Deep Learning Extraction of Tidal Creeks in the Yellow River Delta Using GF-2 Imagery
<p>Location of the study area: GF-2 images of the Yellow River Delta (RGB: 3, 2, 1 bands) (<b>a</b>), (<b>b</b>) mudflat creek area, and (<b>c</b>) salt marsh creek area.</p> "> Figure 2
<p>The ODU-Net model structure.</p> "> Figure 3
<p>CA-ASPP module structure.</p> "> Figure 4
<p>Coordinate attention module structure.</p> "> Figure 5
<p>Comparison of results of ablation experiments on the mudflat creek test set.</p> "> Figure 6
<p>Comparison of results of ablation experiments on the salt marsh creek test set.</p> "> Figure 7
<p>(<b>a</b>) Larger spatial mudflat area; (<b>b</b>) prediction results for mudflat creeks; (<b>c</b>) larger spatial mudflat area; (<b>d</b>) prediction results for salt marsh creeks.</p> "> Figure 8
<p>Comparison of the edge detection results (1–3 for mudflat regions, 4–6 for salt marsh regions).</p> "> Figure 9
<p>Semantic segmentation results of different models on the mudflat creek test set.</p> "> Figure 10
<p>Semantic segmentation results of different models on the salt marsh creek test set.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Methodology
2.3.1. Omni-Dimensional Dynamic Convolution (ODConv)
2.3.2. Atrous Spatial Pyramid Pooling Utilizing a Coordinate Attention Mechanism (CA-ASPP)
2.3.3. Loss Function
3. Results
3.1. Evaluation Indicators
3.2. Experiment Results
3.3. Comparisons and Analysis
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Xu, N.; Li, Y.; Li, Y. Sub-Continental-Scale Mapping of Tidal Wetland Composition for East Asia: A Novel Algorithm Integrating Satellite Tide-Level and Phenological Features. Remote Sens. Environ. 2022, 269, 112799. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The Global Distribution and Trajectory of Tidal Flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-m.; Zhang, R.-s.; Wang, Y.-h. The Tidal Creek Character in Salt Marsh of Spartina Alterniflora Loisel on Strong Tide Coast. Geogr. Res. 2003, 22, 520–527. [Google Scholar] [CrossRef]
- Newell, R.I.E.; Marshall, N.; Sasekumar, A.; Chong, V.C. Relative Importance of Benthic Microalgae, Phytoplankton, and Mangroves as Sources of Nutrition for Penaeid Prawns and Other Coastal Invertebrates from Malaysia. Mar. Biol. 1995, 123, 595–606. [Google Scholar] [CrossRef]
- Dittmar, T.; Lara, R.J. Driving Forces Behind Nutrient and Organic Matter Dynamics in a Mangrove Tidal Creek in North Brazil. Estuar. Coast. Shelf Sci. 2001, 52, 249–259. [Google Scholar] [CrossRef]
- Gleeson, J.; Santos, I.R.; Maher, D.T.; Golsby-Smith, L. Groundwater–Surface Water Exchange in a Mangrove Tidal Creek: Evidence from Natural Geochemical Tracers and Implications for Nutrient Budgets. Mar. Chem. 2013, 156, 27–37. [Google Scholar] [CrossRef]
- Mallik, A.; Chakraborty, P.; Ramteke, K.K.; Bhavan, S.G.; Jaiswar, A.K.; Nayak, B.B.; Pal, P.; Bhushan, S. Diet Characteristics of Tidal Creek-Associated Fishes of the Northeastern Arabian Sea with Special Reference to Microplastic Ingestion. Chemosphere 2024, 363, 142886. [Google Scholar] [CrossRef] [PubMed]
- Laffaille, P.; Feunteun, E.; Lefeuvre, J.-C. Composition of Fish Communities in a European Macrotidal Salt Marsh (the Mont Saint-Michel Bay, France). Estuar. Coast. Shelf Sci. 2000, 51, 429–438. [Google Scholar] [CrossRef]
- Lerberg, S.B.; Holland, A.F.; Sanger, D.M. Responses of Tidal Creek Macrobenthic Communities to the Effects of Watershed Development. Estuaries 2000, 23, 838–853. [Google Scholar] [CrossRef]
- Ning, Z.; Li, D.; Chen, C.; Xie, C.; Chen, G.; Xie, T.; Wang, Q.; Bai, J.; Cui, B. The Importance of Structural and Functional Characteristics of Tidal Channels to Smooth Cordgrass Invasion in the Yellow River Delta, China: Implications for Coastal Wetland Management. J. Environ. Manag. 2023, 342, 118297. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, W.; Xu, H.; Wang, R.; Song, K.; Bao, A.; Shi, Q. Vegetation Differentiation Characteristics and Control Mechanisms in the Altay Region Based on Topographic Gradients. Ecol. Indic. 2024, 160, 111838. [Google Scholar] [CrossRef]
- Kearney, W.S.; Fagherazzi, S. Salt Marsh Vegetation Promotes Efficient Tidal Channel Networks. Nat. Commun. 2016, 7, 12287. [Google Scholar] [CrossRef]
- Christiansen, T.; Wiberg, P.L.; Milligan, T.G. Flow and Sediment Transport on a Tidal Salt Marsh Surface. Estuar. Coast. Shelf Sci. 2000, 50, 315–331. [Google Scholar] [CrossRef]
- Voulgaris, G.; Meyers, S.T. Temporal Variability of Hydrodynamics, Sediment Concentration and Sediment Settling Velocity in a Tidal Creek. Cont. Shelf Res. 2004, 24, 1659–1683. [Google Scholar] [CrossRef]
- Temmerman, S.; Bouma, T.J.; Govers, G.; Lauwaet, D. Flow Paths of Water and Sediment in a Tidal Marsh: Relations with Marsh Developmental Stage and Tidal Inundation Height. Estuaries 2005, 28, 338–352. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, Y.; Xu, W.; Liu, Y.; Sun, J.; Wang, L. Morphological Characteristics of Tidal Creeks in the Central Coastal Region of Jiangsu, China, Using LiDAR. Remote Sens. 2019, 11, 2426. [Google Scholar] [CrossRef]
- Halls, J.; Costin, K. Submerged and Emergent Land Cover and Bathymetric Mapping of Estuarine Habitats Using WorldView-2 and LiDAR Imagery. Remote Sens. 2016, 8, 718. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Hannion, M.; D’Odorico, P. Geomorphic Structure of Tidal Hydrodynamics in Salt Marsh Creeks. Water Resour. Res. 2008, 44, 2007WR006289. [Google Scholar] [CrossRef]
- Magolan, J.L.; Halls, J.N. A Multi-Decadal Investigation of Tidal Creek Wetland Changes, Water Level Rise, and Ghost Forests. Remote Sens. 2020, 12, 1141. [Google Scholar] [CrossRef]
- Paynter, I.; Schaaf, C.; Bowen, J.L.; Deegan, L.; Peri, F.; Cook, B. Characterizing a New England Saltmarsh with NASA G-LiHT Airborne Lidar. Remote Sens. 2019, 11, 509. [Google Scholar] [CrossRef]
- Lohani, B.; Mason, D.C. Application of Airborne Scanning Laser Altimetry to the Study of Tidal Channel Geomorphology. ISPRS J. Photogramm. Remote Sens. 2001, 56, 100–120. [Google Scholar] [CrossRef]
- Yang, Y. Landsat 8 OLI Image Based Terrestrial Water Extraction from Heterogeneous Backgrounds Using a Reflectance Homogenization Approach. Remote Sens. Environ. 2015, 171, 14–32. [Google Scholar] [CrossRef]
- Gong, Z.; Wang, Q.; Guan, H.; Zhou, D.; Zhang, L.; Jing, R.; Wang, X.; Li, Z. Extracting Tidal Creek Features in a Heterogeneous Background Using Sentinel-2 Imagery: A Case Study in the Yellow River Delta, China. Int. J. Remote Sens. 2020, 41, 3653–3676. [Google Scholar] [CrossRef]
- Gong, Z.; Mou, K.; Wang, Q.; Qiu, H.; Zhang, C.; Zhou, D. Parameterizing the Yellow River Delta Tidal Creek Morphology Using Automated Extraction from Remote Sensing Images. Sci. Total Environ. 2021, 769, 144572. [Google Scholar] [CrossRef] [PubMed]
- Chirol, C.; Haigh, I.D.; Pontee, N.; Thompson, C.E.; Gallop, S.L. Parametrizing Tidal Creek Morphology in Mature Saltmarshes Using Semi-Automated Extraction from Lidar. Remote Sens. Environ. 2018, 209, 291–311. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.; Lee, J. Tidal Creek Extraction from Airborne LiDAR Data Using Ground Filtering Techniques. KSCE J. Civ. Eng. 2020, 24, 2767–2783. [Google Scholar] [CrossRef]
- Isikdogan, F.; Bovik, A.; Passalacqua, P. Automatic Channel Network Extraction From Remotely Sensed Images by Singularity Analysis. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2218–2221. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. ISBN 978-3-319-24573-7. [Google Scholar]
- Hübinger, C.; Fluet-Chouinard, E.; Hugelius, G.; Peña, F.J.; Jaramillo, F. Automating the Detection of Hydrological Barriers and Fragmentation in Wetlands Using Deep Learning and InSAR. Remote Sens. Environ. 2024, 311, 114314. [Google Scholar] [CrossRef]
- Dang, K.B.; Nguyen, M.H.; Nguyen, D.A.; Phan, T.T.H.; Giang, T.L.; Pham, H.H.; Nguyen, T.N.; Tran, T.T.V.; Bui, D.T. Coastal Wetland Classification with Deep U-Net Convolutional Networks and Sentinel-2 Imagery: A Case Study at the Tien Yen Estuary of Vietnam. Remote Sens. 2020, 12, 3270. [Google Scholar] [CrossRef]
- Dutt, R.; Ortals, C.; He, W.; Curran, Z.C.; Angelini, C.; Canestrelli, A.; Jiang, Z. A Deep Learning Approach to Segment Coastal Marsh Tidal Creek Networks from High-Resolution Aerial Imagery. Remote Sens. 2024, 16, 2659. [Google Scholar] [CrossRef]
- Yanxia, L.I.U.; Haijun, H.; Zhongfeng, Q.I.U.; Jitao, C.; Xiguang, Y. Monitoring Change and Position of Coastlines from Satellite Images Using Slope Correction in a Tidal Flat: A Case Study in the Yellow River Delta. Acta Geogr. Sin. 2012, 67, 377–387. [Google Scholar] [CrossRef]
- Healey, R.G.; Pye, K.; Stoddart, D.R.; Bayliss-Smith, T.P. Velocity Variations in Salt Marsh Creeks, Norfolk, England. Estuar. Coast. Shelf Sci. 1981, 13, 535–545. [Google Scholar] [CrossRef]
- Li, C.; Zhou, A.; Yao, A. Omni-Dimensional Dynamic Convolution. arXiv 2022, arXiv:2209.07947. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs 2017. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Yu, W.; Luo, M.; Zhou, P.; Si, C.; Zhou, Y.; Wang, X.; Feng, J.; Yan, S. MetaFormer Is Actually What You Need for Vision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Guo, M.-H.; Lu, C.-Z.; Hou, Q.; Liu, Z.; Cheng, M.-M.; Hu, S.-M. SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation. Adv. Neural Inf. Process. Syst. 2022, 35, 1140–1156. [Google Scholar]
- Yin, P.; Zhang, D.; Han, W.; Li, J.; Cheng, J. High-Resolution Remote Sensing Image Semantic Segmentation via Multiscale Context and Linear Self-Attention. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9174–9185. [Google Scholar] [CrossRef]
- Fu, L.; Chen, J.; Wang, Z.; Zang, T.; Chen, H.; Wu, S.; Zhao, Y. MSFANet: Multi-Scale Fusion Attention Network for Mangrove Remote Sensing Lmage Segmentation Using Pattern Recognition. J. Cloud Comput. 2024, 13, 27. [Google Scholar] [CrossRef]
- Suwanprasit, C.; Srichai, N. Impacts of Spatial Resolution on Land Cover Classification. APAN Proc. 2012, 33, 39. [Google Scholar] [CrossRef]
- Marques, F.; Eugenio, F.; Alfaro, M.; Marcello, J. Bathymetry Mapping Using Very High Resolution Satellite Multispectral Imagery in Shallow Coastal Waters of Protected Ecosystems. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8234–8237. [Google Scholar]
- Mou, K.; Gong, Z.; Qiu, H. Spatiotemporal Differentiation and Development Process of Tidal Creek Network Morphological Characteristics in the Yellow River Delta. J. Geogr. Sci. 2021, 31, 1633–1654. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, X.; Jiang, B.; Su, C.; Wang, M.; Zhang, K. Comparison of Performance of Fusion Methods for Sentinel-2 and GF-2 Satellite Images and the Potential in Land Use Classification: A Case Study from Reservoirs in Hainan Island, China. In Proceedings of the 2024 12th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Novi Sad, Serbia, 15–18 July 2024; pp. 1–6. [Google Scholar]
- Elshamli, A.; Taylor, G.W.; Areibi, S. Multisource Domain Adaptation for Remote Sensing Using Deep Neural Networks. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3328–3340. [Google Scholar] [CrossRef]
- Jin, H.; Mountrakis, G. Fusion of Optical, Radar and Waveform LiDAR Observations for Land Cover Classification. ISPRS J. Photogramm. Remote Sens. 2022, 187, 171–190. [Google Scholar] [CrossRef]
Parameters | Panchromatic/Multispectral Cameras | |
---|---|---|
Spectral Scope | Panchromatic | 0.45~0.90 μm |
Multispectral | 0.45~0.52 μm | |
0.52~0.59 μm | ||
0.63~0.69 μm | ||
0.77~0.89 μm | ||
Spatial Resolution | Panchromatic | 0.8 m |
Multispectral | 3.2 m |
Model | F1 Score | Kappa Coefficient | Recall | Accuracy |
---|---|---|---|---|
Vanilla U-Net | 0.7929 | 0.7753 | 0.7184 | 0.9687 |
U-Net + Resnet Block | 0.8075 | 0.7898 | 0.7562 | 0.9688 |
U-Net + Resnet Block + CA-ASPP | 0.8110 | 0.7939 | 0.7797 | 0.9701 |
ODU-Net | 0.8320 | 0.8169 | 0.8394 | 0.9746 |
Model | F1 Score | Kappa Coefficient | Recall | Accuracy |
---|---|---|---|---|
Vanilla U-Net | 0.7562 | 0.7453 | 0.7369 | 0.9665 |
U-Net + Resnet Block | 0.7904 | 0.7802 | 0.7702 | 0.9799 |
U-Net + Resnet Block + CA-ASPP | 0.8100 | 0.8009 | 0.7889 | 0.9811 |
ODU-Net | 0.8319 | 0.8232 | 0.9210 | 0.9837 |
Model | F1 Score | Kappa Coefficient | Recall | Accuracy |
---|---|---|---|---|
DeeplabV3+ | 0.6550 | 0.6354 | 0.5405 | 0.9620 |
PSPNet | 0.6356 | 0.6154 | 0.5214 | 0.9604 |
PoolFormer | 0.7729 | 0.7579 | 0.6925 | 0.9703 |
SegNeXt | 0.7796 | 0.7645 | 0.7140 | 0.9725 |
ODU-Net | 0.8320 | 0.8169 | 0.8394 | 0.9746 |
Model | F1 Score | Kappa Coefficient | Recall | Accuracy |
---|---|---|---|---|
DeeplabV3+ | 0.6193 | 0.6053 | 0.5283 | 0.9720 |
PSPNet | 0.6276 | 0.6133 | 0.5682 | 0.9716 |
PoolFormer | 0.7132 | 0.7044 | 0.6414 | 0.9816 |
SegNeXt | 0.7609 | 0.7520 | 0.7585 | 0.9825 |
ODU-Net | 0.8319 | 0.8232 | 0.9210 | 0.9837 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Zhang, Q.; Yang, N.; Wang, X.; Zhang, X.; Chen, Y.; Wang, S. Deep Learning Extraction of Tidal Creeks in the Yellow River Delta Using GF-2 Imagery. Remote Sens. 2025, 17, 676. https://doi.org/10.3390/rs17040676
Chen B, Zhang Q, Yang N, Wang X, Zhang X, Chen Y, Wang S. Deep Learning Extraction of Tidal Creeks in the Yellow River Delta Using GF-2 Imagery. Remote Sensing. 2025; 17(4):676. https://doi.org/10.3390/rs17040676
Chicago/Turabian StyleChen, Bojie, Qianran Zhang, Na Yang, Xiukun Wang, Xiaobo Zhang, Yilan Chen, and Shengli Wang. 2025. "Deep Learning Extraction of Tidal Creeks in the Yellow River Delta Using GF-2 Imagery" Remote Sensing 17, no. 4: 676. https://doi.org/10.3390/rs17040676
APA StyleChen, B., Zhang, Q., Yang, N., Wang, X., Zhang, X., Chen, Y., & Wang, S. (2025). Deep Learning Extraction of Tidal Creeks in the Yellow River Delta Using GF-2 Imagery. Remote Sensing, 17(4), 676. https://doi.org/10.3390/rs17040676