Large-Area Gap Filling of Landsat Reflectance Time Series by Spectral-Angle-Mapper Based Spatio-Temporal Similarity (SAMSTS)
"> Figure 1
<p>The locations of the three WELD/ARD 150 × 150 km (5000 × 5000 30 m pixel) test tiles and the corresponding 2013 CDL data. (<b>a</b>) California (38.22991560° to 39.16110308°N, 120.67484015° to 122.81778573°W, WELD tile h02v08/ARD tile 002008) main CDL classes are grassland/pasture (24.2%), forest (13.5%), shrub/scrub (11.9%), developed (11.3%), rice (6.4%), fallow/idle cropland (5.8%), water (3.0%), grapes (2.9%), herbaceous wetlands (2.5%), alfalfa (2.4%), and corn (2.0%); (<b>b</b>) Minnesota (43.36640358° to 44.72180606°N, 94.33364760° to 96.19691668°W, WELD tile h17v06) main CDL classes are corn (44.7%), soybean (31.9%), grassland/pasture (6.6%), developed (5.9%), and herbaceous wetlands (5.0%); (<b>c</b>) Kansas tile (36.62626467° to 37.90044279°N, 99.56286386° to 101.34813598°W; WELD tile h13v12) main CDL classes are grassland/pasture (49.1%), winter wheat (18.7%), fallow/idle cropland (8.5%), corn (8.4%), sorghum (7.3%), and developed (4.0%). The red square in (<b>c</b>) shows the location of a 15 × 15 km (500 × 500 30 m pixel) area subset for detailed gap filling demonstration described in <a href="#sec7dot1-remotesensing-10-00609" class="html-sec">Section 7.1</a>. Please refer to <a href="#remotesensing-10-00609-f002" class="html-fig">Figure 2</a> for the CDL color legend.</p> "> Figure 2
<p>Mean CDL class-specific weekly (weeks 18–43, 2013) NDVI values derived from the three WELD/ARD test tiles (<a href="#remotesensing-10-00609-f001" class="html-fig">Figure 1</a>) California (<b>top</b>), Minnesota (<b>middle</b>), and Kansas (<b>bottom</b>). Only values for the CDL classes that cover more than 2% of the tile are shown. Weeks with no data are not illustrated, but the plotted lines are shown dashed.</p> "> Figure 2 Cont.
<p>Mean CDL class-specific weekly (weeks 18–43, 2013) NDVI values derived from the three WELD/ARD test tiles (<a href="#remotesensing-10-00609-f001" class="html-fig">Figure 1</a>) California (<b>top</b>), Minnesota (<b>middle</b>), and Kansas (<b>bottom</b>). Only values for the CDL classes that cover more than 2% of the tile are shown. Weeks with no data are not illustrated, but the plotted lines are shown dashed.</p> "> Figure 3
<p>Workflow of the SAMSTS algorithm.</p> "> Figure 4
<p>Overview of the SAMSTS gap filling algorithm. (<b>a</b>) The segmentation map obtained from the time series; (<b>b</b>) The clustered segment (denoted by different hatching); (<b>c</b>) Given a segment with gaps (e.g., the red segment), its alternative segment is searched for considering only the segments in the same cluster (i.e., the purple, cyan and blue segments). The missing-observation-adaptive similarity metric <span class="html-italic">SAM<sub>r</sub></span> is used in the segmentation, clustering, and alternative similar segment search.</p> "> Figure 5
<p>Kansas 500 × 500 30 m pixel subset (centered at 37.75755020°N, 100.78698061°W, <a href="#remotesensing-10-00609-f001" class="html-fig">Figure 1</a>c red square shows the subset tile location) results. 2010 CDL subset (<b>a</b>), Landsat 8 false-color (1.61 μm, 0.87 μm, 0.66 μm) images of the original (<b>b</b>), the preceding (<b>d</b>), and subsequent (<b>f</b>) weeks and the gap-filled version of the original data (<b>e</b>) and associated RMSD images (<b>g</b>–<b>i</b>) (colored: 0 ≤ dark blue ≤ 0.05; 0.05 < light blue ≤ 0.08; 0.08 < green ≤ 0.11; 0.11 < yellow ≤ 0.13; 0.13 < orange ≤ 0.15; 0.15 < red < 0.2; brown ≥ 0.2). The two red circles denote two circular center-pivot irrigation fields where partial harvesting occurred between weeks 36 and 38 and then complete harvesting occurred between weeks 38 and 40. The yellow arrow denotes a small area that was flooded between weeks 36 and 38.</p> "> Figure 5 Cont.
<p>Kansas 500 × 500 30 m pixel subset (centered at 37.75755020°N, 100.78698061°W, <a href="#remotesensing-10-00609-f001" class="html-fig">Figure 1</a>c red square shows the subset tile location) results. 2010 CDL subset (<b>a</b>), Landsat 8 false-color (1.61 μm, 0.87 μm, 0.66 μm) images of the original (<b>b</b>), the preceding (<b>d</b>), and subsequent (<b>f</b>) weeks and the gap-filled version of the original data (<b>e</b>) and associated RMSD images (<b>g</b>–<b>i</b>) (colored: 0 ≤ dark blue ≤ 0.05; 0.05 < light blue ≤ 0.08; 0.08 < green ≤ 0.11; 0.11 < yellow ≤ 0.13; 0.13 < orange ≤ 0.15; 0.15 < red < 0.2; brown ≥ 0.2). The two red circles denote two circular center-pivot irrigation fields where partial harvesting occurred between weeks 36 and 38 and then complete harvesting occurred between weeks 38 and 40. The yellow arrow denotes a small area that was flooded between weeks 36 and 38.</p> "> Figure 6
<p>Example NDVI time series for the flooded pixel (denoted by the yellow arrows in <a href="#remotesensing-10-00609-f005" class="html-fig">Figure 5</a>, located at 37.70121869°N, 100.82220237°W), and the corresponding NDVI time series for the selected alternative similar pixel. For clarity, the NDVI, rather than five-band reflectance time series, is shown.</p> "> Figure 7
<p>California tile (5000 × 5000 30 m pixels) gap filling experiments, 25 600 × 600 30 m pixel areas, shown by white squares in the target week (<b>b</b>), were removed to simulate gaps and then filled by the SAMSTS method (<b>e</b>), and by closest preceding (<b>d</b>) and subsequent (<b>f</b>) pixel substitution. Associated RMSD images are shown (<b>g</b>–<b>i</b>) colored as for <a href="#remotesensing-10-00609-f005" class="html-fig">Figure 5</a>. The temporally-closest non-missing preceding and subsequent observations did not always belong to the same image and were acquired from one to five weeks before (<b>a</b>) and after (<b>c</b>) the target week, colored as black (1), dark gray (2), light gray (3), and white (4 or 5).</p> "> Figure 7 Cont.
<p>California tile (5000 × 5000 30 m pixels) gap filling experiments, 25 600 × 600 30 m pixel areas, shown by white squares in the target week (<b>b</b>), were removed to simulate gaps and then filled by the SAMSTS method (<b>e</b>), and by closest preceding (<b>d</b>) and subsequent (<b>f</b>) pixel substitution. Associated RMSD images are shown (<b>g</b>–<b>i</b>) colored as for <a href="#remotesensing-10-00609-f005" class="html-fig">Figure 5</a>. The temporally-closest non-missing preceding and subsequent observations did not always belong to the same image and were acquired from one to five weeks before (<b>a</b>) and after (<b>c</b>) the target week, colored as black (1), dark gray (2), light gray (3), and white (4 or 5).</p> "> Figure 8
<p>Minnesota tile (5000 × 5000 30 m pixels) gap filling experiments, 25 600 × 600 30 m pixel areas, shown by white squares in the target week (<b>b</b>), were removed to simulate gaps and then filled by the SAMSTS method (<b>e</b>), and by closest preceding (<b>d</b>) and subsequent (<b>f</b>) pixel substitution. Associated RMSD images are shown (<b>g</b>–<b>i</b>) colored as for <a href="#remotesensing-10-00609-f005" class="html-fig">Figure 5</a>. The temporally-closest non-missing preceding and subsequent observations did not always belong to the same image and were acquired from one to five weeks before (<b>a</b>) and after (<b>c</b>) the target week, colored as black (1), dark gray (2), light gray (3), and white (4 or 5).</p> "> Figure 8 Cont.
<p>Minnesota tile (5000 × 5000 30 m pixels) gap filling experiments, 25 600 × 600 30 m pixel areas, shown by white squares in the target week (<b>b</b>), were removed to simulate gaps and then filled by the SAMSTS method (<b>e</b>), and by closest preceding (<b>d</b>) and subsequent (<b>f</b>) pixel substitution. Associated RMSD images are shown (<b>g</b>–<b>i</b>) colored as for <a href="#remotesensing-10-00609-f005" class="html-fig">Figure 5</a>. The temporally-closest non-missing preceding and subsequent observations did not always belong to the same image and were acquired from one to five weeks before (<b>a</b>) and after (<b>c</b>) the target week, colored as black (1), dark gray (2), light gray (3), and white (4 or 5).</p> "> Figure 9
<p>Kansas tile (5000 × 5000 30 m pixels) gap filling experiments, 25 600 × 600 30 m pixel areas, shown by white squares in the target week (<b>b</b>), were removed to simulate gaps and then filled by the SAMSTS method (<b>e</b>), and by closest preceding (<b>d</b>) and subsequent (<b>f</b>) pixel substitution. Associated RMSD images are shown (<b>g</b>–<b>i</b>) colored as for <a href="#remotesensing-10-00609-f005" class="html-fig">Figure 5</a>. The temporally-closest non-missing preceding and subsequent observations did not always belong to the same image and were acquired from one to five weeks before (<b>a</b>) and after (<b>c</b>) the target week, colored as black (1), dark gray (2), light gray (3), and white (4 or 5).</p> "> Figure 9 Cont.
<p>Kansas tile (5000 × 5000 30 m pixels) gap filling experiments, 25 600 × 600 30 m pixel areas, shown by white squares in the target week (<b>b</b>), were removed to simulate gaps and then filled by the SAMSTS method (<b>e</b>), and by closest preceding (<b>d</b>) and subsequent (<b>f</b>) pixel substitution. Associated RMSD images are shown (<b>g</b>–<b>i</b>) colored as for <a href="#remotesensing-10-00609-f005" class="html-fig">Figure 5</a>. The temporally-closest non-missing preceding and subsequent observations did not always belong to the same image and were acquired from one to five weeks before (<b>a</b>) and after (<b>c</b>) the target week, colored as black (1), dark gray (2), light gray (3), and white (4 or 5).</p> "> Figure 10
<p>Histograms of <span class="html-italic">RMSD<sub>preceding</sub></span> (red), <span class="html-italic">RMSD<sub>subsequent</sub></span> (green), <span class="html-italic">RMSD<sub>temporally_closest</sub></span> (black), and <span class="html-italic">RMSD<sub>fill</sub></span> (blue) for the (<b>a</b>) California (<a href="#remotesensing-10-00609-f007" class="html-fig">Figure 7</a>), (<b>b</b>) Minnesota (<a href="#remotesensing-10-00609-f008" class="html-fig">Figure 8</a>) and (<b>c</b>) Kansas (<a href="#remotesensing-10-00609-f009" class="html-fig">Figure 9</a>) tile results.</p> "> Figure 11
<p>Sinusoidal harmonic model gap-filling results for the 25 600 × 600 30 m pixel simulated gap areas for the California (<b>a</b>), Minnesota, (<b>b</b>) and Kansas (<b>c</b>) tiles. The original images before gap removal are illustrated in <a href="#remotesensing-10-00609-f007" class="html-fig">Figure 7</a>b, <a href="#remotesensing-10-00609-f008" class="html-fig">Figure 8</a>b, and <a href="#remotesensing-10-00609-f009" class="html-fig">Figure 9</a>b. The associated RMSD gap-filling values are shown in (<b>d</b>–<b>f</b>) colored as for <a href="#remotesensing-10-00609-f007" class="html-fig">Figure 7</a>, <a href="#remotesensing-10-00609-f008" class="html-fig">Figure 8</a> and <a href="#remotesensing-10-00609-f009" class="html-fig">Figure 9</a>.</p> ">
Abstract
:1. Introduction
2. Satellite Gap-Filling Literature Review
3. Data
3.1. Landsat 8 Data
3.2. Cropland Data Layer
4. Test Areas
5. Gap-Filling Methodology
5.1. Overview
5.2. The Spectral-Angle-Mapper-Based Spatio-Temporal Similarity (SAMSTS) Gap-Filling Algorithm
5.2.1. Time Series Image Segmentation
5.2.2. Segment Clustering
5.2.3. Identification of Alternative Segments and/or Pixels to Fill Gaps
6. Analysis Methodology
6.1. Gap-Filling Assessment Metrics
6.2. Gap-Filling Experiments
6.2.1. SAMSTS Gap Filling
6.2.2. Comparison with Sinusoidal Harmonic Model-Based Gap-Filling
7. Results
7.1. Detailed Gap-Filling Example Demonstration
7.2. Large Area Gap-Filling Results
8. Discussion
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Alternative Similar Segment Identification Algorithm
- (i)
- Start a spatial search from Sgap examining the spatially nearest segments.
- (ii)
- For each candidate segment , check whether it has any valid non-missing observations on the t-th temporal image. If not, skip it and flag it as processed to be excluded in further searches; if yes, and if its first k nearest clusters (k ≤ M, M = 10) overlap with Sgap’s first k nearest clusters, then SAMr(, ) is calculated, and is flagged as processed. The largest SAMr value is recorded as with respect to Sgap, and the corresponding is recorded as with respect to Sgap.
- (iii)
- Stop the search and go to step (vii) if one of the following conditions are met; otherwise continue to step (iv).
- ①
- If > 0.990 and at least 100 candidate segments are processed, i.e., 100 candidate segments have been inspected based on SAMr(, );
- ②
- If > 0.980 and more than 5000 candidate segments have been processed;
- ③
- If > 0.970 and the whole image space has been searched with k = M, i.e., available segments in all the M nearest clusters have been inspected.
- (iv)
- If the whole image space is searched and k < M, increment k by 1 and go to step (i) to restart the search with the new k and only considering the unprocessed segments.
- (v)
- If the whole image space is searched and k = M, go to step (i) to restart the search considering all unprocessed segments, and still increment k by 1.
- (vi)
- If the whole image space is searched and k = M + 1, which means all available segments have been considered, stop the search.
- (vii)
- Record as Sgap’s alternative similar segment .
Appendix B. Alternative Similar Pixel Identification Algorithm
- (i)
- From , extract all the pixels with valid observation on the t-th temporal image. Randomly sample a maximum of 100 pixels from the extracted pixels.
- (ii)
- For each pgap in Sgap, calculate SAMr(, ) where is from the up-to-100 sampled pixels obtained in steps i). The with respect to pgap is identified as the one with the maximum SAMr.
References
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Loveland, T.R.; Dwyer, J.L. Landsat: Building a strong future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P. The Availability of Cloud-free Landsat ETM+ data over the Conterminous United States and Globally. Remote Sens. Environ. 2008, 112, 1196–1211. [Google Scholar] [CrossRef]
- Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat sensor performance: History and current status. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2691–2694. [Google Scholar] [CrossRef]
- Goward, S.; Arvidson, T.; Williams, D.; Faundeen, J.; Irons, J.; Franks, S. Historical record of Landsat global coverage: Mission operations, NSLRSDA, and international cooperator stations. Photogramm. Eng. Remote Sens. 2006, 72, 1155–1169. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, G.; Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef]
- Kovalskyy, V.; Roy, D.P. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30 m Landsat data product generation. Remote Sens. Environ. 2013, 130, 280–293. [Google Scholar] [CrossRef]
- Kovalskyy, V.; Roy, D.P. A one year Landsat 8 conterminous United States study of cirrus and non-cirrus clouds. Remote Sens. 2015, 7, 564–578. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P.; Shuai, Y.; Schaaf, C. Development of an approach for generation of temporally complete daily nadir MODIS reflectance time series. Remote Sens. Environ. 2010, 114, 1–20. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Landsat 5 Thematic Mapper reflectance and NDVI time series inconsistencies due to satellite orbit change. Remote Sens. Environ. 2016, 186, 217–233. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P. Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction. Remote Sens. Environ. 2015, 158, 478–491. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Cihlar, J.; Manak, D.; Iorio, M.D. Evaluation of compositing algorithms for AVHRR data over land. IEEE Trans. Geosci. Remote Sens. 1994, 32, 427–437. [Google Scholar] [CrossRef]
- Roy, D.P. Investigation of the maximum normalized difference vegetation index (NDVI) and the maximum surface temperature (Ts) AVHRR compositing procedures for the extraction of NDVI and Ts over forest. Int. J. Remote Sens. 1997, 18, 2383–2401. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.; Zhang, C. Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Griffiths, P.; van der Linden, S.; Kuemmerle, T.; Hostert, P. A pixel-based Landsat compositing algorithm for large area land cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2088–2101. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Hobart, G.W.; Luther, J.E.; Hermosilla, T.; Griffiths, P.; Guindon, L. Pixel-based image compositing for large-area dense time series applications and science. Can. J. Remote Remote Sens. 2014, 40, 192–212. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. Atmos. 1992, 97, 20455–20468. [Google Scholar] [CrossRef]
- Shuai, Y.; Masek, J.G.; Gao, F.; Schaaf, C.B.; He, T. An approach for the long-term 30-m land surface snow-free albedo retrieval from historic Landsat surface reflectance and MODIS-based a priori anisotropy knowledge. Remote Sens. Environ. 2014, 152, 467–479. [Google Scholar] [CrossRef]
- Roy, D.P.; Zhang, H.K.; Ju, J.; Gomez-Dans, J.L.; Lewis, P.E.; Schaaf, C.B.; Sun, Q.; Li, J.; Huang, H.; Kovalskyy, V. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens. Environ. 2016, 176, 255–271. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ. 2008, 112, 3112–3130. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Wu, M.; Niu, Z.; Wang, C.; Wu, C.; Wang, L. Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model. J. Appl. Remote Sens. 2012, 6. [Google Scholar] [CrossRef]
- Zhu, X.L.; Chen, J.; Gao, F.; Chen, X.H.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Emelyanova, I.V.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; van Dijk, A.I. Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sens. Environ. 2013, 133, 193–209. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.C.; Zhang, X.; Yang, Z.; Alfieri, J.G.; Kustas, W.P.; Mueller, R.; Johnson, D.M.; Prueger, J.H. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 2017, 188, 9–25. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Gao, F.; Liu, Y.; Schaaf, C.; Friedl, M.; Yu, Y.; Jayavelu, S.; Gray, J.; Liu, L.; et al. Exploration of scaling effects on coarse resolution land surface phenology. Remote Sens. Environ. 2017, 190, 318–330. [Google Scholar] [CrossRef]
- Schmidt, M.; Pringle, M.; Devadas, R.; Denham, R.; Tindall, D. A framework for large-area mapping of past and present cropping activity using seasonal landsat images and time series metrics. Remote Sens. 2016, 8, 312. [Google Scholar] [CrossRef]
- Melgani, F. Contextual reconstruction of cloud-contaminated multitemporal multispectral images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 442–455. [Google Scholar] [CrossRef]
- Kovalskyy, V.; Roy, D.P.; Zhang, X.; Ju, J. The suitability of multi-temporal Web-Enabled Landsat Data (WELD) NDVI for phenological monitoring—A comparison with flux tower and MODIS NDVI. Remote Sens. Lett. 2012, 3, 325–334. [Google Scholar] [CrossRef]
- Brooks, E.B.; Thomas, V.A.; Wynne, R.H.; Coulston, J.W. Fitting the multitemporal curve: A Fourier series approach to the missing data problem in remote sensing analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3340–3353. [Google Scholar] [CrossRef]
- Lin, C.H.; Tsai, P.H.; Lai, K.H.; Chen, J.Y. Cloud removal from multitemporal satellite images using information cloning. IEEE Trans. Geosci. Remote Sens. 2013, 51, 232–241. [Google Scholar] [CrossRef]
- Zeng, C.; Shen, H.; Zhang, L. Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method. Remote Sens. Environ. 2013, 131, 182–194. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67–83. [Google Scholar] [CrossRef]
- Chen, B.; Huang, B.; Chen, L.; Xu, B. Spatially and temporally weighted regression: A novel method to produce continuous cloud-free Landsat imagery. IEEE Trans. Geosci. Remote Sens. 2017, 55, 27–37. [Google Scholar] [CrossRef]
- Carrão, H.; Gonçalves, P.; Caetano, M. A nonlinear harmonic model for fitting satellite image time series: Analysis and prediction of land cover dynamics. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1919–1930. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef]
- Maxwell, S. Filling Landsat ETM+ SLC-off gaps using a segmentation model approach. Photogramm. Eng. Remote Sens. 2004, 70, 1109–1112. [Google Scholar]
- Maxwell, S.K.; Schmidt, G.L.; Storey, J.C. A multi-scale segmentation approach to filling gaps in Landsat ETM+ SLC-off images. Int. J. Remote Sens. 2007, 28, 5339–5356. [Google Scholar] [CrossRef]
- Pringle, M.J.; Schmidt, M.; Muir, J.S. Geostatistical interpolation of SLC-off Landsat ETM+ images. ISPRS J. Photogramm. Remote Sens. 2009, 64, 654–664. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2011, 115, 1053–1064. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, F.; Liu, D.; Chen, J. A modified neighborhood similar pixel interpolator approach for removing thick clouds in Landsat images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 521–525. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D.; Chen, J. A new geostatistical approach for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2012, 124, 49–60. [Google Scholar] [CrossRef]
- Cheng, Q.; Shen, H.; Zhang, L.; Yuan, Q.; Zeng, C. Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model. ISPRS J. Photogramm. Remote Sens. 2014, 92, 54–68. [Google Scholar] [CrossRef]
- Malambo, L.; Heatwole, C.D. A multitemporal profile-based interpolation method for gap filling nonstationary data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 252–261. [Google Scholar] [CrossRef]
- Weiss, D.J.; Atkinson, P.M.; Bhatt, S.; Mappin, B.; Hay, S.I.; Gething, P.W. An effective approach for gap-filling continental scale remotely sensed time-series. ISPRS J. Photogramm. Remote Sens. 2014, 98, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Lark, T.J.; Mueller, R.M.; Johnson, D.M.; Gibbs, H.K. Measuring land-use and land-cover change using the US department of agriculture’s cropland data layer: Cautions and recommendations. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 224–235. [Google Scholar] [CrossRef]
- Song, X.P.; Potapov, P.V.; Krylov, A.; King, L.; Di Bella, C.M.; Hudson, A.; Khan, A.; Adusei, B.; Stehman, S.V.; Hansen, M.C. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sens. Environ. 2017, 190, 383–395. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef]
- Rydberg, A.; Borgefors, G. Integrated method for boundary delineation of agricultural fields in multispectral satellite images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2514–2519. [Google Scholar] [CrossRef]
- White, E.; Roy, D.P. A contemporary decennial examination of changing agricultural field sizes using Landsat time series data. Geo Geogr. Environ. 2015, 2, 35–54. [Google Scholar] [CrossRef] [PubMed]
- U.S. Landsat Analysis Ready Data (ARD). Available online: https://landsat.usgs.gov/ard (accessed on 3 March 2018).
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Lim, T.K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Gao, F.; He, T.; Masek, J.G.; Shuai, Y.; Schaaf, C.B.; Wang, Z. Angular effects and correction for medium resolution sensors to support crop monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4480–4489. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P.; Vermote, E.; Masek, J.; Kovalskyy, V. Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sens. Environ. 2012, 122, 175–184. [Google Scholar] [CrossRef]
- Vermote, E.F.; Justice, C.O.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Egorov, A.V.; Roy, D.P.; Zhang, H.K.; Hansen, M.C.; Kommareddy, A. Demonstration of percent tree cover classification using Landsat analysis ready data (ARD) and sensitivity analysis with respect to Landsat ARD processing level. Remote Sens. 2018, 10, 209. [Google Scholar] [CrossRef]
- Hansen, M.C.; Egorov, A.; Roy, D.P.; Potapov, P.; Ju, J.; Turubanova, S.; Kommareddy, I.; Loveland, T.R. Continuous fields of land cover for the conterminous United States using Landsat data: First results from the Web-Enabled Landsat Data (WELD) project. Remote Sens. Lett. 2011, 2, 279–288. [Google Scholar] [CrossRef]
- Hansen, M.C.; Egorov, A.; Potapov, P.V.; Stehman, S.V.; Tyukavina, A.; Turubanova, S.A.; Roy, D.P.; Goetz, S.J.; Loveland, T.R.; Ju, J.; et al. Monitoring conterminous United States (CONUS) land cover change with web-enabled landsat data (WELD). Remote Sens. Environ. 2014, 140, 466–484. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.P.; Justice, C.O.; Humber, M. MODIS-Landsat fusion for large area 30 m burned area mapping. Remote Sens. Environ. 2015, 161, 27–42. [Google Scholar] [CrossRef]
- Egorov, A.V.; Hansen, M.C.; Roy, D.P.; Kommareddy, A.; Potapov, P.V. Image interpretation-guided supervised classification using nested segmentation. Remote Sens. Environ. 2015, 165, 135–147. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P. Conterminous United States crop field size quantification from multi-temporal Landsat data. Remote Sens. Environ. 2016, 172, 67–86. [Google Scholar] [CrossRef]
- Johnson, D.M.; Mueller, R. The 2009 cropland data layer. Photogramm. Eng. Remote Sens. 2010, 76, 1201–1205. [Google Scholar]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- United States Department of Agriculture National Agricultural Statistics Service Cropland Data Layer (CDL). Available online: http://nassgeodata.gmu.edu/CropScape/ (accessed on 3 March 2018).
- Chang, J.; Hansen, M.C.; Pittman, K.; Carroll, M.; DiMiceli, C. Corn and soybean mapping in the United States using MODIS time-series data sets. Agron. J. 2007, 99, 1654–1664. [Google Scholar] [CrossRef]
- Auch, R.F.; Laingen, C. Having it both ways? Land use change in a U.S. Midwestern agricultural ecoregion. Prof. Geogr. 2014, 67, 84–97. [Google Scholar] [CrossRef]
- Hansen, N.C.; Allen, B.L.; Baumhardt, R.L.; Lyon, D.J. Research achievements and adoption of no-till, dryland cropping in the semi-arid U.S. Great Plains. Field Crop. Res. 2012, 132, 196–203. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, J.P.; Goetz, A.F.H. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Keshava, N. Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1552–1565. [Google Scholar] [CrossRef]
- Yan, L.; Niu, X. Spectral-angle-based Laplacian Eigenmaps for nonlinear dmensionality reduction of hyperspectral imagery. Photogramm. Eng. Remote Sens. 2014, 80, 849–861. [Google Scholar] [CrossRef]
- Chen, K.; Wang, D. A dynamically coupled neural oscillator network for image segmentation. Neural Netw. 2002, 15, 423–439. [Google Scholar] [CrossRef]
- Petitjean, F.; Inglada, J.; Gançarski, P. Satellite image time series analysis under time warping. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3081–3095. [Google Scholar] [CrossRef]
- Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. 1999, 31, 264–323. [Google Scholar] [CrossRef]
- Georgescu, B.; Shimshoni, I.; Meer, P. Mean shift based clustering in high dimensions: A texture classification example. In Proceedings of the 9th IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; pp. 456–463. [Google Scholar]
- Bruzzone, L.; Prieto, D.F.; Serpico, S.B. A neural-statistical approach to multitemporal and multisource remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1350–1359. [Google Scholar] [CrossRef]
- Iounousse, J.; Er-Raki, S.; El Motassadeq, A.; Chehouani, H. Using an unsupervised approach of Probabilistic Neural Network (PNN) for land use classification from multitemporal satellite images. Appl. Soft Comput. 2015, 30, 1–13. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Harmonic analysis of time-series AVHRR NDVI data. Photogramm. Eng. Remote Sens. 2001, 67, 461–470. [Google Scholar]
- Hermance, J.F. Stabilizing high-order, non-classical harmonic analysis of NDVI data for average annual models by damping model roughness. Int. J. Remote Sens. 2007, 28, 2801–2819. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P. Automated crop field extraction from multi-temporal Web Enabled Landsat Data. Remote Sens. Environ. 2014, 144, 42–64. [Google Scholar] [CrossRef]
- Markham, B.L.; Irons, J.R.; Storey, J.C. Landsat data continuity mission (LDCM)—Now Landsat-8: Six months on-orbit. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 25–29 August 2013. [Google Scholar]
- Lassalle, P.; Inglada, J.; Michel, J.; Grizonnet, M.; Malik, J. A Scalable Tile-Based Framework for Region-Merging Segmentation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5473–5485. [Google Scholar] [CrossRef]
- Gebhardt, S.; Wehrmann, T.; Ruiz, M.A.M.; Maeda, P.; Bishop, J.; Schramm, M.; Santos, L.A. MAD-MEX: Automatic wall-to-wall land cover monitoring for the Mexican REDD-MRV program using all Landsat data. Remote Sens. 2014, 6, 3923–3943. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P.; Zhang, H.K.; Li, J.; Huang, H. An automated approach for sub-pixel registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sens. 2016, 8, 520. [Google Scholar] [CrossRef]
- Storey, J.; Roy, D.P.; Masek, J.; Gascon, F.; Dwyer, J.; Choate, M. A note on the temporary mis-registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sens. Environ. 2016, 186, 121–122. [Google Scholar] [CrossRef]
- Reuter, D.C.; Richardson, C.M.; Pellerano, F.A.; Irons, J.R.; Allen, R.G.; Anderson, M.; Tesfaye, Z. The Thermal Infrared Sensor (TIRS) on Landsat 8: Design overview and pre-launch characterization. Remote Sens. 2015, 7, 1135–1153. [Google Scholar] [CrossRef]
- Goward, S.N.; Cruickshanks, G.D.; Hope, A.S. Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape. Remote Sens. Environ. 1985, 18, 137–146. [Google Scholar] [CrossRef]
Test Sites | Number of weeks (Out of 26) with at Least One Valid 30 m Pixel (n) in the Study Area | Percentage of Missing WELD Tile 30 m Pixel Observations over the 26 Weeks | Percentage of Missing Weekly WELD Tile 30 m Pixel Observations Computed over the n Weeks |
---|---|---|---|
California | 22 | 47.5% | 40.6% |
Minnesota | 22 | 54.2% | 45.9% |
Kansas | 20 | 46.2% | 30.1% |
Test Sites | All (Crop and Non-Corp) | Crop | Non-Crop | |||
---|---|---|---|---|---|---|
SAMSTS | Harmonic | SAMSTS | Harmonic | SAMSTS | Harmonic | |
California | 0.014 | 0.019 | 0.020 | 0.0300 | 0.012 | 0.016 |
Minnesota | 0.016 | 0.025 | 0.015 | 0.026 | 0.018 | 0.021 |
Kansas | 0.018 | 0.023 | 0.023 | 0.036 | 0.015 | 0.016 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Roy, D.P. Large-Area Gap Filling of Landsat Reflectance Time Series by Spectral-Angle-Mapper Based Spatio-Temporal Similarity (SAMSTS). Remote Sens. 2018, 10, 609. https://doi.org/10.3390/rs10040609
Yan L, Roy DP. Large-Area Gap Filling of Landsat Reflectance Time Series by Spectral-Angle-Mapper Based Spatio-Temporal Similarity (SAMSTS). Remote Sensing. 2018; 10(4):609. https://doi.org/10.3390/rs10040609
Chicago/Turabian StyleYan, Lin, and David P. Roy. 2018. "Large-Area Gap Filling of Landsat Reflectance Time Series by Spectral-Angle-Mapper Based Spatio-Temporal Similarity (SAMSTS)" Remote Sensing 10, no. 4: 609. https://doi.org/10.3390/rs10040609
APA StyleYan, L., & Roy, D. P. (2018). Large-Area Gap Filling of Landsat Reflectance Time Series by Spectral-Angle-Mapper Based Spatio-Temporal Similarity (SAMSTS). Remote Sensing, 10(4), 609. https://doi.org/10.3390/rs10040609