A Weakly Supervised and Self-Supervised Learning Approach for Semantic Segmentation of Land Cover in Satellite Images with National Forest Inventory Data
<p>Study area and location of sample areas used for model training and validation.</p> "> Figure 2
<p>Example of NFI photo-points: (<b>a</b>) with matching point-patch labels; (<b>b</b>) located at the interface between distinct land covers; and (<b>c</b>) with mismatching point-patch labels.</p> "> Figure 3
<p>Illustration of distinctly labeled training data. High-resolution image (<b>a</b>), dense labels used in typical fully supervised methods (<b>b</b>) and sparse labels used in our weakly supervised approach (<b>c</b>). Colored and grey pixels correspond to labeled and unlabeled pixels, respectively. The labels in (<b>c</b>) are derived from the photo-point, seen in the center of the 3 × 3 window.</p> "> Figure 4
<p>Network architecture of our ConvNext-V2 Atto U-Net. The figure also exhibits the ConvNext-V2 block. LN, GRN and GELU stand for Layer Normalization, Global Response Normalization and Gaussian Error Linear Unit, respectively. Conv K × K refers to a convolutional layer with a kernel size of K × K.</p> "> Figure 5
<p>MAE architecture, illustrating the reconstruction of masked patches. Image representations learned at the encoder can be transferred and applied to different downstream tasks. Each patch corresponds to 8 × 8 pixels.</p> "> Figure 6
<p>Overall accuracy of the baseline and self-supervised pretrained models. The values represent the average of 10 runs with a 95% confidence interval and were computed on the validation split.</p> "> Figure 7
<p>Validation split accuracy of the three tested models with distinct training set sizes. The reported values are the average of 10 runs with a 95% confidence interval.</p> "> Figure 8
<p>Model performance per land cover class measured by the F1-score. For other coniferous, no F1-score was reported for Random Forest, as the model did not predict any sampling units belonging to this class.</p> "> Figure 9
<p>Example of land cover maps produced by Random Forest, ConvNext-V2 baseline and ConvNext-V2 self-supervised pretrained models.</p> "> Figure 10
<p>Land cover map of Portugal (2023).</p> "> Figure A1
<p>Example of 30 × 30 m windows used for training a Random Forest classifier for the homogeneity filter. Annotations as non-homogeneous or homogeneous considered not only the high-resolution images (seen in the figure) but also Sentinel-2 images.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Training Data for Land Cover Classification
2.2. Weak Supervision for Semantic Segmentation of Land Cover
2.3. Masked Autoencoders
3. Data and Study Area
3.1. National Forest Inventory
3.2. Satellite Data
3.3. Auxiliary Data
3.4. Study Area
4. Methods
4.1. Definition of Land Cover Nomenclature
4.2. Preprocessing NFI Data
4.2.1. Filter Based on Attributes
4.2.2. Homogeneity Filter
4.2.3. Spectral Filter
4.2.4. Land Cover Change Filter
4.2.5. Leaf Type Concordance
4.2.6. Additional Samples for Non-Vegetated Surfaces
4.3. Weakly Supervised Learning
4.3.1. Training Data Preparation
4.3.2. Model Architecture and Training
4.4. Self-Supervised Learning
4.4.1. Training Data for MAE
4.4.2. MAE Model and Training
4.4.3. Fine-Tuning
4.5. Baseline Comparison
4.6. Accuracy Assessment
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Alkama, R.; Cescatti, A. Climate Change: Biophysical Climate Impacts of Recent Changes in Global Forest Cover. Science 2016, 351, 600–604. [Google Scholar] [CrossRef]
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. Atmospheric Science: The Importance of Land-Cover Change in Simulating Future Climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef]
- Herold, M.; Latham, J.S.; Di Gregorio, A.; Schmullius, C.C. Evolving Standards in Land Cover Characterization. J. Land Use Sci. 2006, 1, 157–168. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Regional Detection, Characterization, and Attribution of Annual Forest Change from 1984 to 2012 Using Landsat-Derived Time-Series Metrics. Remote Sens. Environ. 2015, 170, 121–132. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-Use/Land-Cover Change and Ecosystem Service Provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Alves, A.; Marcelino, F.; Gomes, E.; Rocha, J.; Caetano, M. Spatiotemporal Land-Use Dynamics in Continental Portugal 1995–2018. Sustainability 2022, 14, 15540. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Goward, S.N.; Masek, J.G.; Irons, J.R.; Herold, M.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Landsat Continuity: Issues and Opportunities for Land Cover Monitoring. Remote Sens. Environ. 2008, 112, 955–969. [Google Scholar] [CrossRef]
- Instituto da Conservação da Natureza e das Florestas. 6° Inventário Florestal Nacional (IFN6)—2015 Relatório Final; Instituto da Conservação da Natureza e das Florestas: Alges, Portugal, 2019. [Google Scholar]
- Blickensdörfer, L.; Oehmichen, K.; Pflugmacher, D.; Kleinschmit, B.; Hostert, P. National Tree Species Mapping Using Sentinel-1/2 Time Series and German National Forest Inventory Data. Remote Sens. Environ. 2024, 304, 114069. [Google Scholar] [CrossRef]
- Schelhaas, M.-J.; Clerkx, S.; Lerink, B. 7th Dutch National Forest Inventory: 2017–2021; Wettelijke Onderzoekstaken Natuur & Milieu: Wageningen, The Netherlands, 2022. [Google Scholar]
- Rybicki, M.; Gromny, E.; Malinowski, R.; Lewiński, S.; Jenerowicz, M.; Michał, K.; Nowakowski, A.; Wojtkowski, C.; Krupiński, M.; Kraetzschmar, E.; et al. Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12, 3523. [Google Scholar] [CrossRef]
- Yifang, B.; Gong, P.; Gini, C. Global Land Cover Mapping Using Earth Observation Satellite Data: Recent Progresses and Challenges. ISPRS J. Photogramm. Remote Sens. 2015, 103, 1–6. [Google Scholar]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land Cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef]
- Francini, S.; Schelhaas, M.J.; Vangi, E.; Lerink, B.J.; Nabuurs, G.J.; McRoberts, R.E.; Chirici, G. Forest Species Mapping and Area Proportion Estimation Combining Sentinel-2 Harmonic Predictors and National Forest Inventory Data. Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103935. [Google Scholar] [CrossRef]
- Gilichinskya, M.; Sandströma, P.; Reesea, H.; Kivinenb, S.; Moenb, J.; Nilsona, M. Application of National Forest Inventory for Remote Sensing Classification of Ground Lichen in Nothern Sweden; Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives: Haifa, Israel, 2010; pp. 146–152. [Google Scholar]
- Guindon, L.; Manka, F.; Correia, D.L.P.; Villemaire, P.; Smiley, B.; Bernier, P.; Gauthier, S.; Beaudoin, A.; Boucher, J.; Boulanger, Y. A New Approach for Spatializing the Canadian National Forest Inventory (SCANFI) Using Landsat Dense Time Series. Can. J. For. Res. 2024, 54, 793–815. [Google Scholar] [CrossRef]
- Denisova, A.Y.; Kavelenova, L.M.; Korchikov, E.S.; Prokhorova, N.V.; Terentyeva, D.A.; Fedoseev, V.A. Tree Species Classification for Clarification of Forest Inventory Data Using Sentinel-2 Images. Proceedings of Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019), Paphos, Cyprus, 18–21 March 2019; Volume 11174. [Google Scholar]
- Hu, Y.; Zhang, Q.; Zhang, Y.; Yan, H. A Deep Convolution Neural Network Method for Land Cover Mapping: A Case Study of Qinhuangdao, China. Remote Sens. 2018, 10, 2053. [Google Scholar] [CrossRef]
- Rezaee, M.; Mahdianpari, M.; Zhang, Y.; Salehi, B. Deep Convolutional Neural Network for Complex Wetland Classification Using Optical Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3030–3039. [Google Scholar] [CrossRef]
- Tong, X.Y.; Xia, G.S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models. Remote Sens. Environ. 2020, 237, 111322. [Google Scholar] [CrossRef]
- Boston, T.; Van Dijk, A.; Larraondo, P.R.; Thackway, R. Comparing CNNs and Random Forests for Landsat Image Segmentation Trained on a Large Proxy Land Cover Dataset. Remote Sens. 2022, 14, 3396. [Google Scholar] [CrossRef]
- Chen, T.H.K.; Qiu, C.; Schmitt, M.; Zhu, X.X.; Sabel, C.E.; Prishchepov, A.V. Mapping Horizontal and Vertical Urban Densification in Denmark with Landsat Time-Series from 1985 to 2018: A Semantic Segmentation Solution. Remote Sens. Environ. 2020, 251, 112096. [Google Scholar] [CrossRef]
- Zhao, X.; Hong, D.; Gao, L.; Zhang, B.; Chanussot, J. Transferable Deep Learning from Time Series of Landsat Data for National Land-Cover Mapping with Noisy Labels: A Case Study of China. Remote Sens. 2021, 13, 4194. [Google Scholar] [CrossRef]
- Yuan, P.; Zhao, Q.; Zheng, Y.; Wang, X.; Hu, B. Capturing Small Objects and Edges Information for Cross-Sensor and Cross-Region Land Cover Semantic Segmentation in Arid Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 983–997. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, M.; Wang, Y.; Shang, J.; Liu, X.; Li, B.; Song, A.; Li, Q. Automated Delineation of Agricultural Field Boundaries from Sentinel-2 Images Using Recurrent Residual U-Net. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102557. [Google Scholar] [CrossRef]
- Li, J.; Cai, Y.; Li, Q.; Kou, M.; Zhang, T. A Review of Remote Sensing Image Segmentation by Deep Learning Methods. Int. J. Digit. Earth 2024, 17, 2328827. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A Convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986. [Google Scholar]
- Zhou, Z.-H. A Brief Introduction to Weakly Supervised Learning. Natl. Sci. Rev. 2018, 5, 44–53. [Google Scholar] [CrossRef]
- Wang, Y.; Albrecht, C.M.; Braham, N.A.A.; Mou, L.; Zhu, X.X. Self-Supervised Learning in Remote Sensing: A Review. IEEE Geosci. Remote Sens. Mag. 2022, 10, 213–247. [Google Scholar] [CrossRef]
- Felfeliyan, B.; Forkert, N.D.; Hareendranathan, A.; Cornel, D.; Zhou, Y.; Kuntze, G.; Jaremko, J.L.; Ronsky, J.L. Self-Supervised-RCNN for Medical Image Segmentation with Limited Data Annotation. Comput. Med. Imaging Graph. 2023, 109, 102297. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.; Prexl, J.; Ebel, P.; Liebel, L.; Zhu, X.X. Weakly Supervised Semantic Segmentation of Satellite Images for Land Cover Mapping—Challenges and Opportunities. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Nice, France, 31 August–2 September 2020; Volume V-3–2020, pp. 795–802. [Google Scholar]
- Moraes, D.; Campagnolo, M.L.; Caetano, M. Training Data in Satellite Image Classification for Land Cover Mapping: A Review. Eur. J. Remote Sens. 2024, 57, 2341414. [Google Scholar] [CrossRef]
- Zhou, Q.; Tollerud, H.; Barber, C.; Smith, K.; Zelenak, D. Training Data Selection for Annual Land Cover Classification for the Land Change Monitoring, Assessment, and Projection (LCMAP) Initiative. Remote Sens. 2020, 12, 699. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C. Land Cover Classification in an Era of Big and Open Data: Optimizing Localized Implementation and Training Data Selection to Improve Mapping Outcomes. Remote Sens. Environ. 2022, 268, 112780. [Google Scholar] [CrossRef]
- Venter, Z.S.; Sydenham, M.A.K. Continental-Scale Land Cover Mapping at 10 m Resolution over Europe (Elc10). Remote Sens. 2021, 13, 2301. [Google Scholar] [CrossRef]
- Weigand, M.; Staab, J.; Wurm, M.; Taubenböck, H. Spatial and Semantic Effects of LUCAS Samples on Fully Automated Land Use/Land Cover Classification in High-Resolution Sentinel-2 Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102065. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, Z.; Zhu, Y.; Wang, B.; Sun, K.; Zhang, F. A High-Performance Automated Large-Area Land Cover Mapping Framework. Remote Sens. 2023, 15, 3143. [Google Scholar] [CrossRef]
- Xie, S.; Liu, L.; Yang, J. Time-Series Model-Adjusted Percentile Features: Improved Percentile Features for Land-Cover Classification Based on Landsat Data. Remote Sens. 2020, 12, 3091. [Google Scholar] [CrossRef]
- Polyakova, A.; Mukharamova, S.; Yermolaev, O.; Shaykhutdinova, G. Automated Recognition of Tree Species Composition of Forest Communities Using Sentinel-2 Satellite Data. Remote Sens. 2023, 15, 329. [Google Scholar] [CrossRef]
- Breidenbach, J.; Waser, L.T.; Debella-Gilo, M.; Schumacher, J.; Rahlf, J.; Hauglin, M.; Puliti, S.; Astrup, R. National Mapping and Estimation of Forest Area by Dominant Tree Species Using Sentinel-2 Data. Can. J. For. Res. 2021, 51, 365–379. [Google Scholar] [CrossRef]
- Welle, T.; Aschenbrenner, L.; Kuonath, K.; Kirmaier, S.; Franke, J. Mapping Dominant Tree Species of German Forests. Remote Sens. 2022, 14, 3330. [Google Scholar] [CrossRef]
- Bearman, A.; Russakovsky, O.; Ferrari, V.; Li, F.-F. What’s the Point: Semantic Segmentation with Point Supervision; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 549–565. [Google Scholar]
- Yao, X.; Han, J.; Cheng, G.; Qian, X.; Guo, L. Semantic Annotation of High-Resolution Satellite Images via Weakly Supervised Learning. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3660–3671. [Google Scholar] [CrossRef]
- Chan, L.; Hosseini, M.S.; Plataniotis, K.N. A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains. Int. J. Comput. Vis. 2021, 129, 361–384. [Google Scholar] [CrossRef]
- Kaiser, P.; Wegner, J.D.; Jaggi, M.; Hofmann, T.; Schindler, K. Learning Aerial Image Segmentation from Online Maps. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6054–6068. [Google Scholar] [CrossRef]
- Chen, J.; He, F.; Zhang, Y.; Sun, G.; Deng, M. SPMF-Net: Weakly Supervised Building Segmentation by Combining Superpixel Pooling and Multi-Scale Feature Fusion. Remote Sens. 2020, 12, 1049. [Google Scholar] [CrossRef]
- Fu, K.; Lu, W.; Diao, W.; Yan, M.; Sun, H.; Zhang, Y.; Sun, X. WSF-NET: Weakly Supervised Feature-Fusion Network for Binary Segmentation in Remote Sensing Image. Remote Sens. 2018, 10, 1970. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G.; Cui, H.; Li, X.; Hou, S.; Ma, J.; Li, Z.; Li, H.; Wang, H. A Novel Weakly Supervised Semantic Segmentation Framework to Improve the Resolution of Land Cover Product. ISPRS J. Photogramm. Remote Sens. 2023, 196, 73–92. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.; Xie, S.M.; Azzari, G.; Lobell, D.B. Weakly Supervised Deep Learning for Segmentation of Remote Sensing Imagery. Remote Sens. 2020, 12, 207. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, P.; Corpetti, T.; Zhao, L. WTS: A Weakly towards Strongly Supervised Learning Framework for Remote Sensing Land Cover Classification Using Segmentation Models. Remote Sens. 2021, 13, 394. [Google Scholar] [CrossRef]
- Balestriero, R.; Ibrahim, M.; Sobal, V.; Morcos, A.; Shekhar, S.; Goldstein, T.; Bordes, F.; Bardes, A.; Mialon, G.; Tian, Y.; et al. A Cookbook of Self-Supervised Learning. arXiv 2023, arXiv:2304.12210. [Google Scholar] [CrossRef]
- He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked Autoencoders Are Scalable Vision Learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16000–16009. [Google Scholar]
- Woo, S.; Debnath, S.; Hu, R.; Chen, X.; Liu, Z.; Kweon, I.S.; Xie, S. ConvNext-V2: Co-Designing and Scaling Convnets with Masked Autoencoders. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 16133–16142. [Google Scholar]
- Lin, J.; Gao, F.; Shi, X.; Dong, J.; Du, Q. SS-MAE: Spatial-Spectral Masked Autoencoder for Multisource Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5531614. [Google Scholar] [CrossRef]
- Cong, Y.; Khanna, S.; Meng, C.; Liu, P.; Rozi, E.; He, Y.; Burke, M.; Lobell, D.; Ermon, S. SatMAE: Pre-Training Transformers for Temporal and Multi-Spectral Satellite Imagery. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LA, USA, 28 November–9 December 2022; Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2022; Volume 35, pp. 197–211. [Google Scholar]
- Nedungadi, V.; Kariryaa, A.; Oehmcke, S.; Belongie, S.; Igel, C.; Lang, N. MMEarth: Exploring Multi-Modal Pretext Tasks for Geospatial Representation Learning. arXiv 2024, arXiv:2405.02771. [Google Scholar]
- Sosa, J.; Aloulou, M.; Rukhovich, D.; Sleimi, R.; Changaival, B.; Kacem, A.; Aouada, D. How Effective Is Pre-Training of Large Masked Autoencoders for Downstream Earth Observation Tasks? arXiv 2024, arXiv:2409.18536. [Google Scholar]
- Costa, H.; Benevides, P.; Moreira, F.D.; Moraes, D.; Caetano, M. Spatially Stratified and Multi-Stage Approach for National Land Cover Mapping Based on Sentinel-2 Data and Expert Knowledge. Remote Sens. 2022, 14, 1865. [Google Scholar] [CrossRef]
- Baetens, L.; Desjardins, C.; Hagolle, O. Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure. Remote Sens. 2019, 11, 433. [Google Scholar] [CrossRef]
- Skakun, S.; Wevers, J.; Brockmann, C.; Doxani, G.; Aleksandrov, M.; Batič, M.; Frantz, D.; Gascon, F.; Gómez-Chova, L.; Hagolle, O.; et al. Cloud Mask Intercomparison EXercise (CMIX): An Evaluation of Cloud Masking Algorithms for Landsat 8 and Sentinel-2. Remote Sens. Environ. 2022, 274, 112990. [Google Scholar] [CrossRef]
- European Environmental Agency (EEA). High Resolution Layer Forest, Dominant Leaf Type 2018; European Environmental Agency (EEA): Copenhagen, Denmark, 2021. [Google Scholar]
- Moraes, D.; Benevides, P.; Costa, H.; Moreira, F.D.; Caetano, M. Exploring Different Levels of Class Nomenclature in Random Forest Classification of Sentinel-2 Data. In Proceedings of the IGARSS 2022—IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 2279–2282. [Google Scholar]
- Lin, C.; Du, P.; Samat, A.; Li, E.; Wang, X.; Xia, J. Automatic Updating of Land Cover Maps in Rapidly Urbanizing Regions by Relational Knowledge Transferring from Globeland30. Remote Sens. 2019, 11, 1397. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- De Souza, A.A.; Galvão, L.S.; Korting, T.S.; Almeida, C.A. On a Data-Driven Approach for Detecting Disturbance in the Brazilian Savannas Using Time Series of Vegetation Indices. Remote Sens. 2021, 13, 4959. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.; Yang, Z.; Aljaddani, A.H.; Cohen, W.B.; Qiu, S.; Zhou, C. Continuous Monitoring of Land Disturbance Based on Landsat Time Series. Remote Sens. Environ. 2020, 238, 111116. [Google Scholar] [CrossRef]
- Mulverhill, C.; Coops, N.C.; Achim, A. Continuous Monitoring and Sub-Annual Change Detection in High-Latitude Forests Using Harmonized Landsat Sentinel-2 Data. ISPRS J. Photogramm. Remote Sens. 2023, 197, 309–319. [Google Scholar] [CrossRef]
- Moraes, D.; Barbosa, B.; Costa, H.; Moreira, F.D.; Benevides, P.; Caetano, M.; Campagnolo, M. Continuous Forest Loss Monitoring in a Dynamic Landscape of Central Portugal with Sentinel-2 Data. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103913. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Van Gansbeke, W.; Vandenhende, S.; Georgoulis, S.; Proesmans, M.; Van Gool, L. SCAN: Learning to Classify Images Without Labels. In Proceedings of the European Conference on Computer Vision (ECCV); Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 268–285. [Google Scholar]
- Zhai, X.; Oliver, A.; Kolesnikov, A.; Beyer, L. S4L: Self-Supervised Semi-Supervised Learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1476–1485. [Google Scholar]
- Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 2017, 9, 95. [Google Scholar] [CrossRef]
- Zhu, Z.; Gallant, A.L.; Woodcock, C.E.; Pengra, B.; Olofsson, P.; Loveland, T.R.; Jin, S.; Dahal, D.; Yang, L.; Auch, R.F. Optimizing Selection of Training and Auxiliary Data for Operational Land Cover Classification for the LCMAP Initiative. ISPRS J. Photogramm. Remote Sens. 2016, 122, 206–221. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Sicre, C.M.; Dedieu, G. Effect of Training Class Label Noise on Classification Performances for Land Cover Mapping with Satellite Image Time Series. Remote Sens. 2017, 9, 173. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep Learning in Remote Sensing Applications: A Meta-Analysis and Review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Costa, H.; Machado, I.; Moreira, F.D.; Benevides, P.; Moraes, D.; Caetano, M. Exploring the Potential of Sentinel-2 Data for Tree Crown Mapping in Oak Agro-Forestry Systems. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5807–5810. [Google Scholar]
Map Class | Training Class |
---|---|
Urban | Urban |
Winter crops | Winter crops |
Summer crops | Summer crops |
Rice fields | |
Other agriculture | Orchards |
Vineyards | |
Olive trees | |
Irrigated pastures | |
Cork and holm oak | Cork oak |
Holm oak | |
Eucalyptus | Eucalyptus |
Other broadleaf | Oaks |
Other broadleaf | |
Maritime pine | Maritime pine |
Stone pine | Stone pine |
Other coniferous | Other coniferous |
Shrubland | Shrubland (shrubs, tall shrubs) |
Pastures and natural grasslands | Pastures |
Non-vegetated surfaces | Non-vegetated surfaces (unproductive) |
Water and wetlands | Water and wetlands |
Filter Number | Query | Scope |
---|---|---|
1 | Primary land cover = secondary land cover | All classes |
2 | Patch dimension > 2 ha | All classes |
3 | Stand type = ‘Standing stand’ | Forest only |
4 | Percentage of tree cover ≥ 30% | Forest only |
Parameters | Value/Settings |
---|---|
Breakpoint bands | Blue, green, red, NIR, SWIR1, SWIR2, NDVI, NBR |
Tmask bands | Green, SWIR1 |
Min_obs | 6 |
Chi-square | 0.99 |
minYears | 1 |
Lambda | 0.02 |
Model | Overall Accuracy |
---|---|
Random Forest | 67.90% ± 0.20% |
ConvNext-V2-baseline | 69.60% ± 0.25% |
ConvNext-V2-SSL-pretrained | 71.29% ± 0.69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraes, D.; Campagnolo, M.L.; Caetano, M. A Weakly Supervised and Self-Supervised Learning Approach for Semantic Segmentation of Land Cover in Satellite Images with National Forest Inventory Data. Remote Sens. 2025, 17, 711. https://doi.org/10.3390/rs17040711
Moraes D, Campagnolo ML, Caetano M. A Weakly Supervised and Self-Supervised Learning Approach for Semantic Segmentation of Land Cover in Satellite Images with National Forest Inventory Data. Remote Sensing. 2025; 17(4):711. https://doi.org/10.3390/rs17040711
Chicago/Turabian StyleMoraes, Daniel, Manuel L. Campagnolo, and Mário Caetano. 2025. "A Weakly Supervised and Self-Supervised Learning Approach for Semantic Segmentation of Land Cover in Satellite Images with National Forest Inventory Data" Remote Sensing 17, no. 4: 711. https://doi.org/10.3390/rs17040711
APA StyleMoraes, D., Campagnolo, M. L., & Caetano, M. (2025). A Weakly Supervised and Self-Supervised Learning Approach for Semantic Segmentation of Land Cover in Satellite Images with National Forest Inventory Data. Remote Sensing, 17(4), 711. https://doi.org/10.3390/rs17040711