Erosion and Accretion Characteristics of the Muddy Coast in the Central Coastal Area of Jiangsu Province Based on Long-Term Remote Sensing Monitoring
<p>Location map of the study area showing the distribution of the tidal observing stations and elevation measurement transects.</p> "> Figure 2
<p>Technical flowchart.</p> "> Figure 3
<p>Comparison between the measured and the estimated tide level.</p> "> Figure 4
<p>Schematic diagram of the MSHTL line and MSLTL line calculation. (<b>a</b>) Scheme for wide tidal flat with gentle slope and (<b>b</b>) scheme for narrow tidal flat with steep slope.</p> "> Figure 5
<p>Comparison between the remote sensing-estimated slope and the measured slope.</p> "> Figure 6
<p>Spatial distributions of the coastline and intertidal zone from the year 1984 to 2022.</p> "> Figure 7
<p>Coastline length variation from the year 1984 to 2022.</p> "> Figure 8
<p>Changes in erosion and siltation of the coastline from 1984 to 2022.</p> "> Figure 9
<p>(<b>a</b>–<b>e</b>) Variations in the position of the MSLTL line from 1984 to 2022.</p> "> Figure 10
<p>Spatial variation of the mudflat caused by the movement of the coastline and MSLTL line from 1984 to 2022.</p> "> Figure 11
<p>Estimated intertidal slope from 1984 to 2022.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data and Processing
3.1.1. Satellite Image Data
3.1.2. Tidal Height Data
3.1.3. Ground Elevation Data
3.2. Methods
3.2.1. Instantaneous Waterline Extraction
3.2.2. Tidal Height Assignment to Waterlines
3.2.3. Calculation of the MSHTL and MSLTL Line
3.2.4. Generation of the Coastline and Intertidal Zone
3.2.5. Analysis of Dynamic Changes in Muddy Coast
4. Results
4.1. Coastline Extraction for Typical Years
4.2. Spatial Distribution of Intertidal Zones
5. Discussion
5.1. Spatial and Temporal Changes in Coastline
5.2. Changes in the Position of the MSLTL Line
5.3. Variation of the Mudflat Area
5.4. Variation in the Average Slope in the Intertidal Zone
5.5. Applicability of Coastline Estimation Method
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Image Acquisition Time (GMT+08:00) | Satellite | Tidal Height at Image Acquisition Time/m | |||
---|---|---|---|---|---|
BHG | SYHK | DFG | LDHK | ||
1984/5/7 10:03 | Landsat-5 | 0.58 | −0.95 | - | - |
1985/3/23 10:06 | Landsat-5 | 0.85 | 0.90 | - | - |
1984/8/4 10:00 | Landsat-5 | - | −0.85 | −2.06 | −1.37 |
1985/9/24 10:00 | Landsat-5 | - | −0.34 | 0.65 | 1.24 |
1992/2/7 10:00 | Landsat-5 | 0.92 | 0.47 | - | - |
1992/11/5 9:57 | Landsat-5 | −0.49 | −0.43 | - | - |
1992/6/7 9:54 | Landsat-5 | - | −0.99 | −2.29 | −2.29 |
1992/10/13 9:52 | Landsat-5 | - | 1.01 | 1.13 | −0.20 |
1999/3/30 10:15 | Landsat-5 | −0.24 | 0.34 | - | - |
1999/5/1 10:15 | Landsat-5 | 0.69 | 1.08 | - | - |
2000/4/10 10:05 | Landsat-5 | - | −0.71 | −1.93 | −2.79 |
2000/7/31 10:08 | Landsat-5 | - | 1.64 | 1.88 | 1.66 |
2008/2/19 10:27 | Landsat-5 | −0.73 | −0.08 | - | - |
2008/12/19 10:21 | Landsat-5 | 0.12 | −0.47 | - | - |
2008/2/28 10:21 | Landsat-5 | - | −0.90 | −1.63 | −1.85 |
2008/7/5 10:18 | Landsat-5 | - | 1.56 | 1.00 | −0.25 |
2016/3/24 10:41 | ZY-3 | 0.36 | - | - | - |
2016/2/6 11:09 | GF-2 | −0.87 | - | - | - |
2016/1/1 11:22 | GF-1 | 0.60 | - | - | - |
2016/1/1 11:22 | GF-1 | - | 0.23 | - | - |
2016/2/20 10:54 | GF-2 | - | −0.37 | 0.91 | - |
2016/1/1 11:22 | GF-1 | - | 0.23 | −1.10 | - |
2016/2/20 10:54 | GF-2 | - | −0.37 | 0.91 | - |
2016/3/21 11:03 | GF-2 | - | −0.15 | 1.35 | 1.47 |
2016/2/9 10:39 | ZY-3 | - | 0.61 | 1.58 | 1.45 |
2016/4/8 10:35 | ZY-3 | - | 1.09 | 1.95 | 1.36 |
2016/3/27 11:20 | GF-1 | - | - | 1.26 | −0.51 |
2016/3/27 11:20 | GF-1 | - | - | - | −0.51 |
2016/3/1 10:59 | HJ-1 | 0.57 | −0.75 | −1.28 | - |
2016/2/20 10:55 | HJ-1 | - | −0.37 | 0.91 | 1.50 |
2022/10/23 10:37 | Landsat-8 | 0.61 | 1.13 | - | - |
2022/12/18 10:37 | Landsat-8 | 0.64 | 0.27 | - | - |
2022/8/5 10:30 | Landsat-8 | - | −0.13 | −1.05 | 1.09 |
2022/10/24 10:31 | Landsat-8 | - | 1.42 | 2.43 | 2.09 |
References
- Liu, Y.X.; Huang, H.J.; Qiu, Z.F.; Fan, J.Y. Detecting coastline change from satellite images based on beach slope estimation in a tidal flat. Int. J. Appl. Earth Obs. 2013, 23, 165–176. [Google Scholar] [CrossRef]
- Hulskamp, R.; Luijendijk, A.; Van Maren, B.; Moreno-Rodenas, A.; Calkoen, F.; Kras, E.; Lhermitte, S.; Aarninkhof, S. Global distribution and dynamics of muddy coasts. Nat. Commun. 2023, 14, 8259. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.J.; Phinn, S.R.; Dewitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef]
- Toimil, A.; Losada, I.J.; Camus, P.; Díaz-Simal, P. Managing coastal erosion under climate change at the regional scale. Coast. Eng. 2017, 128, 106–122. [Google Scholar] [CrossRef]
- Magnan, A.K.; Oppenheimer, M.; Garschagen, M.; Buchanan, M.K.; Duvat, V.K.E.; Forbes, D.L.; Ford, J.D.; Lambert, E.; Petzold, J.; Renaud, F.G.; et al. Sea level rise risks and societal adaptation benefits in low-lying coastal areas. Sci. Rep. 2022, 12, 10677. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Cao, C.; Qi, H.S.; Su, X.Z.; Lei, G.; Liu, J.H.; Zhao, S.H.; Liu, G.; Zhu, K. Rapid migration of mainland China’s coastal erosion vulnerability due to anthropogenic changes. J. Environ. Manag. 2022, 319, 115632. [Google Scholar] [CrossRef]
- Wang, Y.P.; Gao, S.; Jia, J.J.; Thompson, C.E.L.; Gao, J.H.; Yang, Y. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Mar. Geol. 2012, 291, 147–161. [Google Scholar] [CrossRef]
- Li, L.J.; Li, G.S.; Du, J.Q.; Wu, J.; Cui, L.L.; Chen, Y.H. Effects of tidal flat reclamation on the stability of coastal wetland ecosystem services: A case study in Jiangsu Coast, China. Ecol. Indic. 2022, 145, 109697. [Google Scholar] [CrossRef]
- Liu, L.; Xu, W.; Yue, Q.; Teng, X.; Hu, H. Problems and countermeasures of coastline protection and utilization in China. Ocean Coast. Manag. 2018, 153, 124–130. [Google Scholar] [CrossRef]
- Yasmeen, A.; Pumijumnong, N.; Arunrat, N.; Punwong, P.; Sereenonchai, S.; Chareonwong, U. Nature-based solutions for coastal erosion protection in a changing climate: A cutting-edge analysis of contexts and prospects of the muddy coasts. Estuar. Coast. Shelf Sci. 2024, 298, 108632. [Google Scholar] [CrossRef]
- Sagar, S.; Roberts, D.; Bala, B.; Lymburner, L. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sens. Environ. 2017, 195, 153–169. [Google Scholar] [CrossRef]
- Neelamani, S. Coastal erosion and accretion in Kuwait—Problems and management strategies. Ocean Coast. Manag. 2018, 156, 76–91. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, W.; Yin, J.; Wang, J.; Ge, J.; Wu, J.; Luo, W.; Lam, N.S.N. Assessment of coastal erosion vulnerability and socio-economic impact along the Yangtze River Delta. Ocean Coast. Manag. 2021, 215, 105953. [Google Scholar] [CrossRef]
- Husnayaen; Rimba, A.B.; Osawa, T.; Parwata, I.N.S.; As-Syakur, A.R.; Kasim, F.; Astarini, I.A. Physical assessment of coastal vulnerability under enhanced land subsidence in Semarang, Indonesia, using multi-sensor satellite data. Adv. Space Res. 2018, 61, 2159–2179. [Google Scholar] [CrossRef]
- Hamid, A.I.A.; Din, A.H.M.; Abdullah, N.M.; Yusof, N.; Hamid, M.R.A.; Shah, A.M. Exploring space geodetic technology for physical coastal vulnerability index and management strategies: A review. Ocean Coast. Manag. 2021, 214, 105916. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, Y.; Wang, L.; Liu, Y.; Sun, C.; Fagherazzi, S. Stability evaluation of tidal flats based on time-series satellite images: A case study of the Jiangsu central coast, China. Estuar. Coast. Shelf Sci. 2022, 264, 107697. [Google Scholar] [CrossRef]
- Xu, H.; Jia, A.; Song, X.; Bai, Y. Suitability evaluation of carrying capacity and utilization patterns on tidal flats of Bohai Rim in China. J. Environ. Manag. 2022, 319, 115688. [Google Scholar] [CrossRef]
- Karaman, M. Comparison of thresholding methods for shoreline extraction from Sentinel-2 and Landsat-8 imagery: Extreme Lake Salda, track of Mars on Earth. J. Environ. Manag. 2021, 298, 113481. [Google Scholar] [CrossRef]
- Dai, C.; Howat, I.M.; Larour, E.; Husby, E. Coastline extraction from repeat high resolution satellite imagery. Remote Sens. Environ. 2019, 229, 260–270. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y. Monitoring coastline variations in the Pearl River Estuary from 1978 to 2018 by integrating Canny edge detection and Otsu methods using long time series Landsat dataset. Catena 2022, 209, 105840. [Google Scholar] [CrossRef]
- Sreekesh, S.; Kaur, N.; Sreerama Naik, S.R. An OBIA and Rule Algorithm for Coastline Extraction from High- and Medium-Resolution Multispectral Remote Sensing Images. Remote Sens. Earth Syst. Sci. 2020, 3, 24–34. [Google Scholar] [CrossRef]
- Chen, C.; Bu, J.; Zhang, Y.; Zhuang, Y.; Chu, Y.; Hu, J.; Guo, B. The application of the tasseled cap transformation and feature knowledge for the extraction of coastline information from remote sensing images. Adv. Space Res. 2019, 64, 1780–1791. [Google Scholar] [CrossRef]
- Baselice, F.; Ferraioli, G. Unsupervised Coastal Line Extraction From SAR Images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1350–1354. [Google Scholar] [CrossRef]
- Toure, S.; Diop, O.; Kpalma, K.; Maiga, A.S. Shoreline Detection using Optical Remote Sensing: A Review. ISPRS Int. J. Geo-Inf. 2019, 8, 75. [Google Scholar] [CrossRef]
- Bera, R.; Maiti, R. Quantitative analysis of erosion and accretion (1975-2017) using DSAS—A study on Indian Sundarbans. Reg. Stud. Mar. Sci. 2019, 28, 100583. [Google Scholar] [CrossRef]
- Barik, G.; Guru, B.; Sangma, F. Shoreline Changes Analysis and Forecast Using Digital Shoreline Assessment System 5.0: Evidences from Parts of East Coast of India. J. Indian Soc. Remote Sens. 2021, 49, 2815–2830. [Google Scholar] [CrossRef]
- Yum, S.-G.; Park, S.; Lee, J.-J.; Das Adhikari, M. A quantitative analysis of multi-decadal shoreline changes along the East Coast of South Korea. Sci. Total Environ. 2023, 876, 162756. [Google Scholar] [CrossRef]
- Xu, N.; Jia, D.Z.; Ding, L.; Wu, Y. Continuously Tracking the Annual Changes of the Hengsha and Changxing Islands at the Yangtze River Estuary from 1987 to 2016 Using Landsat Imagery. Water 2018, 10, 171. [Google Scholar] [CrossRef]
- Huang, L.R.; Zhao, C.Y.; Jiao, C.X.; Zheng, G.H.; Zhu, J.T. Quantitative Analysis of Rapid Siltation and Erosion Caused Coastline Evolution in the Coastal Mudflat Areas of Jiangsu. Water 2023, 15, 1679. [Google Scholar] [CrossRef]
- Li, W.Y.; Gong, P. Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sens. Environ. 2016, 179, 196–209. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, D.; Cui, D.; Lv, L.; Xie, W.; Shi, S.; Hou, Z. Monitoring spatial and temporal changes in the continental coastline and the intertidal zone in Jiangsu province, China. Acta Geogr. Sin. 2018, 73, 1365–1380. [Google Scholar]
- Chen, W.; Zhang, D.; Shi, S.J.; Zhou, J.; Kang, M. Research on monitoring coastline changes by remote sensing in muddy coast, central Jiangsu coast. Acta Oceanol. Sin. 2017, 39, 138–148. [Google Scholar]
- Zhou, Y.; Zhang, D.; Cutler, M.E.J.; Xu, N.; Wang, X.H.; Sha, H.J.; Shen, Y.M. Estimating muddy intertidal flat slopes under varied coastal morphology using sequential satellite data and spatial analysis. Estuar. Coast. Shelf Sci. 2021, 251, 107183. [Google Scholar] [CrossRef]
- Cao, W.T.; Zhou, Y.Y.; Li, R.; Li, X.C. Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images. Remote Sens. Environ. 2020, 239, 111665. [Google Scholar] [CrossRef]
- Chen, J.C.; Gu, Y.; Chen, Z.Y.; Zhu, S.B.; Wang, Y.P. Enhanced spatiotemporal fusion algorithm for long-term monitoring of intertidal zone topography. Geo-Mar. Lett. 2025, 45, 4. [Google Scholar] [CrossRef]
- Murray, N.J.; Clemens, R.S.; Phinn, S.R.; Possingham, H.P.; Fuller, R.A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 2014, 12, 267–272. [Google Scholar] [CrossRef]
- Wang, K.Z.; Li, H.; Zhang, N.; Zhang, J.B.; Zhang, X.Y.; Gong, Z. Study on the Erosion and Deposition Changes of Tidal Flat in Jiangsu Province Using ICESat-2 and Sentinel-2 Data. Remote Sens. 2023, 15, 3598. [Google Scholar] [CrossRef]
- Hou, X.; Wu, T.; Hou, W.; Chen, Q.; Wang, Y.; Yu, L. Characteristics of coastline changes in mainland China since the early 1940s. Sci. China-Earth Sci. 2016, 59, 1791–1802. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Ji, C.; Liu, H.; Huang, Q. Spatiotemporal changes of Jiangsu coastline: A remote sensing and GIS approach. Geogr. Res. 2014, 33, 414–426. [Google Scholar]
- Gao, Y.; Wang, H.; Su, F.; Liu, G. The analysis of spatial and temporal changes of the continental coastlines of China in recent three decades. Acta Oceanol. Sin. 2013, 35, 31–42. [Google Scholar]
- Zhao, B.; Liu, Y.; Wang, L. Evaluation of the Stability of Muddy Coastline Based on Satellite Imagery: A Case Study in the Central Coasts of Jiangsu, China. Remote Sens. 2023, 15, 3323. [Google Scholar] [CrossRef]
- Zhang, R.; Lu, L.; Wang, Y. The mechanism and trend of coastal erosion of Jiangsu Province in China. Geogr. Res. 2002, 21, 469–478. [Google Scholar]
- Xu, F.; Tao, J.; Zhou, Z.; Coco, G.; Zhang, C. Mechanisms underlying the regional morphological differences between the northern and southern radial sand ridges along the Jiangsu Coast, China. Mar. Geol. 2016, 371, 1–17. [Google Scholar] [CrossRef]
- Peng, X.; Xia, F.; Zhang, Y. Analysis of the dynamic changes of the coastline along the Abandoned Yellow River delta of Northern Jiangsu, China. Mar. Sci. Bull. 2014, 33, 630–636. [Google Scholar]
- Liu, X.; Chen, S.; Jiang, C.; Hu, J.; Zhang, L. Vulnerability assessment of coastal erosion along the Abandoned Yellow River Delta of northern Jiangsu, China. Acta Geogr. Sin. 2014, 69, 607–618. [Google Scholar]
- Wang, Y.; Liu, Y.; Jin, S.; Sun, C.; Wei, X. Evolution of the topography of tidal flats and sandbanks along the Jiangsu coast from 1973 to 2016 observed from satellites. ISPRS J. Photogramm. Remote Sens. 2019, 150, 27–43. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.Z.; Zou, X.Q.; Zhu, D.K.; Piper, D. The sand ridge field of the South Yellow Sea: Origin by river-sea interaction. Mar. Geol. 2012, 291, 132–146. [Google Scholar] [CrossRef]
- Xing, F.; Wang, Y.P.; Wang, H.V. Tidal hydrodynamics and fine-grained sediment transport on the radial sand ridge system in the southern Yellow Sea. Mar. Geol. 2012, 291, 192–210. [Google Scholar] [CrossRef]
- Xing, F.; Wang, Y.P.; Ni, W.F.; Gao, S.; Jia, J.J.; Gao, J.H. Modeling multi-decadal morphological evolution of the radial-shaped sand ridges in the Southern Yellow Sea, China. Catena 2024, 238, 107884. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Kelly, J.T.; Gontz, A.M. Using GPS-surveyed intertidal zones to determine the validity of shorelines automatically mapped by Landsat water indices. Int. J. Appl. Earth Obs. 2018, 65, 92–104. [Google Scholar] [CrossRef]
- Xu, H. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). J. Remote Sens. 2005, 9, 589–595. [Google Scholar]
- Xu, X.L.; Pan, Q.Q.; Wu, H.; Zhang, D.; Zhang, Z.; Gu, Y.J.; Wang, Z.F. Research on improving the accuracy of remote sensing-based bathymetry on muddy coasts. Estuar. Coast. Shelf Sci. 2025, 313, 109126. [Google Scholar] [CrossRef]
- Xu, N.; Wang, Y.; Huang, C.; Jiang, S.; Jia, M.; Ma, Y. Monitoring coastal reclamation changes across Jiangsu Province during 1984-2019 using landsat data. Mar. Policy 2022, 136, 104887. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhang, L.; Kuang, R. Shoreline change of Chongming Dongtan and response to river sediment load: A remote sensing assessment. J. Hydrol. 2014, 511, 432–442. [Google Scholar] [CrossRef]
- Kuang, C.; Liu, X.; Gu, J.; Guo, Y.; Huang, S.; Liu, S.; Yu, W.; Huang, J.; Sun, B. Numerical prediction of medium-term tidal flat evolution in the Yangtze Estuary: Impacts of the Three Gorges project. Cont. Shelf Res. 2013, 52, 12–26. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Liu, Q.; Yao, Y.; Li, Y.; Wu, X.; Wang, C.; Yu, W.; Wang, T. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 2017, 607, 920–932. [Google Scholar] [CrossRef] [PubMed]
Applicable Coastal Section | Calculation Formula of Tide Level Feature Points | ||
---|---|---|---|
Silted coastal section | Average slope from two waterlines | ||
Coordinates of the MSHTL point | |||
Coordinates of the MSLTL point | |||
Parameter description | () and () are coordinates of the discrete points on the waterline, and are the corresponding tidal height at the time of image acquisition, and and are the tidal height of the MSHTL and MSLTL obtained from the harmonic calculation. | ||
Eroded coastal section | Actual slope from measured ground points | ||
Coordinates of the MSHTL point | |||
Coordinates of the MSLTL point | |||
Parameter description | () and () are coordinates of the two endpoints of the transect, is the measured average slope angle of the transect, and and are projection angles of in the x and y directions. |
Year | Eroded Coastal Section | Silted Coastal Section | ||
---|---|---|---|---|
Intertidal Zone Area (km2) | Average Width (m) | Intertidal Zone Area (km2) | Average Width (m) | |
1984 | 192.81 | 1815.98 | 1185.78 | 8383.12 |
1992 | 172.93 | 1613.88 | 1032.40 | 7314.79 |
2000 | 138.45 | 1287.20 | 808.11 | 5618.76 |
2008 | 125.23 | 1178.07 | 589.24 | 4148.19 |
2016 | 115.85 | 1116.92 | 517.92 | 3700.42 |
2022 | 92.03 | 864.41 | 628.08 | 4360.81 |
Time Period | ANAS | ENRL | RAAS | ERARL | ||||
---|---|---|---|---|---|---|---|---|
Length (km) | ASR (m/a) | Length (km) | ASR (m/a) | Length (km) | ASR (m/a) | Length (km) | ASR (m/a) | |
1984–1992 | 157.46 | 75.84 | 95.93 | −25.82 | 9.05 | 103.76 | 12.07 | −32.31 |
1992–2000 | 177.35 | 163.98 | 20.32 | −11.37 | 23.40 | 112.44 | 22.17 | −18.52 |
2000–2008 | 170.96 | 154.69 | 20.29 | −6.72 | 51.66 | 160.94 | 28.29 | −29.19 |
2008–2016 | 97.71 | 30.27 | 61.38 | −17.77 | 69.53 | 209.85 | 26.31 | −19.99 |
2016–2022 | 106.91 | 82.23 | 71.47 | −28.24 | 13.72 | 41.28 | 15.44 | −8.78 |
1984–2022 | 137.79 | 85.91 | 54.89 | −10.92 | 64.61 | 129.25 | 21.15 | −7.97 |
Basis of Analysis | Type of Change | Amount of Area Change (km2) | ||
---|---|---|---|---|
Eroded Coastal Section | Silted Coastal Section | Total | ||
Coastline movement | Increased land area caused by coastal siltation | 25.61 | 671.19 | 696.80 |
Decreased land area caused by coastal erosion | 17.42 | / | 17.42 | |
MSLTL line movement | Accretion of intertidal area caused by advancement of the MSLTL line | 27.19 | 221.47 | 248.65 |
Reduction in intertidal area caused by retreat of the MSLTL line | 40.64 | 67.85 | 108.48 |
Typical Coastal Section | 1984 | 1992 | 2000 | 2008 | 2016 | 2022 | |
---|---|---|---|---|---|---|---|
Eroded coastal section | Guanhekou | 1.55 | 1.27 | 1.74 | 2.29 | 1.44 | 0.93 |
Binhai Port to Biandan Estuary | 3.71 | 5.12 | 4.12 | 9.47 | 6.09 | 7.30 | |
Sheyang Estuary | 1.65 | 1.32 | 3.02 | 3.73 | 1.08 | 1.38 | |
Silted coastal section | Sheyang Estuary to Xinyang Estuary | 0.89 | 1.07 | 1.90 | 2.02 | 2.34 | 2.42 |
Xinyang Estuary to Chuandong Port | 0.54 | 0.63 | 0.96 | 1.35 | 1.56 | 1.16 | |
Dongtai Estuary to Fangtang Estuary | 0.62 | 0.63 | 0.70 | 0.92 | 0.76 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Q.; Zhang, D.; Xu, M.; Zhang, Z.; Gu, Y. Erosion and Accretion Characteristics of the Muddy Coast in the Central Coastal Area of Jiangsu Province Based on Long-Term Remote Sensing Monitoring. Remote Sens. 2025, 17, 875. https://doi.org/10.3390/rs17050875
Pan Q, Zhang D, Xu M, Zhang Z, Gu Y. Erosion and Accretion Characteristics of the Muddy Coast in the Central Coastal Area of Jiangsu Province Based on Long-Term Remote Sensing Monitoring. Remote Sensing. 2025; 17(5):875. https://doi.org/10.3390/rs17050875
Chicago/Turabian StylePan, Qiqi, Dong Zhang, Min Xu, Zhuo Zhang, and Yunjuan Gu. 2025. "Erosion and Accretion Characteristics of the Muddy Coast in the Central Coastal Area of Jiangsu Province Based on Long-Term Remote Sensing Monitoring" Remote Sensing 17, no. 5: 875. https://doi.org/10.3390/rs17050875
APA StylePan, Q., Zhang, D., Xu, M., Zhang, Z., & Gu, Y. (2025). Erosion and Accretion Characteristics of the Muddy Coast in the Central Coastal Area of Jiangsu Province Based on Long-Term Remote Sensing Monitoring. Remote Sensing, 17(5), 875. https://doi.org/10.3390/rs17050875