calibration of AMSU-A Window Channels. Remote Sensing. 2020; 12(18):2988. https://doi.org/10.3390/rs12182988
Chicago/Turabian StyleYang, Wenze, Huan Meng, Ralph R. Ferraro, and Yong Chen. 2020. "Inter-Calibration of AMSU-A Window Channels" Remote Sensing 12, no. 18: 2988. https://doi.org/10.3390/rs12182988
APA StyleYang, W., Meng, H., Ferraro, R. R., & Chen, Y. (2020). Inter-Calibration of AMSU-A Window Channels. Remote Sensing, 12(18), 2988. https://doi.org/10.3390/rs12182988