Advantages of Geostationary Satellites for Ionospheric Anomaly Studies: Ionospheric Plasma Depletion Following a Rocket Launch
<p>(<b>left</b>) Map showing the IPPs location for satellites S35 (<b>blue dots</b>) and S38 (<b>yellow dots</b>) seen from the 62 GNSS stations. The IPPs for GEO satellites can be considered to be fixed over time. The red dot represents the location of the ionosonde site PA836. (<b>right</b>) Two maps representing the Earth as seen from WAAS-GEO satellites S35 and S38.</p> "> Figure 2
<p>VARION-GEO <math display="inline"><semantics> <mrow> <mi>δ</mi> <mi>s</mi> <mi>T</mi> <mi>E</mi> <mi>C</mi> </mrow> </semantics></math> results for satellite S35. Day before (<b>left column</b>) and day of the event (<b>right column</b>). The first row (<b>a</b>,<b>b</b>) represents the unfiltered VARION-GEO <math display="inline"><semantics> <mrow> <mi>δ</mi> <mi>s</mi> <mi>T</mi> <mi>E</mi> <mi>C</mi> </mrow> </semantics></math> solutions far from the ionospheric hole (distance greater than 700 km). Time zero represents the time of the Falcon 9 launch (11:51 PDT). The second row (<b>c</b>,<b>d</b>) represents the unfiltered VARION-GEO <math display="inline"><semantics> <mrow> <mi>δ</mi> <mi>s</mi> <mi>T</mi> <mi>E</mi> <mi>C</mi> </mrow> </semantics></math> solutions close to the ionospheric hole (distance smaller than 700 km).</p> "> Figure 3
<p>Unfiltered VARION-GPS <math display="inline"><semantics> <mrow> <mi>δ</mi> <mi>s</mi> <mi>T</mi> <mi>E</mi> <mi>C</mi> </mrow> </semantics></math> solutions (<b>red curves</b>) for satellites G12, G25, G02, and G05. The blue curves show the elevation angle for each satellite-receiver link. The <math display="inline"><semantics> <mrow> <mi>δ</mi> <mi>s</mi> <mi>T</mi> <mi>E</mi> <mi>C</mi> </mrow> </semantics></math> solutions show a lower high-frequency noise compared to the VARION-GEO solutions (<a href="#remotesensing-11-01734-f002" class="html-fig">Figure 2</a>). However, the higher long period trends in the unfiltered VARION-GPS solutions do not allow fully capturing the ionospheric response to the rocket launch.</p> "> Figure 4
<p>Filtered VARION-GEO <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>s</mi> <mi>T</mi> <mi>E</mi> <mi>C</mi> </mrow> </semantics></math> results for satellite S35. Day before (<b>left column</b>) and day of the event (<b>right column</b>). The first row (<b>a</b>,<b>b</b>) represents the solutions far from the ionospheric hole (<b>blue curves</b>) and close to the ionospheric hole (<b>red curves</b>). Time zero represents the time of the Falcon 9 launch (11:51 PDT). The second row (<b>c</b>,<b>d</b>) is a zoom in 10 min before to 60 min after the launch. The ionospheric depletion is clearly captured by the filtered VARION-GEO solutions near the ionospheric hole for the day. No depletion is showed either the day before or far from the hole.</p> "> Figure 5
<p>(<b>a</b>) The VARION-GEO <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>s</mi> <mi>T</mi> <mi>E</mi> <mi>C</mi> </mrow> </semantics></math> solutions obtained from station p215, satellite S38; (<b>b</b>) the NmF2 time variability obtained from ionosonde PA836; and (<b>c</b>) the down-sampled and normalized <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>s</mi> <mi>T</mi> <mi>E</mi> <mi>C</mi> </mrow> </semantics></math> solutions (<b>red curve</b>) and the normalized NmF2 time series (<b>blue curve</b>) plotted using a common scale [0, 1]. This figure shows a high correlation between the VARION-GEO <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>s</mi> <mi>T</mi> <mi>E</mi> <mi>C</mi> </mrow> </semantics></math> solutions and ionosonde data. The correlation coefficient between the two curves is 0.97.</p> "> Figure 6
<p>(<b>a</b>,<b>c</b>) The filtered VARION-GEO <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>s</mi> <mi>T</mi> <mi>E</mi> <mi>C</mi> </mrow> </semantics></math> solutions for satellite S35. The black dots represent 50% of the minimum of <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>s</mi> <mi>T</mi> <mi>E</mi> <mi>C</mi> </mrow> </semantics></math>. (<b>c</b>) The <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>s</mi> <mi>T</mi> <mi>E</mi> <mi>C</mi> </mrow> </semantics></math> solutions plotted on a time vs. distance plot. We interpolated the black dots to estimate a mean expansion velocity of the ionospheric hole. (<b>b</b>,<b>d</b>) The results of the diffusion simulation at 450 km of altitude. (<b>b</b>) The density time series at a fixed distance from the diffusion point. Following the black arrow, we computed the curves from 100 to 600 km, every 5 km. (<b>d</b>) The time vs. distance plot for the simulation. We computed the mean diffusion velocity of the number density maxima.</p> "> Figure 7
<p>Space-time <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>s</mi> <mi>T</mi> <mi>E</mi> <mi>C</mi> </mrow> </semantics></math> variations for 30 min after the launch (one frame every 5 min) at the SIPs (same positions of the corresponding IPPs on the map) for the 2 GEO satellites (square symbols) and six GPS satellites (denoted by circles) seen from the 62 GNSS permanent stations. The ionospheric hole is detected from both GEO satellites 5 min after the rocket launch. The coordinates are expressed in geodetic latitude (in degrees North) and longitude (in degrees west).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Simulated Real-Time Scenario
2.3. VARION-GEO Methodology
2.4. Noise Reduction Algorithm
2.5. Diffusion Velocity Simulation
- The neutral gasses from the plume can be considered to have entered the ionosphere at zero speed.
- The dispersion is considered to be highly governed by diffusion rather than advection.
- The diffusion is considered isotropic at every effusion point.
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
WAAS | Wide Area Augmentation System |
GEO | Geostationary |
MEO | Medium Earth Orbit |
VARION | Variometric Approach for Real-Time Ionosphere Observation |
GNSS | Global Navigation Satellites Systems |
TEC | Total Electron Content |
sTEC | slant Total Electron Content |
TECU | Total Electron Content Unit |
IPP | Ionospheric Pierce Point |
TID | Traveling Ionospheric Disturbance |
AGW | Acoustic-Gravity Wave |
GDGPS | Global Differential GPS System |
SAW | Shock Acoustic Wave |
PBO | Plate Boundary Observatory |
RINEX | Receiver Independent Exchange Format |
ECEF | Earth Centered Earth Fixed |
WGS84 | World Geodetic System 1984 |
References
- Booker, H.G. A local reduction of F-region ionization due to missile transit. J. Geophys. Res. 1961, 66, 1073–1079. [Google Scholar] [CrossRef]
- Mendillo, M.; Hawkins, G.S.; Klobuchar, J.A. A sudden vanishing of the ionospheric F region due to the launch of Skylab. J. Geophys. Res. 1975, 80, 2217–2225. [Google Scholar] [CrossRef]
- Bernhardt, P.A.; Huba, J.D.; Kudeki, E.; Woodman, R.F.; Condori, L.; Villanueva, F. Lifetime of a depression in the plasma density over Jicamarca produced by space shuttle exhaust in the ionosphere. Radio Sci. 2001, 36, 1209–1220. [Google Scholar] [CrossRef]
- Bernhardt, P.A.; Erickson, P.J.; Lind, F.D.; Foster, J.C.; Reinisch, B.W. Artificial disturbances of the ionosphere over the Millstone Hill Incoherent Scatter Radar from dedicated burns of the space shuttle orbital maneuver subsystem engines. J. Geophys. Res. 2005, 110, A05311. [Google Scholar] [CrossRef]
- Bernhardt, P.A.; Ballenthin, J.O.; Baumgardner, J.L.; Bhatt, A.; Boyd, I.D.; Burt, J.M.; Caton, R.G.; Coster, A.; Erickson, P.J.; Huba, J.D.; et al. Ground and space-based measurement of rocket engine burns in the ionosphere. IEEE Trans. Plasma Sci. 2012, 40, 1267–1286. [Google Scholar] [CrossRef]
- Mendillo, M.; Smith, S.; Coster, A.; Erickson, P.; Baumgardner, J.; Martinis, C. Man-made space weather. Space Weather 2008, 6, S09001. [Google Scholar] [CrossRef]
- Furuya, T.; Heki, K. Ionospheric hole behind an ascending rocket observed with a dense GPS array. Earth Planets Space 2008, 60, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Ozeki, M.; Heki, K. Ionospheric holes made by ballistic missiles from North Korea detected with a Japanese dense GPS array. J. Geophys. Res. 2010, 115, A09314. [Google Scholar] [CrossRef]
- Nakashima, Y.; Heki, K. Ionospheric hole made by the 2012 North Korean rocket observed with a dense GNSS array in Japan. Radio Sci. 2014, 49, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Arendt, P.R. Ionospheric undulations following Apollo 14 launching. Nature 1971, 231, 438. [Google Scholar] [CrossRef]
- Noble, S.T. A large-amplitude traveling ionospheric disturbance excited by the Space Shuttle during launch. J. Geophys. Res. 1990, 95, 19037–19044. [Google Scholar] [CrossRef]
- Kakinami, Y.; Yamamoto, M.; Chen, C.-H.; Watanabe, S.; Lin, C.; Liu, J.-Y.; Habu, H. Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012. J. Geophys. Res. Space Phys. 2013, 118, 5184–5189. [Google Scholar] [CrossRef]
- Ding, F.; Wan, W.; Mao, T.; Wang, M.; Ning, B.; Zhao, B.; Xiong, B. Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys. Res. Lett. 2014, 41, 3351–3358. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Ho, C.H.; Lindqwister, U.J.; Runge, T.F. A global mapping technique for GPS derived ionospheric total electron content measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- Komjathy, A.; Sparks, L.; Wilson, B.D.; Mannucci, A.J. Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci. 2005, 40, RS6006. [Google Scholar] [CrossRef]
- Sardon, E.; Rius, A.; Zarraoa, N. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci. 1994, 29, 577–586. [Google Scholar] [CrossRef]
- Hajj, G.A.; Lee, L.C.; Pi, X.; Romans, L.J.; Schreiner, W.S.; Straus, P.R.; Wang, C. COSMIC GPS ionospheric sensing and space weather. Terr. Atmos. Ocean. Sci. 2000, 11, 235–272. [Google Scholar] [CrossRef]
- Savastano, G.; Komjathy, A.; Verkhoglyadova, O.; Mazzoni, A.; Crespi, M.; Wei, Y.; Mannucci, A.J. Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration. Sci. Rep. 2017, 7, 46607. [Google Scholar] [CrossRef]
- Fratarcangeli, F.; Ravanelli, M.; Mazzoni, A.; Colosimo, G.; Benedetti, E.; Branzanti, M.; Savastano, G.; Verkhoglyadova, O.; Komjathy, A.; Crespi, M. The variometric approach to real-time high-frequency geodesy. Rend. Fis. Acc. Lincei 2018, 29, 95. [Google Scholar] [CrossRef]
- Chou, M.-Y.; Shen, M.-H.; Lin, C.C.H.; Yue, J.; Chen, C.-H.; Liu, J.-Y.; Lin, J.-T. Gigantic circular shock acoustic waves in the ionosphere triggered by the launch of FORMOSAT-5 satellite. Space Weather 2018, 16, 172–184. [Google Scholar] [CrossRef]
- Huang, F.; Lei, J.; Dou, X. Daytime ionospheric longitudinal gradients seen in the observations from a regional BeiDou GEO receiver network. J. Geophys. Res. Space Phys. 2017, 122, 6552–6561. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Zhang, Z.; Zhao, K. High-Precision Ionosphere Monitoring Using Continuous Measurements from BDS GEO Satellites. Sensors 2018, 18, 714. [Google Scholar] [CrossRef] [PubMed]
- Padokhin, A.M.; Tereshin, N.A.; Yasyukevich, Y.V.; Andreeva, E.S.; Nazarenko, M.O.; Yasyukevich, A.S.; Kozlovtseva, E.A.; Kurbatov, G.A. Application of BDS-GEO for studying TEC variability in equatorial ionosphere on different time scales. Adv. Space Res. 2018, 63, 257–269. [Google Scholar] [CrossRef]
- Cooper, C.; Mitchell, C.N.; Wright, C.J.; Jackson, D.R.; Witvliet, B.A. Measurement of ionospheric total electron content using single-frequency geostationary satellite observations. Radio Sci. 2019, 54, 10–19. [Google Scholar] [CrossRef]
- Kunitsyn, V.E.; Padokhin, A.M.; Kurbatov, G.A.; Yasyukevich, Y.V.; Morozov, Y.V. Ionospheric TEC estimation with the signals of various geostationary navigational satellites. GPS Solut. 2016, 20, 877. [Google Scholar] [CrossRef]
- Savastano, G. New Applications and Challenges of GNSS Variometric Approach. Ph.D. Thesis, Department DICEA, Università La Sapienza, Rome, Italy, 2018. Available online: http://hdl.handle.net/11573/1077041 (accessed on 7 May 2019).
- Chen, Y.-H.; Juang, J.-C.; De Lorenzo, D.S.; Seo, J.; Lo, S.; Enge, P.; Akos, D.M. Real-Time Dual-Frequency (L1/L5) GPS/WAAS Software Receiver. In Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 19–23 September 2011; pp. 767–774. [Google Scholar]
- Fratarcangeli, F.; Savastano, G.; D’Achille, M.C.; Mazzoni, A.; Crespi, M.; Riguzzi, F.; Devoti, R.; Pietrantonio, G. VADASE Reliability and Accuracy of Real-Time Displacement Estimation: Application to the Central Italy 2016 Earthquakes. Remote Sens. 2018, 10, 1201. [Google Scholar] [CrossRef]
- Ssessanga, N.; Kim, Y.H.; Choi, B.; Chung, J.-K. The 4D-var estimation of North Korean rocket exhaust emissions into the ionosphere. J. Geophys. Res. Space Phys. 2018, 123, 2315–2326. [Google Scholar] [CrossRef]
- Calais, E.; Minster, J.B. GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake. Geophys. Res. Lett. 1995, 22, 1045–1048. [Google Scholar] [CrossRef]
- Calais, E.; Minster, J.B. GPS detection of ionospheric perturbations following a space shuttle ascent. Geophys. Res. Lett. 1996, 23, 1897–1900. [Google Scholar] [CrossRef]
- Chen, C.H.; Saito, A.; Lin, C.H.; Liu, J.Y.; Tsai, H.F.; Tsugawa, T.; Otsuka, Y.; Nishioka, M.; Matsumura, M. Long-distance propagation of ionospheric disturbance generated by the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 2011, 63, 67. [Google Scholar] [CrossRef]
- Bowling, T.; Calais, E.; Haase, J.S. Detection and modelling of the ionospheric perturbation caused by a space shuttle launch using a network of ground-based Global Positioning System stations. Geophys. J. Int. 2013, 192, 1324–1331. [Google Scholar] [CrossRef]
- Lin, C.C.; Shen, M.H.; Chou, M.Y.; Chen, C.H.; Yue, J.; Chen, P.C.; Matsumura, M. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. 2017, 44, 7578–7586. [Google Scholar] [CrossRef]
- Liu, H.; Ding, F.; Yue, X.; Zhao, B.; Song, Q.; Wan, W.; Ning, B.; Zhang, K. Depletion and traveling ionospheric disturbances generated by two launches of China’s Long March 4B rocket. J. Geophys. Res. Space Phys. 2018, 123, 10319–10330. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savastano, G.; Komjathy, A.; Shume, E.; Vergados, P.; Ravanelli, M.; Verkhoglyadova, O.; Meng, X.; Crespi, M. Advantages of Geostationary Satellites for Ionospheric Anomaly Studies: Ionospheric Plasma Depletion Following a Rocket Launch. Remote Sens. 2019, 11, 1734. https://doi.org/10.3390/rs11141734
Savastano G, Komjathy A, Shume E, Vergados P, Ravanelli M, Verkhoglyadova O, Meng X, Crespi M. Advantages of Geostationary Satellites for Ionospheric Anomaly Studies: Ionospheric Plasma Depletion Following a Rocket Launch. Remote Sensing. 2019; 11(14):1734. https://doi.org/10.3390/rs11141734
Chicago/Turabian StyleSavastano, Giorgio, Attila Komjathy, Esayas Shume, Panagiotis Vergados, Michela Ravanelli, Olga Verkhoglyadova, Xing Meng, and Mattia Crespi. 2019. "Advantages of Geostationary Satellites for Ionospheric Anomaly Studies: Ionospheric Plasma Depletion Following a Rocket Launch" Remote Sensing 11, no. 14: 1734. https://doi.org/10.3390/rs11141734
APA StyleSavastano, G., Komjathy, A., Shume, E., Vergados, P., Ravanelli, M., Verkhoglyadova, O., Meng, X., & Crespi, M. (2019). Advantages of Geostationary Satellites for Ionospheric Anomaly Studies: Ionospheric Plasma Depletion Following a Rocket Launch. Remote Sensing, 11(14), 1734. https://doi.org/10.3390/rs11141734