Analysis of the Spatiotemporal Changes of Ice Sheet Mass and Driving Factors in Greenland
"> Figure 1
<p>Map and topography of the Greenland in this study.</p> "> Figure 2
<p>Monthly mass change of Greenland from January 2003 to December 2015 estimated based on the GRACE solution of the CSR processing center. The blue line, green line and red curve represent the mass change of the time series, and the best fitting of linear and quadratic trend, respectively.</p> "> Figure 3
<p>(<b>a</b>) and (<b>b</b>) represented monthly and seasonal changes in the mass of the Greenland ice sheet from January 2003 to December 2015, respectively.</p> "> Figure 4
<p>Spatial distribution of annual change trend of GRACE ice sheet mass in Greenland from 2003 to 2015. Note: Lattice point representation has passed the M–K test of 95% confidence interval.</p> "> Figure 5
<p>Spatial distribution (<b>a</b>,<b>b</b>) and time coefficient (<b>c</b>,<b>d</b>) change of the first and second EOF modes. Note: The time coefficients and EOF variables in the figure indicate relative size and are dimensionless.</p> "> Figure 6
<p>Annual changes of GRACE ice sheet mass and land surface temperature in Greenland from 2003 to 2015.</p> "> Figure 7
<p>Spatial distribution of annual change trend of GHCN CAMS land surface temperature in Greenland from 2003 to 2015. Note: Lattice point representation passed the M–K test of 95% confidence interval.</p> "> Figure 8
<p>Continuous wavelet transform with average mass and land surface temperature represented by (<b>a</b>) and (<b>b</b>) from 2003 to 2015.</p> "> Figure 9
<p>Cross wavelet transform of ice sheet mass and land surface temperature fluctuations. Arrows indicate relative phase relations, where straight-up arrows represent ice sheet changes, and land surface temperature shows an anti-phase relationship.</p> "> Figure 10
<p>XWT-based semblance value is the closest to one cpy outside the COI. Red dashed lines represent the COI, which limits the region not affected by edge effects.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. GRACE Data
2.3. Land Surface Temperature data
3. Methods
3.1. Theil–Sen Median Trend Analysis
3.2. Mann–Kendall (MK) Trend Test
3.3. Rotated EOF Method
3.4. Continuous and Cross Wavelet Transform
4. Results and Discussion
4.1. Time Variation Analysis
4.1.1. Time Series and Change Trends
4.1.2. Monthly Mean and Seasonal Change
4.2. Spatial Change Analysis
4.3. EOF Analysis
4.4. Relationship between Temperature and Ice Sheet Mass
4.4.1. Spatiotemporal Contrastive Analysis
4.4.2. Wavelet Transform Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, Y.D.; E, D.C.; Chao, D.B. The Inversion of Ice Mass Change in Greenland Ice Sheet Using GRACE Data. Geomat. Inf. Sci. Wuhan Univ. 2009, 34, 961–964. [Google Scholar]
- Shepherd, A.; Ivins, E.R.; Geruo, A.; Barletta, V.R.; Bentley, M.J.; Bettadpur, S.; Briggs, K.H.; Bromwich, D.H.; Forsberg, R.; Galin, N.; et al. A Reconciled Estimate of Ice-Sheet Mass Balance. Science 2012, 338, 1183–1189. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Aschwanden, A.; Bjørk, A.A.; Wahr, J.; Kjeldsen, K.K.; Kjær, K.H. Greenland ice sheet mass balance: A review. Rep. Prog. Phys. 2015, 78, 046801. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Methods of inferring regional surface mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J. Geophys. Res. Solid Earth 2002, 107, 3–13. [Google Scholar] [CrossRef]
- Tapley, B.D. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, B.F. On inversion for mass distribution from global (time-variable) gravity field. J. Geodyn. 2005, 39, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.M. Time Variable Gravity from Satellites. In Treatise on Geophysics; Elsevier Science: Amsterdam, The Netherlands, 2007; pp. 213–237. [Google Scholar]
- Kumar, S.V.; Zaitchik, B.F.; Peters-Lidard, C.D.; Rodell, M.; Reichle, R.; Li, B.; Jasinski, M.; Mocko, D.; Getirana, A.; De Lannoy, G.; et al. Assimilation of gridded GRACE terrestrial water storage estimates in the North American Land Data Assimilation System. J. Hydrometeorol. 2016, 17, 1951–1972. [Google Scholar] [CrossRef]
- Zhou, H.; Luo, Z.; Tangdamrongsub, N.; Wang, L.; He, L.; Xu, C.; Li, Q. Characterizing drought and flood events over the Yangtze River Basin using the HUST-Grace2016 solution and ancillary data. Remote Sens. 2017, 9, 1100. [Google Scholar] [CrossRef]
- Nie, N.; Zhang, W.; Chen, H.; Guo, H. A Global Hydrological Drought Index Dataset Based on Gravity Recovery and Climate Experiment (GRACE) Data. Water Resour. Manag. 2017, 32, 1275–1290. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, X.; Pan, Y.; Zhang, J.; Liu, X. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China. Sci. Total Environ. 2018, 634, 727–738. [Google Scholar] [CrossRef]
- Hu, K.; Awange, J.L.; Forootan, E.; Goncalves, R.M.; Fleming, K. Hydrogeological characterisation of groundwater over Brazil using remotely sensed and model products. Sci. Total Environ. 2017, 599–600, 372–386. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhong, M.; Feng, W.; Zhang, Z.; Shen, Y.; Wu, D. Groundwater Depletion in the West Liaohe River Basin, China and Its Implications Revealed by GRACE and In Situ Measurements. Remote Sens. 2018, 10, 493. [Google Scholar] [CrossRef]
- Feng, W.; Shum, C.; Zhong, M.; Pan, Y. Groundwater Storage Changes in China from Satellite Gravity: An Overview. Remote Sens. 2018, 10, 674. [Google Scholar] [CrossRef]
- Long, D.; Pan, Y.; Zhou, J.; Chen, Y.; Hou, X.; Hong, Y.; Scanlon, B.R.; Longuevergne, L. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 2017, 192, 198–216. [Google Scholar] [CrossRef]
- Khaki, M.; Forootan, E.; Kuhn, M.; Awange, J.; van Dijk, A.I.J.M.; Schumacher, M.; Sharifi, M.A. Determining water storage depletion within Iran by assimilating GRACE data into the W3RA hydrological model. Adv. Water Resour. 2018, 114, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Flechtner, F. Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? Water Resour. Res. 2017, 53, 2431–2466. [Google Scholar]
- Ran, J.; Ditmar, P.; Klees, R.; Farahani, H.H. Statistically optimal estimation of Greenland Ice Sheet mass variations from GRACE monthly solutions using an improved mascon approach. J. Geod. 2018, 92, 299–319. [Google Scholar] [CrossRef]
- Murray, T. Climate change: Greenland’s ice on the scales. Nature 2006, 443, 277–278. [Google Scholar] [CrossRef]
- Yang, Q.; Dixon, T.H.; Myers, P.G.; Bonin, J.; Chambers, D.; van den Broeke, M.R. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat. Commun. 2016, 7, 10525. [Google Scholar] [CrossRef] [Green Version]
- Alexander, P.M.; Tedesco, M.; Schlegel, N.J.; Luthcke, S.B.; Fettweis, X.; Larour, E. Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003–2012). Cryosphere 2016, 10, 1259–1277. [Google Scholar] [CrossRef]
- Schlegel, N.J.; Wiese, D.N.; Larour, E.Y.; Watkins, M.M.; Box, J.E.; Fettweis, X.; van den Broeke, M.R. Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003–2012). Cryosphere 2016, 10, 1–35. [Google Scholar] [CrossRef]
- Xu, Z.; Schrama, E.J.O.; van der Wal, W.; van den Broeke, M.; Enderlin, E.M. Improved GRACE regional mass balance estimates of the Greenland ice sheet cross-validated with the input-output method. Cryosphere 2016, 10, 895–912. [Google Scholar] [CrossRef]
- Flowers, G.E. Hydrology and the future of the Greenland Ice Sheet. Nat. Commun. 2018, 9, 2729. [Google Scholar] [CrossRef]
- Velicogna, I.; Wahr, J. Acceleration of Greenland ice mass loss in spring 2004. Nature 2006, 443, 329–331. [Google Scholar] [CrossRef] [Green Version]
- Velicogna, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett. 2009, 36, 158–168. [Google Scholar] [CrossRef]
- Velicogna, I.; Sutterley, T.C.; van den Broeke, M.R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys. Res. Lett. 2014, 41, 8130–8137. [Google Scholar] [CrossRef] [Green Version]
- Ramillien, G.; Lombard, A.; Cazenave, A.; Ivins, E.R.; Llubes, M.; Remy, F.; Biancale, R. Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob. Planet Chang. 2006, 53, 198–208. [Google Scholar] [CrossRef]
- Slobbe, D.C.; Ditmar, P.G.; Lindenbergh, R.C. Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data. Geophys. J. Int. 2010, 176, 95–106. [Google Scholar] [CrossRef]
- Baur, O.; Kuhn, M.; Featherstone, W.E. GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. J. Geophys. Res. Solid Earth 2009, 114, 258–266. [Google Scholar] [CrossRef]
- Joodaki, G.; Nahavandchi, H. Mass balance and mass loss acceleration of the Greenland ice sheet (2002–2011) from GRACE gravity data. J. Geod. Sci. 2012, 2, 156–161. [Google Scholar] [CrossRef]
- Lu, F.; You, W.; Fan, D.M. Analysis of Greenland Ice Mass Change Based on GRACE. J. Geod. Geodyn. 2015, 33, 27–30. [Google Scholar]
- Forsberg, R.; Sørensen, L.; Simonsen, S. Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level. Surv. Geophys. 2017, 38, 89–104. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D. Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 2006, 313, 1958–1960. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D. Interannual variability of Greenland ice losses from satellite gravimetry. J. Geophys. Res. Solid Earth 2011, 116, B07406. [Google Scholar] [CrossRef]
- Wouters, B.; Chambers, D.; Schrama, E.J.O. GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett. 2008, 35, 295–296. [Google Scholar] [CrossRef]
- Zhu, C.D.; Lu, Y.; Shi, H.L.; Zhang, Z.Z.; Du, Z.L.; Tu, Y.; Gao, C.C. Quality Changes of the Greenland Ice Sheet Based on GRACE Satellite Data. Hydrogr. Surv. Chart. 2013, 33, 27–30. [Google Scholar]
- Shamshiri, R.; Nahavandchi, H.; Joodaki, G. Seasonal variation analysis of Greenland ice mass time-series. Acta Geod. Geophys. 2017, 53, 1–14. [Google Scholar] [CrossRef]
- Goldhar, C.; Ford, J.D. Climate Change Vulnerability and Food Security in Qeqertarsuaq, Greenland. In Community Adaptation and Vulnerability in Arctic Regions; Springer: Berlin, Germany, 2010; pp. 263–283. [Google Scholar]
- Bamber, J.L.; Ekholm, S.; Krabill, W.B. A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data. J. Geophys. Res. B Solid Earth 2001, 106, 6733–6745. [Google Scholar] [CrossRef] [Green Version]
- Save, H.; The CSR Level-2 Team. GRACE RL06 Reprocessing and Results from CSR, EGU2018-10697, EGU General Assembly 2012. Available online: https://bit.ly/2Koa1aK (accessed on 3 November 2018).
- Göttl, F.; Schmidt, M.; Seitz, F. Mass-related excitation of polar motion: An assessment of the new RL06 GRACE gravity field models. Earth Planets Space 2018, 70, 195. [Google Scholar] [CrossRef]
- Chao, B.F. The geoid and earth rotation. In Geophysical Interpretations of Geoid; Vanicek, P., Christou, N., Eds.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Farrell, W.E. Deformation of the Earth by surface loads. Rev. Geophys. 1972, 10, 761–797. [Google Scholar] [CrossRef]
- Chen, J.L.; Rodell, M.; Wilson, C.R.; Famiglietti, J.S. Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys. Res. Lett. 2005, 32, L14405. [Google Scholar] [CrossRef]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. Solid Earth 2008, 113, B08410. [Google Scholar] [CrossRef]
- Geruo, A.; Wahr, J.; Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int. 2013, 192, 557–572. [Google Scholar]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33, L08402. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Blankenship, D.; Tapley, B.D. Accelerated Antarctic ice loss from satellite gravity measurements. Nat. Geosci. 2009, 2, 859–862. [Google Scholar] [CrossRef]
- Han, S.-C.; Shum, C.K.; Jekeli, C.; Kuo, C.-Y.; Wilson, C.; Seo, K.-W. Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys. J. Int. 2010, 163, 18–25. [Google Scholar] [CrossRef]
- Fan, Y.; van den Dool, H. A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res. Atmos. 2008, 113, D01103. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R. Non-parametric trend test for seasonal data with serial dependence. Water Resour. Res. 1984, 20, 727–732. [Google Scholar] [CrossRef]
- Jain, S.K.; Kumar, V.; Saharia, M. Analysis of rainfall and temperature trends in northeast India. Int. J. Climatol. 2013, 33, 968–978. [Google Scholar] [CrossRef]
- Yuan, L.H.; Jiang, W.G.; Shen, W.M.; Liu, Y.H.; Wang, W.J.; Tao, L.L.; Zheng, H.; Liu, X.F. The spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010. Acta Ecol. Sin. 2013, 33, 7798–7806. [Google Scholar]
- Liu, Z.F.; Wang, Y.C.; Yao, Z.J.; Kang, H.M. Trend and periodicity of precipitation, air temperature and runoff in the Taihu Lake Basin. J. Nat. Resour. 2011, 26, 1575–1584. [Google Scholar]
- Yue, S.; Hashino, M. Temperature Trends in Japan: 1900–1990. Theor. Appl. Climatol. 2003, 75, 15–27. [Google Scholar]
- Yang, P.; Xia, J.; Zhan, C.; Qiao, Y.; Wang, Y. Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015. Sci. Total Environ. 2017, 595, 218–228. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A. Influence of the Arctic Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach. J. Geophys. Res. Atmos. 2003, 108, D214677. [Google Scholar] [CrossRef]
- Xu, C. Investigating Mass Loading Contributors of Seasonal Oscillations in GPS Observations Using Wavelet Analysis. Pure Appl. Geophys. 2016, 173, 2767–2775. [Google Scholar] [CrossRef]
- Guo, J.; Li, W.; Yu, H.; Liu, Z.; Zhao, C.; Kong, Q. Impending ionospheric anomaly preceding the Iquique Mw8.2 earthquake in Chile on 2014 April 1. Geophys. J. Int. 2015, 203, 1461–1470. [Google Scholar] [CrossRef]
- Cooper, G.R.J.; Cowan, D.R. Comparing time series using wavelet-based semblance analysis. Comput. Geosci. 2008, 34, 95–102. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA; Englewood, IL, USA, 2002. [Google Scholar]
- Van den Broeke, M.; Bamber, J.; Ettema, J.; Rignot, E.; Schrama, E.; van de Berg, W.J.; van Meijgaard, E.; Velicogna, I.; Wouters, B. Partitioning recent Greenland mass loss. Science 2009, 326, 984–986. [Google Scholar] [CrossRef]
- Tomás, R.; Li, Z.; Lopez-Sanchez, J.M.; Liu, P.; Singleton, A. Using wavelet tools to analyse seasonal variations from InSAR time-series data: A case study of the Huangtupo landslide. Landslides 2015, 13, 437–450. [Google Scholar] [CrossRef]
- National Oceanography Center N. Crosswavelet and Wavelet Coherence. Available online: http://noc.ac.uk/usingscience/crosswavelet-wavelet-coherence (accessed on 28 November 2018).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, Y.; Yue, J.; Gao, W.; Li, Z.; Lu, D.; Xiang, Y.; Chen, J. Analysis of the Spatiotemporal Changes of Ice Sheet Mass and Driving Factors in Greenland. Remote Sens. 2019, 11, 862. https://doi.org/10.3390/rs11070862
Bian Y, Yue J, Gao W, Li Z, Lu D, Xiang Y, Chen J. Analysis of the Spatiotemporal Changes of Ice Sheet Mass and Driving Factors in Greenland. Remote Sensing. 2019; 11(7):862. https://doi.org/10.3390/rs11070862
Chicago/Turabian StyleBian, Yankai, Jianping Yue, Wei Gao, Zhen Li, Dekai Lu, Yunfei Xiang, and Jian Chen. 2019. "Analysis of the Spatiotemporal Changes of Ice Sheet Mass and Driving Factors in Greenland" Remote Sensing 11, no. 7: 862. https://doi.org/10.3390/rs11070862
APA StyleBian, Y., Yue, J., Gao, W., Li, Z., Lu, D., Xiang, Y., & Chen, J. (2019). Analysis of the Spatiotemporal Changes of Ice Sheet Mass and Driving Factors in Greenland. Remote Sensing, 11(7), 862. https://doi.org/10.3390/rs11070862