Automatic Detection of Small Icebergs in Fast Ice Using Satellite Wide-Swath SAR Images
"> Figure 1
<p>The Sentinel-1 image acquisitions used for automatic iceberg detection. The subimages with hatched outline are the regions used for testing and their colors match the corresponding acquisition.</p> "> Figure 2
<p>RGB composite from B4, B3, B2 bands of Sentinel-2 MSI showing manually detected icebergs in (<b>a</b>) smooth fast ice at Franz Josef Land on 4 April 2017 (image size 2800 by 1950 m) and (<b>b</b>) rough fast ice at Nord-Austlandet, Svalbard, on 10 April 2017 (image size 1100 by 800 m).</p> "> Figure 3
<p>A total of 2292 icebergs manually detected in Sentinel-2 image over Franz Josef Land on 4 April 2017. Grey areas are land. Iceberg positions located in the landmask may be due to geolocation errors or details such as bays that are not present in the landmask.</p> "> Figure 4
<p>Schematic overview of the algorithm for automatic iceberg detection using Sentinel-1 SAR data, and the validation of the algorithm using manual detections from Sentinel-2 MSI.</p> "> Figure 5
<p>Schematic representation of PDF fitting to the histogram of the data. The dark blue shaded area represents the TIP (see <a href="#sec3dot4dot4-remotesensing-11-00806" class="html-sec">Section 3.4.4</a>) and the hatched region represents the area corresponding to the PFA. <math display="inline"><semantics> <msub> <mi>T</mi> <mi mathvariant="sans-serif">Λ</mi> </msub> </semantics></math> is the threshold, <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math> are the lower and upper boundaries used to represent the background data respectively, and <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>b</mi> <mi>l</mi> <mi>o</mi> <mi>b</mi> </mrow> </msub> </semantics></math> is the value of the blob-detected pixel.</p> "> Figure 6
<p>(<b>a</b>) <math display="inline"><semantics> <msubsup> <mi>σ</mi> <mrow> <mi>H</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> </semantics></math>, (<b>b</b>) iDPolRAD filter. The scene is from Franz Josef Land on 4 April 2017, showing icebergs in frozen sea ice. The contrast between background intensity variations and icebergs is strongly enhanced after applying the iDPolRAD filter. The red hatched line shows the transect presented in <a href="#remotesensing-11-00806-f007" class="html-fig">Figure 7</a>.</p> "> Figure 7
<p>A transect from <a href="#remotesensing-11-00806-f006" class="html-fig">Figure 6</a> showing how the iDPolRAD filter enhances the difference between iceberg-value and background-values compared to HH and HV intensities.</p> "> Figure 8
<p>Detected blobs in comparison to manually detected icebergs for <math display="inline"><semantics> <mrow> <msub> <mi>τ</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>7</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>S</mi> <mi>M</mi> </msub> </semantics></math> = 0.1 over FJL on 4 April 2017. Grey areas are land. Blobs are classified according to <a href="#remotesensing-11-00806-t003" class="html-table">Table 3</a>.</p> "> Figure 9
<p>TIP values for all blob-detected pixels - both icebergs (orange) and non-icebergs (blue) for the Generalized Gamma distribution. These data includes both dates from the area of smooth ice (4 and 7 April 2017). Note that in (<b>a</b>) both axes are in log-scale, while in (<b>b</b>) only the <span class="html-italic">x</span>-axis is in logarithmic scale.</p> "> Figure 10
<p>Detection results using (<b>a</b>) pixel-by-pixel and (<b>b</b>) blob-detection as a first step. Red circles are manually detected icebergs, blue circles are true positive detected icebergs, and yellow circles are false alarms. Landmasks are white. Small bright dots are due to high iDPolRAD values.</p> "> Figure 11
<p>Relationships between backscattering coefficients at HH- and HV-polarization and the iDPolRAD for blob-detected icebergs and non-icebergs. Data are from (<b>a</b>) FJL, representing smooth fast ice, and (<b>b</b>) NA, representing rough fast ice.</p> "> Figure 12
<p>Backscattering coefficients of icebergs and their corresponding background at HV-polarization. Data are from (<b>a</b>) FJL, representing smooth fast ice, and (<b>b</b>) NA, representing rough fast ice. The orange line indicates where the iceberg value equals the background value.</p> "> Figure 13
<p>iDPolRAD values and backscattering coefficients at HH-polarization and HV-polarization vs incidence angle for blob detected pixels. Orange dots are true icebergs while blue stars are the corresponding background values. The images represents (<b>a</b>) smooth ice, and (<b>b</b>) rough ice, each containing both images for each test site. Note that the iDPolRAD values are a function of the background and we therefore only represent icebergs compared to the incidence angles. Note also that the iDPolRAD values are in log-scale.</p> ">
Abstract
:1. Introduction
2. Data
3. Methods
3.1. Overview
3.2. iDPolRAD
3.3. Blob-Detector
3.4. A Modified Constant False Alarm Rate Algorithm
3.4.1. The Modified CFAR Approach
3.4.2. Fitting of the Probability Density Functions
3.4.3. Quality and Robustness of Probability Density Functions
3.4.4. Determination of Thresholds for the Modified CFAR
4. Results
4.1. Detection Performance of the iDPolRAD-Filter
4.2. Blob Detection Results
4.3. PDF Fitting
4.3.1. Choosing
4.3.2. Representability and Quality of PDFs
4.3.3. TIP
4.4. Confusion Matrix
4.5. Comparing Detection Results with and without Blob Detection
4.6. Testing Algorithm for Different Resolutions
5. Discussion
6. Conclusions
7. Data Availability
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CFAR | Constant False Alarm Rate |
FJL | Franz Josef Land |
ENL | Equivalent Number of Looks |
EWS | Extra Wide Swath |
GEE | Google Earth Engine |
GEV | Generalized Extreme Value |
iDPolRAD | intensity Dual-Polarization Ratio Anomaly Detector |
IWS | Interferometric Wide Swath |
MSI | Multi Spectral Imager |
NA | Nord-Austlandet |
NESZ | Noise Equivalent Sigma Zero |
Probability Density Function | |
PFA | Probability of False Alarm |
SAR | Synthetic Aperture Radar |
TIP | Tail Integrated Probability |
References
- Jackson, C.R.; Apel, J.R. Synthetic Aperture Radar: Marine User’s Manual; US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service (NESDIS), Office of Research and Applications: Washington, DC, USA, 2004; p. 411. [Google Scholar]
- Wesche, C.; Dierking, W. Iceberg signatures and detection in SAR images in two test regions of the Weddell Sea, Antarctica. J. Glaciol. 2012, 58, 325–339. [Google Scholar] [CrossRef]
- Silva, T.A.; Bigg, G.R. Computer-based identification and tracking of Antarctic icebergs in SAR images. Remote Sens. Environ. 2005, 94, 287–297. [Google Scholar] [CrossRef]
- Power, D.; Youden, J.; Lane, K.; Randell, C.; Flett, D. Iceberg detection capabilities of RADARSAT synthetic aperture radar. Can. J. Remote Sens. 2001, 27, 476–486. [Google Scholar] [CrossRef]
- Williams, R.; Rees, W.; Young, N. A technique for the identification and analysis of icebergs in synthetic aperture radar images of Antarctica. Int. J. Remote Sens. 1999, 20, 3183–3199. [Google Scholar] [CrossRef]
- Willis, C.; Macklin, J.; Partington, K.; Teleki, K.; Rees, W.; Williams, R. Iceberg detection using ERS-1 synthetic aperture radar. Int. J. Remote Sens. 1996, 17, 1777–1795. [Google Scholar] [CrossRef]
- Norwegian Petroleum Directorate. NPD FactMaps Standard. Available online: http://gis.npd.no/Factmaps/html_21/ (accessed on 6 August 2018).
- Arctic Council. Arctic Marine Shipping Assessment 2009 Report; Arctic Council: Tromsø, Norway, 2009. [Google Scholar]
- Keghouche, I.; Counillon, F.; Bertino, L. Modeling dynamics and thermodynamics of icebergs in the Barents Sea from 1987 to 2005. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef]
- Sandven, S.; Babiker, M.; Kloster, K. Iceberg observations in the Barents Sea by radar and optical satellite images. In Proceedings of the ENVISAT Symposium, Montreux, Switzerland, 23–27 April 2007. [Google Scholar]
- National Snow and Ice Data Center. Cryosphere Glossary: Fast Ice. Available online: https://nsidc.org/cryosphere/glossary/term/fast-ice (accessed on 24 July 2018).
- Marino, A.; Dierking, W.; Wesche, C. A Depolarization Ratio Anomaly Detector to identify icebergs in sea ice using dual-polarization SAR images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5602–5615. [Google Scholar] [CrossRef]
- Gill, R.S. Operational Detection of Sea Ice Edges and Icebergs Using SAR. Can. J. Remote Sens. 2001, 27, 411–432. [Google Scholar] [CrossRef]
- Frost, A.; Ressel, R.; Lehner, S. Automated Iceberg Detection Using High-Resolution X-Band SAR Images. Can. J. Remote Sens. 2016, 42, 354–366. [Google Scholar] [CrossRef]
- Collecte Localisation Satellites (CLS). Sentinel-1 Product Definition; Report 2.7; European Space Agency: Frascati, Italy, 2016. [Google Scholar]
- European Space Agency. User Guide—Sentinel SAR—Level-1 Ground Range Detected. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-1-ground-range-detected (accessed on 11 October 2018).
- Korosov, A.; Hansen, M.; Dagestad, K.F.; Yamakawa, A.; Vines, A.; Riechert, M. Nansat: A scientist-orientated python package for geospatial data processing. J. Open Res. Softw. 2016, 4. [Google Scholar] [CrossRef]
- Miranda, N.; Meadows, P. Radiometric Calibration of S-1 Level-1 Products Generated by the S-1 IPF. 2015. Available online: https://Sentinel.Esa.Int/Doc./247904/685163/S1-Radiom.-Calibration-V1.0.Pdf (accessed on 10 October 2018).
- Carroll, M.L.; Townshend, J.R.; DiMiceli, C.M.; Noojipady, P.; Sohlberg, R.A. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth 2009, 2, 291–308. [Google Scholar] [CrossRef]
- Korosov, A.A.; Rampal, P. A combination of feature tracking and pattern matching with optimal parametrization for sea ice drift retrieval from SAR data. Remote Sens. 2017, 9, 258. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017. [Google Scholar] [CrossRef]
- Nunziata, F.; Migliaccio, M.; Brown, C.E. Reflection symmetry for polarimetric observation of man-made metallic targets at sea. IEEE J. Ocean. Eng. 2012, 37, 384–394. [Google Scholar] [CrossRef]
- Marino, A. A notch filter for ship detection with polarimetric SAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1219–1232. [Google Scholar] [CrossRef]
- Dierking, W.; Wesche, C. C-Band Radar Polarimetry—Useful for Detection of Icebergs in Sea Ice. IEEE Trans. Geosci. Remote Sens. 2014, 52, 25–37. [Google Scholar] [CrossRef]
- Scikit-Image. Blob Detection. Available online: http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_blob.html (accessed on 24 July 2018).
- Lindeberg, T. Feature detection with automatic scale selection. Int. J. Comput. Vis. 1998, 30, 79–116. [Google Scholar] [CrossRef]
- SciPy. Statistical Functions. Available online: https://docs.scipy.org/doc/scipy/reference/stats.html (accessed on 25 July 2018).
- Engineering Statistics Handbook. Kolmogorov–Smirnoc Goodness-of-Fit Test. Available online: https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm (accessed on 25 July 2018).
- Dierking, W. Mapping of Different Sea Ice Regimes Using Images From Sentinel-1 and ALOS Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1045–1058. [Google Scholar] [CrossRef]
- Dierking, W. Technical Assistance for the Deployment of Airborne SAR and Geophysical Measurements during the ICESAR 2007; Final Report—Part 2: Sea Ice; ESA-ESTEC: Noordwijk, The Netherlands, 2008. [Google Scholar]
Date (Year-Month-Day), Time | Region | S1-File | Part of Image [No of Rows, No of Columns] | Incidence Angle Range [] |
---|---|---|---|---|
2017-04-04 03:38:14 | FJL | S1A_EW_GRDM_1SDH_20170404T033814_ 20170404T033918_015989_01A5F5_FB23 | 3000 × 3000 | 36–43 |
2017-04-07 04:02:57 | FJL | S1A_EW_GRDM_1SDH_20170407T040257_ 20170407T040402_016033_01A74D_1347 | 2500 × 2000 | 28–35 |
2017-04-10 06:06:23 | NA | S1A_EW_GRDM_1SDH_20170410T060623_ 20170410T060727_016078_01A8B3_8486 | 4000 × 4000 | 30–40 |
2017-04-19 05:41:40 | NA | S1A_EW_GRDM_1SDH_20170419T054140_ 20170419T054244_016209_01ACB5_82A4 | 3000 × 4300 | 36–46 |
Date (Year-Month-Day), Time | Region | Ice Type [Fast Ice] | Number of Manually Detected Icebergs | T 12:00 UTC [C] |
---|---|---|---|---|
2017-04-04 11:46:41 | FJL | Smooth | 2292 | −20.7 |
2017-04-07 11:56:40 | FJL | Smooth | 2940 | −19.9 |
2017-04-10 13:47:25 | NA | Rough | 688 | −9.7 |
2017-04-19 14:17:39 | NA | Rough | 827 | −12.5 |
Name | Description |
---|---|
True Positives () | Pixels that are selected by automatic blob detection and are manually defined as icebergs |
False Positives () | Pixels that are selected by automatic blob detection but are not manually defined as icebergs |
False Negatives () | Pixels that are not selected by automatic blob detection but are manually defined as icebergs |
True Negatives () | Pixels that are not selected by automatic blob detection and are not manually defined as icebergs |
Equation | Parameters | |
---|---|---|
Gamma | a = shape parameter = inverse scale parameter | |
Generalized Gamma | a, c = shape parameter | |
Generalized Extreme Value | , if c = 0 | c = shape parameter |
Total = | Actual Iceberg | Actual Non-Iceberg |
---|---|---|
Predicted iceberg | ||
Predicted non-iceberg |
( = 0.1) | Time [s] | |||
---|---|---|---|---|
321 | 489 | 14,492 | 533 | |
413 | 400 | 28,090 | 2172 | |
677 | 187 | 81,390 | 18,498 |
() | Time [s] | |||
---|---|---|---|---|
0.1 (1 layer) | 413 | 400 | 28,090 | 2172 |
0.5 (1 layer) | 305 | 500 | 13,317 | 502 |
2–3 (2 layers) | 135 | 670 | 1505 | 12 |
Image Data Date (Year-Month-Day) Time | Part of Image [No of Rows, No of Columns] | Time [s] | |||
---|---|---|---|---|---|
2017-04-04 11:46:41 | 413 | 400 | 28,090 | 3000 × 3000 | 2172 |
2017-04-07 11:56:40 | 370 | 310 | 14,307 | 2500 × 2000 | 563 |
2017-04-10 13:47:25 | 65 | 47 | 148,299 | 4000 × 4000 | 54,880 |
2017-04-19 14:17:39 | 94 | 86 | 99,282 | 3000 × 4300 | 26,322 |
Gamma | Generalized Gamma | GEV | |
---|---|---|---|
61 × 61 | 0.21 ± 0.08 | 0.19 ± 0.06 | 0.19 ± 0.08 |
101 × 101 | 0.19 ± 0.08 | 0.16 ± 0.06 | 0.18 ± 0.07 |
141 × 141 | 0.19 ± 0.12 | 0.15 ± 0.07 | 0.17 ± 0.09 |
Gamma [%] | Generalized Gamma [%] | GEV [%] | |
---|---|---|---|
Full image | 0.28 | 0.17 | 0.19 |
Sub-images | 0.19 ± 0.12 | 0.15 ± 0.07 | 0.17 ± 0.09 |
PFA | ||||
---|---|---|---|---|
2017-04-04 | ||||
237 | 176 | 10,182 | 17,908 | |
178 | 235 | 2890 | 25,200 | |
151 | 262 | 1273 | 26,817 | |
2017-04-07 | ||||
184 | 186 | 4565 | 9742 | |
121 | 249 | 1685 | 12,622 | |
88 | 282 | 906 | 13401 | |
2017-04-10 | ||||
21 | 44 | 44,007 | 4292 | |
11 | 54 | 15,679 | 132,620 | |
10 | 55 | 7941 | 140,358 | |
2017-04-19 | ||||
34 | 60 | 26,445 | 72,837 | |
15 | 79 | 8590 | 90,692 | |
8 | 86 | 4240 | 95,042 |
Date (Year-Month-Day) | [%] | [%] | [%] |
---|---|---|---|
2017-04-04 | 94.2 | 21.9 | 78.1 |
2017-04-07 | 93.3 | 17.8 | 82.2 |
2017-04-10 | 99.9 | 9.7 | 90.3 |
2017-04-19 | 99.8 | 8.3 | 91.7 |
Acquisition Mode | |||
---|---|---|---|
Sentinel-1 EWS | 29 | 39 | 221 |
Sentinel-1 IWS | 34 | 51 | 426 |
Acquisition Mode | [%] | [%] | [%] |
---|---|---|---|
Sentinel-1 EWS | 41.6 | 20.6 | 79.4 |
Sentinel-1 IWS | 87.5 | 38.8 | 61.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soldal, I.H.; Dierking, W.; Korosov, A.; Marino, A. Automatic Detection of Small Icebergs in Fast Ice Using Satellite Wide-Swath SAR Images. Remote Sens. 2019, 11, 806. https://doi.org/10.3390/rs11070806
Soldal IH, Dierking W, Korosov A, Marino A. Automatic Detection of Small Icebergs in Fast Ice Using Satellite Wide-Swath SAR Images. Remote Sensing. 2019; 11(7):806. https://doi.org/10.3390/rs11070806
Chicago/Turabian StyleSoldal, Ingri Halland, Wolfgang Dierking, Anton Korosov, and Armando Marino. 2019. "Automatic Detection of Small Icebergs in Fast Ice Using Satellite Wide-Swath SAR Images" Remote Sensing 11, no. 7: 806. https://doi.org/10.3390/rs11070806
APA StyleSoldal, I. H., Dierking, W., Korosov, A., & Marino, A. (2019). Automatic Detection of Small Icebergs in Fast Ice Using Satellite Wide-Swath SAR Images. Remote Sensing, 11(7), 806. https://doi.org/10.3390/rs11070806