Suitability of Satellite-Based Precipitation Products for Water Balance Simulations Using Multiple Observations in a Humid Catchment
<p>Sketch map of the study area.</p> "> Figure 2
<p>Spatial distribution of mean daily precipitation estimates at 0.25° × 0.25° resolution in the Ganjiang Basin derived from (<b>a</b>) gauged data and five satellite-based precipitation products (<b>b</b>): CHIRPS; (<b>c</b>): CMORPH; (<b>d</b>): MSWEP; (<b>e</b>): PERSIANN; (<b>f</b>): TRMM.</p> "> Figure 3
<p>Comprehensive and qualitative evaluation of five satellite-based precipitation products (A to E are represented for CHIRPS, CMORPH, MSWEP, PERSIANN and TRMM, respectively) against gauge observations.</p> "> Figure 4
<p>Spatial distribution of relative bias values for five satellite-based precipitation products (<b>a</b>): CHIRPS; (<b>b</b>): CMORPH; (<b>c</b>): MSWEP; (<b>d</b>): PERSIANN; (<b>e</b>): TRMM, compared to gauged precipitation data.</p> "> Figure 5
<p>(<b>a</b>) POD and (<b>b</b>) FAR of satellite-based precipitation products versus gauged precipitation at different thresholds.</p> "> Figure 6
<p>Streamflow simulations derived by the gauged precipitation and satellite-based precipitation products under S0.</p> "> Figure 7
<p>Spatial distributions of simulated streamflow in the Ganjiang Basin derived by different precipitation inputs under six sets of scenarios. Under each scenario, the model parameters are calibrated based on the precipitation data with a red rectangle.</p> "> Figure 8
<p>Same as <a href="#remotesensing-11-00151-f007" class="html-fig">Figure 7</a>, but for evapotranspiration simulations.</p> "> Figure 9
<p>Performances of evapotranspiration simulations for the six simulation scenarios versus the MODIS evapotranspiration.</p> "> Figure 10
<p>Performance of evapotranspiration simulations for the six simulation scenarios versus the observed evapotranspiration.</p> "> Figure 11
<p>Same as <a href="#remotesensing-11-00151-f007" class="html-fig">Figure 7</a>, but for relative soil moisture.</p> "> Figure 12
<p>Performance of soil moisture change (SMC) simulations versus the observed SMC under the six scenarios.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Satellite-Based Products
2.2.2. Ground-Based Datasets
2.3. Methodology
2.3.1. Hydrological Model and Calibration Method
2.3.2. Statistical Method
3. Results
3.1. Comparisons of Satellite-Based Precipitation Products
3.2. Assessment of Streamflow Simulation Forced by Satellite-Based Products
3.3. Evaluation of Evapotranspiration and Soil Moisture Simulations Driving by Satellite-Based Products
4. Discussion
5. Conclusions
- The five satellite-based precipitation products have similar spatial patterns. Compared with the gauged precipitation, the CHIRPS, MSWEP and TRMM precipitation tend to overestimate precipitation, whereas CMORPH and PERSIANN show systematical underestimates.
- The performance of the MSWEP precipitation in streamflow simulations is the best among the five satellite-based products based on a distributed hydrological model, in which the KGE ranges from 0.75 to 0.90 in the calibration period and from 0.82 to 0.91 in the validation period. The spatial patterns of simulated streamflow are dominated by the distribution of precipitation.
- The evapotranspiration simulations forced by the satellite-based precipitation products are acceptable, whereas the soil moisture simulations forced by the five products are poor. In addition, the spatial patterns of simulated evapotranspiration and soil moisture are controlled by the hydrological model via parameters calibration.
Author Contributions
Funding
Conflicts of Interest
References
- Campoy, A.; Ducharne, A.; Cheruy, F.; Hourdin, F.; Polcher, J.; Dupont, J.C. Response of land surface fluxes and precipitation to different soil bottom hydrological conditions in a general circulation model. J. Geophys. Res. Atmosp. 2013, 118, 725–739. [Google Scholar] [CrossRef]
- Kucera, P.A.; Ebert, E.E.; Turk, F.J.; Levizzani, V.; Kirschbaum, D.; Tapiador, F.J.; Loew, A.; Borsche, M. Precipitation from Space: Advancing Earth System Science. Bull. Am. Meteorol. Soc. 2013, 94, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Michaelides, S. Advances in Precipitation Science. Atmosp. Res. 2013, 119, 1–2. [Google Scholar] [CrossRef]
- Frei, C.; Schöll, R.; Fukutome, S.; Schmidli, J.; Vidale, P.L. Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res. Atmosp. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Prein, A.F.; Rasmussen, R.M.; Ikeda, K.; Liu, C.; Clark, M.P.; Holland, G.J. The future intensification of hourly precipitation extremes. Nat. Clim. Chang. 2016, 7, 48–52. [Google Scholar] [CrossRef]
- Pfahl, S.; O’Gorman, P.A.; Fischer, E.M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Chang. 2017, 7, 423–427. [Google Scholar] [CrossRef]
- Miao, C.; Sun, Q.; Borthwick, A.G.; Duan, Q. Linkage between hourly precipitation events and atmospheric temperature changes over China during the warm season. Sci. Rep. 2016, 6, 22543. [Google Scholar] [CrossRef] [PubMed]
- Stephens, G.L. The Remote Sens. of Clouds and Precipitation from Space: A Review. J. Atmos. Sci. 2007, 64, 3742–3765. [Google Scholar] [CrossRef]
- Forootan, E.; Khandu; Awange, J.L.; Schumacher, M.; Anyah, R.O.; Dijk, A.I.J.M.V.; Kusche, J. Quantifying the impacts of ENSO and IOD on rain gauge and remotely sensed precipitation products over Australia. Remote Sens. Environ. 2016, 172, 50–66. [Google Scholar] [CrossRef] [Green Version]
- Illingworth, A.J.; Barker, H.W.; Beljaars, A.; Ceccaldi, M.; Chepfer, H.; Clerbaux, N.; Cole, J.; Delanoë, J.; Domenech, C.; Donovan, D.P. The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation. Bull. Am. Meteorol. Soc. 2014, 31, 197–210. [Google Scholar] [CrossRef]
- Tuttle, S.E.; Salvucci, G.D. A new approach for validating satellite estimates of soil moisture using large-scale precipitation: Comparing AMSR-E products. Remote Sens. Environ. 2014, 142, 207–222. [Google Scholar] [CrossRef]
- Margulis, S.A.; Entekhabi, D. Temporal disaggregation of satellite-derived monthly precipitation estimates and the resulting propagation of error in partitioning of water at the land surface. Hydrol. Earth Syst. Sci. 2001, 5, 688–709. [Google Scholar] [CrossRef]
- Gebregiorgis, A.S.; Hossain, F. How well can we estimate error variance of satellite precipitation data around the world? Atmos. Res. 2015, 154, 39–59. [Google Scholar] [CrossRef]
- Mei, Y.; Anagnostou, E.N.; Nikolopoulos, E.I.; Borga, M. Error Analysis of Satellite Precipitation Products in Mountainous Basins. J. Hydrometeorol. 2014, 15, 1778–1793. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation datasets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2017, 56, 79–107. [Google Scholar] [CrossRef]
- Beck, H.; Vergopolan, N.; Pan, M.; Levizzani, V.; Van Dijk, A.; Weedon, G.P.; Brocca, L.; Huffman, G.J.; Wood, E.F.; William, L. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. Discuss. 2017, 21, 1–23. [Google Scholar] [CrossRef]
- Sapiano, M.R.P.; Smith, T.M.; Arkin, P.A. A new merged analysis of precipitation utilizing satellite and reanalysis data. J. Geophys. Res. Atmosp. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Derin, Y.; Anagnostou, E.; Berne, A.; Borga, M.; Boudevillain, B.; Buytaert, W.; Chang, C.H.; Delrieu, G.; Hong, Y.; Hsu, Y.C. Multiregional Satellite Precipitation Products Evaluation over Complex Terrain. J. Hydrometeorol. 2016, 17, 1817–1836. [Google Scholar] [CrossRef]
- Ciabatta, L.; Brocca, L.; Massari, C.; Moramarco, T.; Gabellani, S.; Puca, S.; Wagner, W. Rainfall-runoff modelling by using SM2RAIN-derived and state-of-the-art satellite rainfall products over Italy. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 163–173. [Google Scholar] [CrossRef]
- Liu, X.; Yang, T.; Hsu, K.; Liu, C.; Sorooshian, S. Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau. Hydrol. Earth Syst. Sci. Discuss. 2017, 21, 1–31. [Google Scholar] [CrossRef]
- Behrangi, A.; Andreadis, K.; Fisher, J.B.; Turk, F.J.; Granger, S.; Painter, T.; Das, N. Satellite-Based Precipitation Estimation and Its Application for Streamflow Prediction over Mountainous Western U.S. Basins. J. Appl. Meteorol. Climatol. 2014, 53, 2823–2842. [Google Scholar] [CrossRef]
- Shrestha, M.S.; Artan, G.A.; Bajracharya, S.R.; Sharma, R.R. Using satellite-based rainfall estimates for streamflow modelling: Bagmati Basin. J. Flood Risk Manag. 2010, 1, 89–99. [Google Scholar] [CrossRef]
- Ashouri, H.; Nguyen, P.; Thorstensen, A.; Hsu, K.L.; Sorooshian, S.; Dan, B. Assessing the efficacy of High-Resolution Satellite-based PERSIANN-CDR Precipitation Product in Simulating Streamflow. J. Hydrometeorol. 2016, 17, 2061–2076. [Google Scholar] [CrossRef]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Global analysis of approaches for deriving total water storage changes from GRACE satellites. Water Resour. Res. 2015, 51, 2574–2594. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Christakos, G.; Ding, X.; Wu, J. Adequacy of TRMM satellite rainfall data in driving the SWAT modelling of Tiaoxi catchment (Taihu lake basin, China). J. Hydrol. 2018, 556, 1139–1152. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Xu, C.Y. Assessing the performance of satellite-based precipitation products and its dependence on topography over Poyang Lake basin. Theor. Appl. Climatol. 2014, 115, 713–729. [Google Scholar] [CrossRef]
- Getirana, A.C.V.; Espinoza, J.C.V.; Ronchail, J.; Filho, O.C.R. Assessment of different precipitation datasets and their impacts on the water balance of the Negro River basin. J. Hydrol. 2011, 404, 304–322. [Google Scholar] [CrossRef]
- Liu, X.; Luo, Y.; Zhang, D.; Zhang, M.; Liu, C. Recent changes in pan-evaporation dynamics in China. Geophys. Res. Lett. 2011, 38, 142–154. [Google Scholar] [CrossRef]
- Liu, X.; Liu, C.; Brutsaert, W. Investigation of a generalized nonlinear form of the complementary principle for evaporation estimation. J. Geophys. Res. Atmosp. 2018, 128, 3933–3942. [Google Scholar] [CrossRef]
- Long, D.; Yang, Y.; Wada, Y.; Yang, H.; Wei, L.; Chen, Y.; Yong, B.; Hou, A.; Wei, J.; Lu, C. Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China’s Yangtze River Basin. Remote Sens. Environ. 2015, 168, 177–193. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X. Evaluation of Five Satellite-Based Precipitation Products in Two Gauge-Scarce Basins on the Tibetan Plateau. Remote Sens. 2018, 10, 1316. [Google Scholar] [CrossRef]
- Bitew, M.M.; Gebremichael, M. Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrol. Earth Syst. Sci. 2011, 15, 1147–1155. [Google Scholar] [CrossRef] [Green Version]
- Falck, A.S.; Maggioni, V.; Tomasella, J.; Vila, D.A.; Diniz, F.L.R. Propagation of satellite precipitation uncertainties through a distributed hydrologic model: A case study in the Tocantins–Araguaia basin in Brazil. J. Hydrol. 2015, 527, 943–957. [Google Scholar] [CrossRef]
- Pinnington, E.; Quaife, T.; Black, E. Impact of remotely sensed soil moisture and precipitation on soil moisture prediction in a data assimilation system with the JULES land surface model. Hydrol. Earth Syst. Sci. 2018, 22, 2575–2588. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, Q.; Xu, C.-Y.; Ye, X. The changing patterns of floods in Poyang Lake, China: Characteristics and explanations. Nat. Hazards 2015, 76, 651–666. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Ye, X. Capabilities of Satellite-Based Precipitation to Estimate the Spatiotemporal Variation of Flood/Drought Class in Poyang Lake Basin. Adv. Meteorol. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Miao, C.; Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Duan, Q. Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeorol. 2015, 16, 1387–1396. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Sheffield, J.; Pan, M.; Wood, E.F. Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 2015, 159, 181–193. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method That Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 287–296. [Google Scholar] [CrossRef]
- Beck, H.E.; Van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; De Roo, A. MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 1–38. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2014, 96, 197–210. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Erich, S. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; Zheng, H.; Zhang, L.; Wu, X. Development of hydro-informatic modelling system and its application. Sci. China Ser. E Technol. Sci. 2008, 51, 456–466. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.; Zhang, Y.; Liu, C. Incorporating vegetation dynamics noticeably improved performance of hydrological model under vegetation greening. Sci. Total Environ. 2018, 643, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, C.; Li, X.; Liu, L.; Wang, H. Rainfall-runoff modeling, parameter estimation and sensitivity analysis in a semiarid catchment. Environ. Model. Softw. 2015, 67, 72–88. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zhang, A.; Wang, L.; Fu, G.; Chen, D.; Liu, C.; Cai, T. Projecting streamflow in the Tangwang River basin (China) using a rainfall generator and two hydrological models. Clim. Res. 2015, 62, 79–97. [Google Scholar] [CrossRef]
- Ebert, E.E. Ability of a Poor Man’s Ensemble to Predict the Probability and Distribution of Precipitation. Mon. Weather Rev. 2000, 129, 2461. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.G.; Xie, Z.H. Improving simulation of soil moisture in China using a multiple meteorological forcing ensemble approach. Hydrol. Earth Syst. Sci. 2013, 17, 3355–3369. [Google Scholar] [CrossRef] [Green Version]
- Sawada, Y.; Koike, T.; Walker, J.P. A land data assimilation system for simultaneous simulation of soil moisture and vegetation dynamics. J. Geophys. Res. Atmosp. 2015, 120, 5910–5930. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.A.; Dominguez, F.; Miguez-Macho, G. Effects of a Groundwater Scheme on the Simulation of Soil Moisture and Evapotranspiration over Southern South America. J. Hydrometeorol. 2016, 17, 2941–2957. [Google Scholar] [CrossRef] [Green Version]
- Kidd, C.; Levizzani, V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 1109–1116. [Google Scholar] [CrossRef] [Green Version]
- Sapiano, M.R.P.; Arkin, P.A. An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeorol. 2009, 10, 149–166. [Google Scholar] [CrossRef]
- Guilloteau, C.; Roca, R.; Gosset, M. A Multiscale Evaluation of the Detection Capabilities of High-Resolution Satellite Precipitation Products in West Africa. J. Hydrometeorol. 2016, 17, 2041–2059. [Google Scholar] [CrossRef]
- Tang, G.; Zeng, Z.; Long, D.; Guo, X.; Yong, B.; Zhang, W.; Hong, Y. Statistical and Hydrological Comparisons between TRMM and GPM Level-3 Products over a Midlatitude Basin: Is Day-1 IMERG a Good Successor for TMPA 3B42V7? J. Hydrometeorol. 2015, 17, 121–137. [Google Scholar] [CrossRef]
- Fu, Q.; Ruan, R.; Liu, Y. Accuracy Assessment of Global Satellite Mapping of Precipitation (GSMaP) Product over Poyang Lake Basin, China. Procedia Environ. Sci. 2011, 10, 2265–2271. [Google Scholar] [CrossRef] [Green Version]
- Long, D.; Pan, Y.; Zhou, J.; Chen, Y.; Hou, X.; Hong, Y.; Scanlon, B.R.; Longuevergne, L. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 2017, 192, 198–216. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.; Liu, C. Improving hydrological simulations by incorporating GRACE data for model calibration. J. Hydrol. 2018, 557, 291–304. [Google Scholar] [CrossRef]
Data | Short Name/Variable | Full Name | Period | Reference/Source |
---|---|---|---|---|
Satellite-based precipitation products | CHIRPS | Version 2.0 of the Climate Hazards Group InfraRed Precipitation with Station data | 1998–2012 | Funk et al. [40] |
CMORPH | Version 1.0 of the Climate Prediction Center morphing technique | 1998–2012 | Joyce et al. [41] | |
MSWEP | Version 2.0 of the Multi-Source Weighted-Ensemble Precipitation | 1998–2012 | Beck et al. [42] | |
PERSIANN | Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record | 1998–2012 | Ashouri et al. [43] | |
TRMM | Version 7 of the Multi-satellite Precipitation Analysis products of the Tropical Rainfall Measuring Mission | 1998–2012 | Huffman et al. [44] | |
Satellite-based evapotranspiration | MODIS | MOD16 global evapotranspiration of the Moderate Resolution Imaging Spectroradiometer | 2000–2012 | Mu et al. [39] |
Ground-based datasets | Precipitation | \ | 1998–2012 | Meteorological station |
Evapotranspiration | \ | 2003–2005 | Flux station | |
soil moisture | \ | 1998–2010 | Agricultural observatory | |
Streamflow | \ | 1998–2012 | Hydrological station |
Parameter | Description | Range | Unit |
---|---|---|---|
Rmax | Maximum infiltration control parameter | 1~2.5 | – |
Rmin | Minimum infiltration control parameter | 0~1 | – |
DSmax | Water storage capacity in sub-root soil layer | 0~300 | mm |
Beta | Coefficient of water exchange between two root-zone soil layers | 1~2 | – |
Ki | Interflow linear recession parameter | 0~1 | – |
drec | Delay time for groundwater recharge | 0~500 | day |
Kb | Base flow linear recession parameter | 0~0.1 | – |
MAXBAS | Maximum routing time | 1~7 | day |
Scenario | Description |
---|---|
S0 | Parameters calibrated by gauge-based precipitation |
S1 | Parameters calibrated with CHIRPS product |
S2 | Parameters calibrated with CMORPH product |
S3 | Parameters calibrated with MSWEP product |
S4 | Parameters calibrated with PERSIANN product |
S5 | Parameters calibrated with TRMM product |
Scenario | Precipitation | Calibration (1998–2005) | Validation (2006–2012) | ||
---|---|---|---|---|---|
KGE | RB | KGE | RB | ||
S0 | Gauged | 0.92 | 5% | 0.90 | 1% |
CHIRPS | 0.79 | 1% | 0.82 | −3% | |
CMORPH | 0.80 | 16% | 0.82 | 11% | |
MSWEP | 0.86 | −2% | 0.91 | −4% | |
PERSIANN | 0.80 | 8% | 0.80 | 9% | |
TRMM | 0.84 | 3% | 0.85 | −1% | |
S1 | Gauged | 0.81 | 7% | 0.80 | 3% |
CHIRPS | 0.82 | 1% | 0.81 | −3% | |
CMORPH | 0.72 | 18% | 0.75 | 13% | |
MSWEP | 0.88 | 0% | 0.86 | −2% | |
PERSIANN | 0.75 | 10% | 0.72 | 11% | |
TRMM | 0.84 | 4% | 0.84 | 1% | |
S2 | Gauged | 0.80 | −2% | 0.81 | −7% |
CHIRPS | 0.38 | −20% | 0.47 | −22% | |
CMORPH | 0.78 | 9% | 0.82 | 2% | |
MSWEP | 0.75 | −7% | 0.82 | −9% | |
PERSIANN | 0.68 | −1% | 0.79 | 2% | |
TRMM | 0.60 | −11% | 0.67 | −12% | |
S3 | Gauged | 0.82 | 11% | 0.81 | 7% |
CHIRPS | 0.83 | 6% | 0.83 | 3% | |
CMORPH | 0.71 | 22% | 0.73 | 17% | |
MSWEP | 0.90 | 4% | 0.91 | 3% | |
PERSIANN | 0.76 | 14% | 0.72 | 15% | |
TRMM | 0.84 | 8% | 0.85 | 6% | |
S4 | Gauged | 0.92 | 2% | 0.89 | −1% |
CHIRPS | 0.84 | −4% | 0.83 | −8% | |
CMORPH | 0.80 | 14% | 0.83 | 9% | |
MSWEP | 0.88 | −4% | 0.89 | −6% | |
PERSIANN | 0.82 | 6% | 0.80 | 7% | |
TRMM | 0.88 | −1% | 0.88 | −4% | |
S5 | Gauged | 0.85 | 9% | 0.84 | 7% |
CHIRPS | 0.84 | 2% | 0.84 | −2% | |
CMORPH | 0.74 | 19% | 0.75 | 15% | |
MSWEP | 0.89 | 4% | 0.90 | 3% | |
PERSIANN | 0.77 | 13% | 0.73 | 16% | |
TRMM | 0.86 | 4% | 0.86 | 2% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Liu, X.; Bai, P.; Li, X.-H. Suitability of Satellite-Based Precipitation Products for Water Balance Simulations Using Multiple Observations in a Humid Catchment. Remote Sens. 2019, 11, 151. https://doi.org/10.3390/rs11020151
Zhang D, Liu X, Bai P, Li X-H. Suitability of Satellite-Based Precipitation Products for Water Balance Simulations Using Multiple Observations in a Humid Catchment. Remote Sensing. 2019; 11(2):151. https://doi.org/10.3390/rs11020151
Chicago/Turabian StyleZhang, Dan, Xiaomang Liu, Peng Bai, and Xiang-Hu Li. 2019. "Suitability of Satellite-Based Precipitation Products for Water Balance Simulations Using Multiple Observations in a Humid Catchment" Remote Sensing 11, no. 2: 151. https://doi.org/10.3390/rs11020151