Improving Landsat and IRS Image Classification: Evaluation of Unsupervised and Supervised Classification through Band Ratios and DEM in a Mountainous Landscape in Nepal
"> Figure 1
<p>Location of the study area.</p> "> Figure 2
<p>Satellite images over Galaudu watershed (a) Landsat MSS 1976 (b) Landsat TM 1990 (c) Landsat TM 2000 (d) IRS LISS III 2002.</p> "> Figure 2 Cont.
<p>Satellite images over Galaudu watershed (a) Landsat MSS 1976 (b) Landsat TM 1990 (c) Landsat TM 2000 (d) IRS LISS III 2002.</p> "> Figure 3
<p>Steps of digital image processing to produce land use land cover map.</p> "> Figure 4
<p>Land use in Galaudu watershed in 1976, 1990, 2000 and 2002.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data and Materials
Spatial data
Image processing of the satellite data
Feature set | MSS bands | TM bands | IRS bands |
---|---|---|---|
1 | B1, B2, B3 | B2, B3, B4 | B2, B3, B4 |
2 | B2, B3, B4 | B1, B4, B5 | B2, B4, B5 |
3 | B2, B4, NDVI | B2, B4, NDVI | B2, B4, NDVI |
4 | B2, NDVI, DEM | B4, B7/B5, NDVI | B2, NDVI, DEM |
5 | B4,NDVI, DEM | B2/B1, B7/B5, NDVI | B4,NDVI, DEM |
6 | PC1,NDVI ,DEM | B2, NDVI, DEM | PC1,NDVI ,DEM |
7 | B4,NDVI, DEM | ||
8 | PC1,NDVI ,DEM | ||
9 | B7/B5,NDVI,DEM | ||
10 | B5/B2,B5/B4,B5/B7 | ||
11 | B4/B3,B5/B2,B5/B4 | ||
12 | B4/B3,B5/B4,B5/B7 |
Land use classes | General description |
---|---|
Forest | Forest areas with estimated 75 percent or more of the existing crown covered by trees. |
Scrublands | Land covered by shrubs, bushes and young regeneration. Degraded forest areas with estimated < 10% tree crown cover are also included. |
Lowland agriculture | Irrigated, level-terraced agricultural lands in river valleys, used for multiple cropping including winter crops. Wheat and potato are two major winter crops cultivated in these lands after the harvest of paddy rice in November-December. |
Upland agriculture | Non-irrigated agricultural lands with or without slopping terraces, barren lands, settlements, roads, construction sites and other built-up areas. |
Vegetables | Irrigated agricultural land under vegetables during winter season |
Detection of land use changes
3. Results and Discussion
3.1. Land Use/Land Cover Assessment through Image Classification
Land use classes | Reference data | User Accuracy (%) | |||
---|---|---|---|---|---|
Forest | Scrub | Upland agriculture | Lowland agriculture | ||
Forest | 3 | 100.0 | |||
Scrub | 4 | 1 | 80.0 | ||
Upland agriculture | 1 | 12 | 2 | 80 | |
Lowland agriculture | 2 | 10 | 83.3 | ||
Producer’s acuracy | 100 | 80 | 80.0 | 83.3 | 82.86 |
3.2. Land Use/ Land Cover Change Detection
Land use classes | 1976 | 1990 | 2000 | |||
---|---|---|---|---|---|---|
Area (ha) | % | Area (ha) | % | Area (ha) | % | |
Upland agriculture | 430.1 | 15.9 | 414.7 | 15.3 | 671.2 | 24.8 |
Lowland agriculture | 428.1 | 15.8 | 809.8 | 29.9 | 839.4 | 31.0 |
Forest | 1,597.2 | 59.1 | 1,475.9 | 54.8 | 1,189.7 | 44.2 |
Scrubland | 242.5 | 9.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Land use classes | 1976-1990 | 1990-2000 | 1976-2000 |
---|---|---|---|
Upland agriculture | −3.71 | +38.21 | +35.92 |
Lowland agriculture | +47.13 | +3.52 | +48.99 |
Forestland (forest + scrub) | −25.15 | −24.05 | −55.26 |
4. Conclusions
Acknowledgements
References and Notes
- Eiumnoh, A.; Shrestha, R.P. Application of DEM data to landsat image classification: Evaluation in a tropical wet-dry landscape of Thailand. Photogramm. Eng. Remote Sens. 2000, 66, 297–1304. [Google Scholar]
- Gautam, A.P.; Webb, E.L.; Eiumnoh, A. GIS assessment of land use-land cover changes associated with community forestry implementation in the Middle Hills of Nepal. Mt. Res. Dev. 2002, 22, 63–69. [Google Scholar] [CrossRef]
- Gautam, A.P.; Shivakoti, G.P.; Webb, E.L. Forest cover change, physiography, local economy, and institution in a mountain watershed in Nepal. Environ. Manage. 2004, 33, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Semwal, R.L.; Nautiyal, S.; Sen, K.K.; Rana, R.K.; Maikuri, R.K.; Rao, K.S.; Saxena, K.G. Patterns and ecological implications of agricultural land use changes: a case study from central Himalaya, India. Agri. Ecosys. Environ. 2004, 102, 81–92. [Google Scholar] [CrossRef]
- Rao, K.S.; Pant, R. Land use dynamics and landscape change pattern in a typical micro watershed in the mid elevation zone of central Himalaya, India. Agri. Ecosys. Environ. 2001, 86, 113–123. [Google Scholar] [CrossRef]
- Hulchinson, C.K. Techniques for combining landsat and ancillary data for digital classification improvement. Photogramm. Eng. Remote Sens. 1982, 48, 123–130. [Google Scholar]
- Bonner, W.J.; Rohde, W.G.; Miller, W.A. Mapping Wildland resources with Digital Landsat and Terrain Data, Remote Sensing and Resource Management; Johannesen, C.J., Sanders, J.L., Eds.; Soil Conservation Society of America: Iowa, IW, USA, 1982; pp. 73–80. [Google Scholar]
- Jones, A.R.; Settle, J.J.; Wyatt, B.K. Use of digital terrain data in the interpretation of SPOT-1 HRV multispectral imagery. Int. J. Remote Sens. 1988, 9, 669–682. [Google Scholar] [CrossRef]
- Frank, T.D. Mapping dominant vegetation communities in the colorado rocky mountain front range with LANDSAT thematic mapper and digital terrain data. Photograpmm. Eng. Remote Sens. 1988, 54, 727–734. [Google Scholar]
- Janssen, L.F.; Jaarsma, J.; Van der Linder, E. Integrating topographic data with remote sensing for land-cover classification. Photogramm. Eng. Remote Sens. 1990, 56, 1503–1506. [Google Scholar]
- Gastellu-Etchegorry, J.P.; Estreguil, C.; Mougin, E. A GIS based methodology for small scale monitoring of tropical forests: a case study in Sumatra. Int. J. Remote Sens. 1993, 14, 2349–2368. [Google Scholar] [CrossRef]
- Palacio-Prieto, J.L.; Luna-Gonzalez, L. Improving spectral results in a GIS context. Int. J. Remote Sens. 1996, 17, 2201–2209. [Google Scholar] [CrossRef]
- Strahler, A.H.; Logan, T.L.; Bryant, N.A. Improving forest cover classification accuracy form landsat by incorporating topographic information. In Proceedings of 12th International Symposium on Remote Sensing of the Environment, Manila, Philippines, 1978; pp. 927–942.
- Walsh, S. Variability of Landsat MSS spectral responses of forests in relation to stand and site characteristics. Int. J. Remote Sens. 1987, 8, 1289–1299. [Google Scholar] [CrossRef]
- Franklin, S.E. Terrain analysis from digital patterns in geomorphometry and landsat MSS spectral response. Photogram. Eng. Remote Sens. 1987, 53, 59–65. [Google Scholar]
- Franklin, S.E. Topographic context of satellite spectral response. Comput. Geosci. 1990, 16, 1003–1010. [Google Scholar] [CrossRef]
- Civco, D.L. Topographic normalization of landsat thematic mapper digital imagery. Photogramm. Eng. Remote Sens. 1989, 55, 1303–1309. [Google Scholar]
- Cibula, W.G.; Nyquist, M.O. Use of topographic and climatological models in a geographical data base to improve landsat MSS classification for olympic national park. Photogramm. Eng. Remote Sens. 1987, 53, 67–75. [Google Scholar]
- Peddle, D.R.; Franklin, S.E. Image texture processing and data integration for surface pattern discrimination. Photogramm. Eng. Remote Sens. 1991, 57, 413–420. [Google Scholar]
- Teillet, P.M.; Guindon, B.; Menuier, J.F.; Goodenough, D.G. Slope aspect effects in synthetic aperture radar imagery. Can. J. Remote Sens. 1985, 11, 39–49. [Google Scholar] [CrossRef]
- Guneriussen, T.; Johnsen, H. DEM corrected ERS-1 SAR data for snow monitoring. Int. J. Remote Sens. 1996, 17, 181–195. [Google Scholar] [CrossRef]
- Aldenderfer, M.S.; Blashfield, R.K. Cluster Analysis; Sage Press: Beverly Hills, CA, USA, 1984; p. 87. [Google Scholar]
- Langford, M.; Bell, W. Land cover mapping in a tropical hillsides environment: a case study in the cauca region of colombia. Int. J. Remote Sens. 1997, 18, 1289–1306. [Google Scholar] [CrossRef]
- Schowengerdt, R.A. Techniques for Image Processing and Classification in Remote Sensing; Academic Press: London, UK, 1983. [Google Scholar]
- Matheson, W.; Ringgrose, S. The development of image processing techniques to assess change in green vegetation cover along a climatic gradient through northern territory, Australia. Int. J. Remote Sens. 1994, 15, 17–47. [Google Scholar] [CrossRef]
- Vanderzee, D.; Ehrichlich, D. Sensitivity of ISODATA to change in sampling procedures and processing parameters when applied to AVHRR time-series NDVI Data. Int. J. Remote Sens. 1995, 16, 673–686. [Google Scholar] [CrossRef]
- Ward, J. Hierarchical grouping to optimise an objectives function. J. Amer. Statist. Assn. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Niblack, W. An Introduction to Digital Image Processing; Strandberg Publications Co.: Birkeroed, Denmark, 1985. [Google Scholar]
- Settle, J.J.; Briggs, S.S. Fast maximum likelihood classification of remotely sensed imagery. Int. J. Remote Sens. 1987, 8, 723–734. [Google Scholar] [CrossRef]
- Tokola, T.; Sarkeala, J.; Van der Linden, M. Use of topographic correction in landsat TM-based forest interpretation in Nepal. Int. J. Remote Sens. 2001, 22, 551–563. [Google Scholar] [CrossRef]
- ERDAS. Earth Resources Data Analysis System (ERDAS); ERDAS Inc.: Atlanta, GA, USA, 1997. [Google Scholar]
- ESRI. Understanding GIS the ARC/INFO Method; John Wiley & Sons Inc.: California, CA, USA, 1997. [Google Scholar]
- Trisurat, Y. Spatial-Ecological Impact Assessment of the Proposed Dam Construction in Khao Yai National Park, Thailand. Ph.D. Dissertation, Asian Institute of Technology, Bangkok, Thailand, 1997. [Google Scholar]
- Kabhrepalanchok District, Vol II Part I: Assessment of Current Conditions; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 1993.
- Application of GIS in Rural Development Planning in Nepal; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 1994.
- KC, K.B. Combining socioeconomic and spatial methodologies in rural resources and livelihood development: a case from mountains of Nepal. In Farming and Rural System Economics; Doppler, W., Bauer, S., Eds.; Margraf Publishers: Wuerzburg, Germany, 2005; Volume 69, p. 233. [Google Scholar]
- KC, K.B. Mapping soil erosion susceptibility using remote sensing and GIS. a case of the upper Nam Wa Watershed, Nan Province, Thailand. Environ. Geology 2009, 57, 695–705. [Google Scholar]
- Fox, J.; Krummel, J.; Yarnasarn, S.; Ekasingh, M.; Podger, N. Land use and landscape dynamics in northern Thailand: assessing change in three upland watersheds. Ambio 1995, 24, 328–334. [Google Scholar]
- Kammerbauer, J.; Ardon, C. Land use dynamics and landscape change pattern in a typical watershed in the hillside region of central Honduras. Agr. Ecosys. Environ. 1999, 75, 93–100. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons: the Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, London, UK, 1990. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bahadur K.C., K. Improving Landsat and IRS Image Classification: Evaluation of Unsupervised and Supervised Classification through Band Ratios and DEM in a Mountainous Landscape in Nepal. Remote Sens. 2009, 1, 1257-1272. https://doi.org/10.3390/rs1041257
Bahadur K.C. K. Improving Landsat and IRS Image Classification: Evaluation of Unsupervised and Supervised Classification through Band Ratios and DEM in a Mountainous Landscape in Nepal. Remote Sensing. 2009; 1(4):1257-1272. https://doi.org/10.3390/rs1041257
Chicago/Turabian StyleBahadur K.C., Krishna. 2009. "Improving Landsat and IRS Image Classification: Evaluation of Unsupervised and Supervised Classification through Band Ratios and DEM in a Mountainous Landscape in Nepal" Remote Sensing 1, no. 4: 1257-1272. https://doi.org/10.3390/rs1041257
APA StyleBahadur K.C., K. (2009). Improving Landsat and IRS Image Classification: Evaluation of Unsupervised and Supervised Classification through Band Ratios and DEM in a Mountainous Landscape in Nepal. Remote Sensing, 1(4), 1257-1272. https://doi.org/10.3390/rs1041257