The Sensitivity of Polar Mesospheric Clouds to Mesospheric Temperature and Water Vapor
<p>Profiles of MLS T (K), RHI (%), and H<sub>2</sub>O (ppmv) averaged over 30 days after the 2011 summer solstice for the (<b>a</b>) NH and (<b>b</b>) SH.</p> "> Figure 2
<p>Latitude height distribution of MLS T (K) (<b>left</b> panel) and H<sub>2</sub>O (ppmv) (<b>right</b> panel) monthly zonal mean climatology calculated during 2005–2021.</p> "> Figure 3
<p>MLS zonal daily mean H<sub>2</sub>O VMR climatology (ppmv) in the mesosphere at 0.02, 0.01, 0.005, 0.002, and 0.001 hPa for the NH (<b>left</b> column) and SH (<b>right</b> column) (2005–2021). Black lines indicate local summer solstices. Above 0.01 hPa, white dotted contour lines represent T at 150 K, and solid lines represent T at 140 K (<b>lower</b> latitudes) and 130 K (<b>higher</b> latitudes), respectively.</p> "> Figure 4
<p>The H<sub>2</sub>O dehydration (in ppmv) at 0.002 hPa due to PMC formation in 2007 NH and 2007/2008 SH summer seasons. H<sub>2</sub>O VMRs are averaged for 0 to 30 days from summer solstice (<b>a</b>) for the NH and (<b>b</b>) for the SH, respectively. Similarly, the H<sub>2</sub>O (in ppmv) at 0.01 hPa is shown (<b>c</b>) for the NH and (<b>d</b>) for the SH. Overlaid blue lines represent a temperature contour of 140 K for 0.002 hPa and 150 K for 0.01 hPa.</p> "> Figure 5
<p>Climatology of the daily PMC occurrence rate (OR) in % as observed from AIM/CIPS (upper panel: 2007–2021) and Himawari-8/AHI (lower panel: 2016–2021) in the NH and SH at each latitude bin. Black lines indicate the day of local summer solstice. Solid and dotted contour lines in magenta represent high latitude (60°N/S–82°N/S) H<sub>2</sub>O VMR of 7.1 ppmv and 7.5 ppmv, respectively, at 0.02 hPa (near PMC altitude). White lines represent high latitude mean T = 173 K (NH) and T = 178 K (SH) at the same level.</p> "> Figure 6
<p>Interannual variations in the CIPS PMC onset date (in yellow) and onset date of the high H<sub>2</sub>O (in blue) VMR and low temperature (in red) with respect to the summer solstice in the (<b>a</b>) NH and (<b>b</b>) SH. Note the different <span class="html-italic">y</span> axes for each hemisphere’s PMC season.</p> "> Figure 7
<p>Year-to-year variations in seasonal mean PMC occurrence Rate (%) for NH (<b>a</b>–<b>c</b>) and SH (<b>d</b>–<b>f</b>) from CIPS (in blue) and AHI (in red). Similarly, year-to-year variations in MLS H<sub>2</sub>O (ppmv), RHI (%), and T beyond 62°N/S at 0.01 hPa are given on the right axis. H<sub>2</sub>O VMR, RHI, and T are averaged for 0 to 30 days from summer solstice for each hemisphere. The <span class="html-italic">y</span>-axis for T is reversed for a better presentation. The vertical bars indicate standard deviations for the MLS variables.</p> "> Figure 8
<p>Comparison of profiles of MLS RHI (%) among different periods around summer solstice in (<b>a</b>) NH and (<b>b</b>) SH. Comparison of probability density function (PDF) of RHI in (<b>c</b>) NH and (<b>d</b>) SH. RHI data at 0.01 hPa are averaged for 0 to 30 days before solstice (in blue), 0 to 30 days after solstice (in red), and 30 to 60 days after solstice (in yellow), respectively, for 60°–82°N/S latitude band during 2005–2021.</p> "> Figure 9
<p>Latitudinal distribution of annual mean temperature (K) and H<sub>2</sub>O (ppmv) at 0.001 hPa is shown in the upper panel. The near-global averaged (82°S–82°N) annual mean time series and their standard deviations are shown in the lower panel with SORCE TSI (W/m<sup>2</sup>) variation. The <span class="html-italic">y</span>-axis for H<sub>2</sub>O plot (<b>lower right</b>) is reversed for a better presentation.</p> ">
Abstract
:1. Introduction
2. Data
2.1. MLS T and H2O
2.2. MLS Relative Humidity with Respect to Ice (RHI)
2.3. AIMS/CIPS
2.4. Himawari-8/AHI
3. Results and Discussion
3.1. Climatology of Mesospheric T and H2O
3.2. Upper-Mesospheric Dehydration
3.3. Climatology of PMCs
3.4. Dependence of Year-to-Year Variations of PMC on T and H2O
3.4.1. Onset Time of PMC
3.4.2. Occurrence of PMC
3.4.3. Quasi Quadrennial Oscillation
4. Discussion
4.1. Relationships between T, H2O, and RHI
4.2. Influence of PMC on H2O and RHI
4.3. Diminishing Solar Cycle Variations in PMC
5. Summary
- We compared the climatology and year-to-year variability in the daily PMC ORs from AIM/CIPS and Himawari-8/AHI. Despite differences in the sampling and algorithms of the measurements, daily variations in the PMC occurrence rate in two independent measurements showed a remarkable similarity in their overall spatial extent, timing, and the duration of the cloud occurrence. The OR from AHI reached its maximum, within 80 N/S latitudes, about 20 days after the solstice, which was ~10 days earlier than that from CIPS. The climatologies of the two PMC ORs exhibited a hemispheric asymmetry between the two hemispheres, as the multiyear averaged PMC occurrence was more frequent in the NH than the SH in both observations.
- The climatologies of the two PMC ORs were compared with the climatology of the summer solstice H2O VMR and T at the near-PMC level (0.02 hPa) at a high latitude (60°N/S–82°N/S). The PMC occurrence above 60°N/S was directly related to T and H2O variations, and the combination of these two determined the PMC’s seasonal development. In the CIPS case, the high frequency of the occurrence nearly co-occurred with a high H2O, but it lagged up to 30 days from the temperature drop. The date of the seasonal high latitude mesospheric H2O maxima seen from the MLS was up to 30 days later than the date of the corresponding local T minima. The lagged days between the PMC and T were reduced in the AHI-measured PMC ORs. In both cases, the PMC OR peak occurred between the T minima and H2O maxima.
- We showed the spatial patterns of the H2O hole, a region of exceptionally depleted H2O in the upper mesosphere at 0.002 hPa during the PMC season over the Arctic and Antarctic beyond 70°N/S centered at the poles. We inferred that the H2O depletion in this region was probably caused by the formation of PMCs. These clouds dehydrate the surrounding atmosphere when they are formed. The H2O amount integrated below these PMC regions generally increased during the last 17 years in the NH. It showed consistent interannual variations similar to the CIPS- and AHI-measured PMC occurrence variations in the NH.
- Our analysis estimated that the 11-year solar cycle signals in the near-global annual mean T and H2O were ~1 K and ~0.1 ppmv at mthe esopause level (0.001 hPa) with TSI variations without a lag (γ = 0.81 for T and γ = 0.85 for H2O with 95% confidence level), respectively. However, there was no significant anti-correlation between the PMC occurrence and solar cycle.
- In the NH, the increases in PMC during recent years were correlated with the positive trend of the mesospheric H2O, as observed from MLS. Abundant H2O can significantly enhance the PMC formation. In the NH, the PMC onset dates also became 5–10 days earlier during the last decade. The NH PMC OR increased ~0.75%/year during 2007–2021. The significant increase in mesospheric H2O in the NH due to anthropogenic forcing during the last decade may explain the diminished solar cycle signals in PMC occurrences during recent years.
- While PMC occurrences consistently increased in the NH, the SH PMC ORs showed a decrease (0.96%/year) during 2008–2022 with relatively low rates during recent years i.e., 2020–2022. In the SH, the summer mesospheric high-latitude T and H2O VMR time series showed a unique 4–5 years of quasi-quadrennial oscillations (QQOs). Similarly, the PMC OR and onset time also showed these distinct oscillations. The peak-to-peak amplitude of the QQO feature in PMC was 20–25%. The amplitude of mesospheric T and H2O at 0.01 hPa were 4–5 K and 0.3–0.5 ppmv, respectively. The cold years in the mesosphere coincided with the humid years with abundant H2O.
- Solar cycle variations are expected to disturb PMC formation by modulating the temperature and humidity in the middle atmosphere. Higher temperature and H2O reduction by Ly-α flux-driven photolysis during solar maximum period should provide less favorable conditions for PMC formation. Despite an expectation of the high sensitivity of the PMC to the solar irradiance, little solar cycle signatures were found in the PMC occurrence during the analysis period of 2007–2021. The steady global increase in the mesospheric H2O due to anthropogenic methane increase during the last decade may have overwhelmed the H2O decrease driven by solar activity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siskind, D.E.; Merkel, A.W.; Marsh, D.R.; Randall, C.E.; Hervig, M.E.; Mlynczak, M.G.; Russell, J.M., III. Understanding the effects of polar mesospheric clouds on the environment of the upper mesosphere and lower thermosphere. J. Geophys. Res. Atmos. 2018, 123, 11705–11719. [Google Scholar] [CrossRef]
- Dunkerton, T. On the Mean Meridional Mass Motions of the Stratosphere and Mesosphere. J. Atmos. Sci. 1978, 35, 2325–2333. [Google Scholar] [CrossRef]
- Holton, J.R. The dynamics of large scale atmospheric motions. Rev. Geophys. 1983, 21, 1021–1027. [Google Scholar] [CrossRef]
- Garcia, R.R.; Solomon, S. The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res. 1985, 90, 3850–3868. [Google Scholar] [CrossRef]
- McLandress, C. On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models. J. Atmos. Sol.-Terr. Phys. 1998, 60, 1357–1383. [Google Scholar] [CrossRef]
- Shepherd, T.G. Transport in the middle atmosphere. J. Meteorol. Soc. Jpn. 2007, 85B, 165–191. [Google Scholar] [CrossRef]
- Witt, G. The nature of noctilucent clouds. Space Res. IX 1969, 157–169. Available online: https://ui.adsabs.harvard.edu/abs/1969spre.conf..157W/abstract (accessed on 21 April 2024).
- Lübken, F.; Fricke, K.; Langer, M. Noctilucent clouds and the thermal structure near the Arctic mesopause in summer. J. Geophys. Res. 1996, 101, 9489–9508. [Google Scholar] [CrossRef]
- Lübken, F.-J. Thermal structure of the Arctic summer mesosphere. J. Geophys. Res. 1999, 10, 9135–9149. [Google Scholar] [CrossRef]
- Lübken, F.-J.; Latteck, R.; Becker, E.; Höffner, J.; Murphy, D. Using polar mesosphere summer echoes and stratospheric/mesospheric winds to explain summer mesopause jumps in Antarctica. J. Atmos. Sol.-Terr. Phys. 2017, 162, 106–115. [Google Scholar] [CrossRef]
- Roble, R.G.; Dickinson, R.E. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophys. Res. Lett. 1989, 16, 1441–1444. [Google Scholar] [CrossRef]
- Lübken, F.-J.; Höffner, J.; Viehl, T.P.; Becker, E.; Latteck, R.; Kaifler, B.; Murphy, D.J.; Morris, R.J. Winter/summer transition in the Antarctic mesopause region. J. Geophys. Res. Atmos. 2015, 120, 12394–12409. [Google Scholar] [CrossRef]
- Yue, J.; Russell, J.; Gan, Q.; Wang, T.; Rong, P.; Garcia, R.; Mlynczak, M. Increasing Water Vapor in the Stratosphere and Mesosphere After 2002. Geophys. Res. Lett. 2019, 46, 13452–13460. [Google Scholar] [CrossRef]
- Dalin, P.; Perminov, V.; Pertsev, N.; Romejko, V. Updated long-term trends in mesopause temperature, airglow emissions, and noctilucent clouds. J. Geophys. Res. Atmos. 2020, 125, e2019JD030814. [Google Scholar] [CrossRef]
- Dalin, P.; Suzuki, H.; Pertsev, N.; Perminov, V.; Shevchuk, N.; Tsimerinov, E.; Zalcik, M.; Brausch, J.; McEwan, T.; McEachran, I.; et al. The strong activity of noctilucent clouds at middle latitudes in 2020. Polar Sci. 2022, 35, 100920. [Google Scholar] [CrossRef]
- DeLand, M.T.; Thomas, G.E. Updated PMC trends derived from SBUV randeldata. J. Geophys. Res. Atmos. 2015, 120, 2140–2166. [Google Scholar] [CrossRef]
- Shettle, E.P.; DeLand, M.T.; Thomas, G.E.; Olivero, J.J. Long term variations in the frequency of polar mesospheric clouds in the Northern Hemisphere from SBUV. Geophys. Res. Lett. 2009, 36, L02803. [Google Scholar] [CrossRef]
- Thomas, G.E.; Olivero, J.J.; Jensen, E.J.; Schröder, W.; Toon, O.B. Relation between increasing methane and the presence of ice clouds at the mesopause. Nature 1989, 338, 490–492. [Google Scholar] [CrossRef]
- Lübken, F.; Berger, U.; Baumgarten, G. On the Anthropogenic Impact on Long-Term Evolution of Noctilucent Clouds. Geophys. Res. Lett. 2018, 45, 6681–6689. [Google Scholar] [CrossRef]
- Thomas, G.E.; McPeters, R.D.; Jensen, E.J. Satellite observations of polar mesospheric clouds by the solar backscattered ultraviolet spectral radiometer: Evidence of a solar cycle dependence. J. Geophys. Res. 1991, 96, 927–939. [Google Scholar] [CrossRef]
- Benze, S.; Randall, C.E.; Karlsson, B.; Harvey, V.L.; DeLand, M.T.; Thomas, G.E.; Shettle, E.P. On the onset of polar mesospheric cloud seasons as observed by SBUV. J. Geophys. Res. Atmos. 2012, 117, D07104. [Google Scholar] [CrossRef]
- Fiedler, J.; Baumgarten, G.; Lübken, F.-J. NLC observations during one solar cycle above ALOMAR. J. Atmos. Sol.-Terres. Phys. 2008, 71, 424–433. [Google Scholar] [CrossRef]
- Hervig, M.; Siskind, D. Decadal and inter-hemispheric variability in polar mesospheric clouds, water vapor, and temperature. J. Atmos. Sol.-Terr. Phys. 2006, 68, 30–41. [Google Scholar] [CrossRef]
- Hervig, M.E.; Siskind, D.E.; Bailey, S.M.; Russell, J.M. The influence of PMCs on water vapor and drivers behind PMC variability from SOFIE observations. J. Atmos. Sol.-Terr. Phys. 2015, 132, 124–134. [Google Scholar] [CrossRef]
- Hervig, M.E.; Berger, U.; Siskind, D.E. Decadal variability in PMCs and implications for changing temperature and water vapor in the upper mesosphere. J. Geophys. Res. Atmos. 2016, 121, 2383–2392. [Google Scholar] [CrossRef]
- Turco, R.P.; Toon, O.B.; Whitten, R.C.; Keesee, R.G.; Hollenback, D. Noctilucent clouds: Simulation studies of their genesis, properties, and global influences. Planet. Space Sci. 1982, 30, 1147–1181. [Google Scholar] [CrossRef]
- Olivero, J.J.; Thomas, G.E. Climatology of polar mesospheric clouds. J. Atmos. Sci. 1986, 43, 1263–1274. [Google Scholar] [CrossRef]
- Jensen, E.; Thomas, G.E. A growth-sedimentation model of polar mesospheric clouds: Comparison with SME measurements. J. Geophys. Res. 1988, 93, 2461–2473. [Google Scholar] [CrossRef]
- Aschbrenner, R.; Griffin, J.; Snell, H.E. Polar Mesospheric Cloud Modeling and Seasonal Forecasts with Satellite Data. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008; pp. IV-1006–IV-1009. [Google Scholar] [CrossRef]
- Rapp, M.; Thomas, G.E. Modeling the microphysics of mesospheric ice particles: Assessment of current capabilities and basic sensitivities. J. Atmos. Sol.-Terr. Phys. 2006, 68, 715–744. [Google Scholar] [CrossRef]
- Nachbar, M.; Wilms, H.; Duft, D.; Aylett, T.; Kitajima, K.; Majima, T.; Plane, J.M.C.; Rapp, M.; Leisner, T. The impact of solar radiation on polar mesospheric ice particle formation. Atmos. Meas. Technol. 2019, 19, 4311–4322. [Google Scholar] [CrossRef]
- Nachbar, M.; Duft, D.; Leisner, T. The vapor pressure of liquid and solid water phases at conditions relevant to the atmosphere. J. Chem. Phys. 2019, 151, 064504. [Google Scholar] [CrossRef]
- Duft, D.; Nachbar, M.; Leisner, T. Unravelling the microphysics of polar mesospheric cloud formation. Atmos. Chem. Phys. 2019, 19, 2871–2879. [Google Scholar] [CrossRef]
- Leslie, R.C. Sky glows. Nature 1885, 32, 245. [Google Scholar]
- Gadsden, M.; Schröder, W. Noctilucent Clouds; Springer: New York, NY, USA, 1989. [Google Scholar]
- Gordley, L.L.; Hervig, M.E.; Fish, C.; Russell, J.M., III; Bailey, S.; Cook, J.; Hansen, S.; Shumway, A.; Paxton, G.; Deaver, L.; et al. The solar occultation for ice experiment. J. Atmos. Sol.-Terres. Phys. 2009, 71, 300–315. [Google Scholar] [CrossRef]
- Baumgarten, G.; Fiedler, J.; Lübken, F.; von Cossart, G. Particle properties and water content of noctilucent clouds and their interannual variation. J. Geophys. Res. 2008, 113, D06203. [Google Scholar] [CrossRef]
- Baumgarten, G.; Chandran, A.; Fiedler, J.; Hoffmann, P.; Kaifler, N.; Lumpe, J.; Merkel, A.; Randall, C.E.; Rusch, D.; Thomas, G. On the horizontal and temporal structure of noctilucent clouds as observed by satellite and lidar at ALOMAR (69N). Geophys. Res. Lett. 2012, 39, L01803. [Google Scholar] [CrossRef]
- Chu, X.; Gardner, C.S.; Roble, R.G. Lidar studies of interannual, seasonal, and diurnal variations of Polar Mesospheric Clouds at the south pole. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Chu, X.; Huang, W.; Fong, W.; Yu, Z.; Wang, Z.; Smith, J.A.; Gardner, C.S. First lidar observations of polar mesospheric clouds and Fe temperatures at McMurdo (77.8°S, 166.7°E), Antarctica. Geophys. Res. Lett. 2011, 38, L16810. [Google Scholar] [CrossRef]
- Fiedler, J.; Baumgarten, G.; von Cossart, G. Mean diurnal variations of noctilucent clouds during 7 years of lidar observations at ALOMAR. Ann. Geophys. 2005, 23, 1175–1181. [Google Scholar] [CrossRef]
- Fiedler, J.; Baumgarten, G.; Berger, U.; Hoffmann, P.; Kaifler, N.; Lübken, F.-J. NLC and the background atmosphere above ALOMAR. Atmos. Meas. Tech. 2011, 11, 5701–5717. [Google Scholar] [CrossRef]
- Fiedler, J.; Baumgarten, G.; Berger, U.; Gabriel, A.; Latteck, R.; Lübken, F.-J. On the early onset of the NLC season 2013 as observed at ALOMAR. J. Atmos. Sol.-Terr. Phys. 2015, 127, 73–77. [Google Scholar] [CrossRef]
- Gumbel, J.; Stegman, J.; Murtagh, D.P.; Witt, G. Scattering phase functions and particle sizes in noctilucent clouds. Geophys. Res. Lett. 2001, 28, 1415–1418. [Google Scholar] [CrossRef]
- Klekociuk, A.R.; Morris, R.J.; Innis, J.L. First Southern Hemisphere common-volume measurements of PMC and PMSE. Geophys. Res. Lett. 2008, 35, L24804. [Google Scholar] [CrossRef]
- Seele, C.; Hartogh, P. Water vapor of the polar middle atmosphere: Annual variation and summer mesosphere Conditions as observed by ground-based microwave spectroscopy. Geophys. Res. Lett. 1999, 26, 1517–1520. [Google Scholar] [CrossRef]
- Donahue, T.M.; Guenther, B.; Blamont, J.E. Noctilucent clouds in daytime: Circumpolar particulate layers near the summer mesopause. J. Atmos. Sci. 1972, 30, 515–517. [Google Scholar] [CrossRef]
- Bailey, S.M.; Merkel, A.W.; Thomas, G.E.; Carstens, J.N. Observations of polar mesospheric clouds from the SNOE satellite. J. Geophys. Res. 2005, 110, D13203. [Google Scholar] [CrossRef]
- von Savigny, C.; Petelina, S.V.; Karlsson, B.; Llewellyn, E.J.; Degenstein, D.A.; Lloyd, N.D.; Burrows, J.P. Vertical variation of NLC particle sizes retrieved from Odin/OSIRIS limb scattering observations. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- DeLand, M.T.; Shettle, E.P.; Thomas, G.E.; Olivero, J.J. A quarter-century of satellite PMC observations. J. Atmos. Sol.-Terres. Phys. 2006, 68, 9–29. [Google Scholar] [CrossRef]
- DeLand, M.T.; Thomas, G.E. Extending the SBUV polar mesospheric cloud data record with the OMPS NP. Atmos. Meas. Tech. 2019, 19, 7913–7925. [Google Scholar] [CrossRef]
- DeLand, M.T.; Gorkavyi, N. PMC observations from the OMPS Limb Profiler. J. Atmos. Sol.-Terr. Phys. 2021, 213, 105505. [Google Scholar] [CrossRef]
- Hervig, M.E.; Pagan, K.L.; Foschi, P.G. Analysis of polar stratospheric cloud measurements from AVHRR. J. Geophys. Res. 2001, 106, 10363–10374. [Google Scholar] [CrossRef]
- Hervig, M.E.; Gordley, L.L.; Stevens, M.; Russell, J.M.; Bailey, S.; Baumgarten, G. Interpretation of SOFIE PMC measurements: Cloud identification and derivation of mass density, particle shape, and particle size. J. Atmos. Sol.-Terr. Phys. 2009, 71, 316–330. [Google Scholar] [CrossRef]
- Hervig, M.E.; Stevens, M.H. Interpreting the 35 year SBUV PMC record with SOFIE observations. J. Geophys. Res. Atmos. 2014, 119, 12689–12705. [Google Scholar] [CrossRef]
- Russell, J.M., III; Bailey, S.M.; Gordley, L.L.; Rusch, D.W.; Horányi, M.; Hervig, M.E.; Merkel, A.W. The Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results. J. Atmos. Sol.-Terr. Phys. 2009, 71, 289–299. [Google Scholar] [CrossRef]
- Gadsden, M. Polar mesospheric clouds seen from geostationary orbit. J. Atmos. Sol.-Terr. Phys. 2000, 62, 31–36. [Google Scholar] [CrossRef]
- Hozumi, Y.; Tsuda, T.T.; Hosokawa, K.; Ando, Y.; Suzuki, H.; Murata, T.; Nakamura, T. Horizontal Movement of Polar Mesospheric Clouds Observed from the Himawari-8 Geostationary Meteorological Satellite. J. Geophys. Res. Atmos. 2021, 126, e2021JD035081. [Google Scholar] [CrossRef]
- Tsuda, T.T.; Hozumi, Y.; Kawaura, K.; Hosokawa, K.; Suzuki, H.; Nakamura, T. Initial report on polar mesospheric cloud observations by Himawari-8. Atmos. Meas. Tech. 2018, 11, 6163–6168. [Google Scholar] [CrossRef]
- Tsuda, T.T.; Hozumi, Y.; Kawaura, K.; Tatsuzawa, K.; Ando, Y.; Hosokawa, K.; Suzuki, H.; Murata, K.T.; Nakamura, T.; Yue, J.; et al. Detection of polar mesospheric clouds utilizing Himawari-8/AHI full-disk images. Earth Space Sci. 2022, 9, e2021EA002076. [Google Scholar] [CrossRef]
- Kishore, P.; Ratnam, M.V.; Velicogna, I.; Sivakumar, V.; Bencherif, H.; Clemesha, B.R.; Simonich, D.M.; Batista, P.P.; Beig, G. Long-term trends observed in the middle atmosphere temperatures using ground based LIDARs and satellite borne measurements. Ann. Geophys. 2014, 32, 301–317. [Google Scholar] [CrossRef]
- Bailey, S.M.; Merkel, A.W.; Thomas, G.E.; Rusch, D.W. Hemispheric differences in Polar Mesospheric Cloud morphology observed by the Student Nitric Oxide Explorer. J. Atmos. Sol.-Terr. Phys. 2007, 69, 1407–1418. [Google Scholar] [CrossRef]
- Beig, G.; Keckhut, P.; Lowe, R.P.; Roble, R.G.; Mlynczak, M.G.; Scheer, J.; Fomichev, V.I.; Offermann, D.; French, W.J.R.; Shepherd, M.G.; et al. Review of mesospheric temperature trends. Rev. Geophys. 2003, 41. [Google Scholar] [CrossRef]
- Ratnam, M.V.; Raj, S.A.; Qian, L. Long-term trends in the low-latitude middle atmosphere temperature and winds: Observations and WACCM-X model simulations. J. Geophys. Res. Space Phys. 2019, 124, 7320–7331. [Google Scholar] [CrossRef]
- Bailey, S.M.; Thurairajah, B.; Hervig, M.E.; Siskind, D.E.; Russell, J.M.; Gordley, L.L. Trends in the polar summer mesosphere temperature and pressure altitude from satellite observations. J. Atmos. Sol.-Terr. Phys. 2021, 220, 105650. [Google Scholar] [CrossRef]
- Lee, J.N.; Wu, D.L.; Manney, G.L.; Schwartz, M.J.; Lambert, A.; Livesey, N.J.; Minschwaner, K.R.; Pumphrey, H.C.; Read, W.G. Aura Microwave Limb Sounder observations of the polar middle atmosphere: Dynamics and transport of CO and H2O. J. Geophys. Res. Atmos. 2011, 116, D05110. [Google Scholar] [CrossRef]
- Solomon, S.; Rosenlof, K.H.; Portmann, R.W.; Daniel, J.S.; Davis, S.M.; Sanford, T.J.; Plattner, G.-K. Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef]
- Grygalashvyly, M.; Sonnemann, G. Trends of mesospheric water vapor due to the increase of methane—A model study particularly considering high latitudes. Adv. Space Res. 2006, 38, 2394–2401. [Google Scholar] [CrossRef]
- Salinas, C.C.J.H.; Chang, L.C.; Yue, J.; Qian, L.; Gan, Q.; Russell, J.; Mlynczak, M. Estimating the migrating diurnal tide component of mesospheric water vapor. J. Geophys. Res. Space Phys. 2022, 127, e2021JA030187. [Google Scholar] [CrossRef]
- Salinas, C.C.J.H.; Wu, D.L.; Lee, J.N.; Chang, L.C.; Qian, L.; Liu, H. Aura/MLS observes and SD-WACCM-X simulates the seasonality, quasi-biennial oscillation and El Niño–Southern Oscillation of the migrating diurnal tide driving upper mesospheric CO primarily through vertical advection. Atmos. Chem. Phys. 2023, 23, 1705–1730. [Google Scholar] [CrossRef]
- Schwartz, M.J.; Lambert, A.; Manney, G.L.; Read, W.G.; Livesey, N.J.; Froidevaux, L.; Ao, C.O.; Bernath, P.F.; Boone, C.D.; Cofield, R.E.; et al. Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J. Geophys. Res. 2008, 113, D15S11. [Google Scholar] [CrossRef]
- Schwartz, M.; Livesey, N.; Read, W. MLS/Aura Level 2 Temperature V005; Goddard Earth Sciences Data and Information Services Center (GES DISC): Pasadena, CA, USA, 2020. [Google Scholar] [CrossRef]
- Grieco, F.; Pérot, K.; Murtagh, D.; Eriksson, P.; Rydberg, B.; Kiefer, M.; Garcia-Comas, M.; Lambert, A.; Walker, K.A. Improvement of Odin/SMR water vapour and temperature measurements and validation of the obtained data sets. Atmos. Meas. Tech. 2001, 14, 5823–5857. [Google Scholar] [CrossRef]
- Read, W.G.; Lambert, A.; Bacmeister, J.; Cofield, R.E.; Christensen, L.E.; Cuddy, D.T.; Daffer, W.H.; Drouin, B.J.; Fetzer, E.; Froidevaux, L.; et al. Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation. J. Geophys. Res. Atmos. 2007, 112, D24S35. [Google Scholar] [CrossRef]
- Read, W.G.; Shippony, Z.; Snyder, W.V. Microwave Limb Sounder Forward Model Algorithm Theoretical Basis Document; Technical Report; Jet Propulsion Laboratory: Pasadena, CA, USA, 2004; JPL D-18130. [Google Scholar]
- Goff, J.A.; Gratch, S. Low-pressure properties of water from −160 to 212 F, in Transactions of the American society of heating and ventilating engineers. In Proceedings of the 52nd Annual Meeting of the American Society of Heating and Ventilating Engineers, New York, NY, USA, 10–13 June 1946; pp. 95–122. [Google Scholar]
- Murphy, D.M.; Koop, T. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc. 2005, 131, 1539–1565. [Google Scholar] [CrossRef]
- McClintock, W.; Rusch, D.W.; Thomas, G.E.; Markel, A.W.; Lankton, M.R.; Drake, V.A.; Bailey, S.M.; Russel, J.M., III. The cloud imaging and particle size experiment on the aeronomy of ice in the mesosphere mission: Instrument concept, design, calibration, and on-orbit performance. J. Atmos. Sol.-Terres. Phys. 2009, 71, 340–355. [Google Scholar] [CrossRef]
- Carstens, J.N.; Bailey, S.M.; Lumpe, J.D.; Randall, C.E. Understanding uncertainties in the retrieval of polar mesospheric clouds from the cloud imaging and particle size experiment in the presence of a bright Rayleigh background. J. Atmos. Sol. -Terr. Phys. 2013, 104, 197–212. [Google Scholar] [CrossRef]
- Lumpe, J.D.; Bailey, S.M.; Carstens, J.N.; Randall, C.E.; Rusch, D.W.; Thomas, G.E.; Nielsen, K.; Jeppesen, C.; McClintock, W.E.; Merkel, A.W.; et al. Retrieval of polar mesospheric cloud properties from CIPS: Algorithm description, error analysis and cloud detection sensitivity. J. Atmos. Sol.-Terres. Phys. 2013, 104, 167–196. [Google Scholar] [CrossRef]
- States, R.J.; Gardner, C.S. Thermal Structure of the Mesopause Region (80–105 km) at 40°N Latitude. Part I: Seasonal Variations. J. Atmos. Sci. 2000, 57, 66–77. [Google Scholar] [CrossRef]
- Christensen, O.M.; Eriksson, P.; Urban, J.; Murtagh, D.; Hultgren, K.; Gumbel, J. Tomographic retrieval of water vapour and temperature around polar mesospheric clouds using Odin-SMR. Atmos. Meas. Technol. 2015, 8, 1981–1999. [Google Scholar] [CrossRef]
- Merkel, A.W.; Marsh, D.R.; Gettelman, A.; Jensen, E.J. On the relationship of polar mesospheric cloud ice water content, particle radius and mesospheric temperature and its use in multi-dimensional models. Atmos. Meas. Tech. 2009, 9, 8889–8901. [Google Scholar] [CrossRef]
- Flury, T.; Wu, D.L.; Read, W.G. Correlation among cirrus ice content, water vapor and temperature in the TTL as observed by CALIPSO and Aura/MLS. Atmos. Meas. Tech. 2012, 12, 683–691. [Google Scholar] [CrossRef]
- James, A.D.; Brooke, J.S.A.; Mangan, T.P.; Whale, T.F.; Plane, J.M.C.; Murray, B.J. Nucleation of nitric acid hydrates in polar stratospheric clouds by meteoric material. Atmos. Meas. Tech. 2018, 18, 4519–4531. [Google Scholar] [CrossRef]
- Berger, U.; von Zahn, U. Icy particles in the summer mesopause region: Three-dimensional modeling of their environment and two-dimensional modeling of their transport. J. Geophys. Res. 2002, 107, 1366. [Google Scholar] [CrossRef]
- Berger, U.; Lübken, F. Trends in mesospheric ice layers in the Northern Hemisphere during 1961–2013. J. Geophys. Res. Atmos. 2015, 120, 11277–11298. [Google Scholar] [CrossRef]
- Russell, J.M., III; Rong, P.; Bailey, S.M.; Hervig, M.E.; Petelina, S.V. Relationship between the summer mesopause and polar mesospheric cloud heights. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Shettle, E.P.; Nedoluha, G.E.; DeLand, M.T.; Thomas, G.E.; Olivero, J.J. SBUV observations of polar mesospheric clouds compared with MLS temperature and water vapor measurements. Geophys. Res. Lett. 2010, 37, L18810. [Google Scholar] [CrossRef]
- Karlsson, B.; Randall, C.E.; Shepherd, T.G.; Harvey, V.L.; Lumpe, J.; Nielsen, K.; Bailey, S.M.; Hervig, M.; Russell, J.M. On the seasonal onset of polar mesospheric clouds and the breakdown of the stratospheric polar vortex in the Southern Hemisphere. J. Geophys. Res. 2011, 116, D18107. [Google Scholar] [CrossRef]
- Thurairajah, B.; Bailey, S.M.; Harvey, V.L.; Randall, C.E.; France, J.A. The Role of the Quasi 5-Day Wave on the Onset of Polar Mesospheric Cloud Seasons in the Northern Hemisphere. J. Geophys. Res. Atmos. 2023, 128, e2022JD037982. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Zhou, Z. The formation of multiple layers of ice particles in the polar summer mesopause region. Ann. Geophys. 2016, 34, 117–122. [Google Scholar] [CrossRef]
- Yang, C.; Li, T.; Lai, D.; Wang, X.; Xue, X.; Dou, X. The delayed response of the troposphere-stratosphere-mesosphere coupling to the 2019 southern SSW. Geophys. Res. Lett. 2022, 49, e2022GL101759. [Google Scholar] [CrossRef]
- Siskind, D.E.; Allen, D.R.; Randall, C.E.; Harvey, V.L.; Hervig, M.E.; Lumpe, J.; Thurairajah, B.; Bailey, S.M.; Russell, J.M. Extreme stratospheric springs and their consequences for the onset of polar mesospheric clouds. J. Atmos. Sol.-Terr. Phys. 2015, 132, 74–81. [Google Scholar] [CrossRef]
- French, W.; Mulligan, F.; Klekociuk, A. Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica—Part 1: Long-term trends. Atmos. Chem. Phys. 2020, 20, 6379–6394. [Google Scholar] [CrossRef]
- French, W.J.R.; Klekociuk, A.R.; Mulligan, F.J. Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica—Part 2: Evidence of a quasi-quadrennial oscillation (QQO) in the polar mesosphere. Atmos. Chem. Phys. 2020, 20, 8691–8708. [Google Scholar] [CrossRef]
- Chen, Z.; Schwartz, M.J.; Bhartia, P.K.; Schoeberl, M.; Kramarova, N.; Jaross, G.; DeLand, M. Mesospheric and upper stratospheric temperatures from OMPS-LP. Earth Space Sci. 2023, 10, e2022EA002763. [Google Scholar] [CrossRef]
- Kopp, G. SORCE Level 3 Total Solar Irradiance Daily Means V019; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2020. [Google Scholar] [CrossRef]
- Kopp, G. Science Highlights and Final Updates from 17 Years of Total Solar Irradiance Measurements from the SOlar Radiation and Climate Experiment/Total Irradiance Monitor (SORCE/TIM). Sol. Phys. 2021, 296, 133. [Google Scholar] [CrossRef] [PubMed]
- Angell, J.K.; Korshover, J. Comparison between sea surface temperature in the equatorial eastern Pacific and United States surface temperature. J. Appl. Meteorol. 1981, 20, 1105–1110. [Google Scholar] [CrossRef]
- Beig, G.; Fadnavis, S.; Schmidt, H.; Brasseur, G.P. Inter-comparison of 11-year solar cycle response in mesospheric ozone and temperature obtained by HALOE satellite data and HAMMONIA model. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Tang, C.; Liu, D.; Wei, H.; Wang, Y.; Dai, C.; Wu, P.; Zhu, W.; Rao, R. The response of the temperature of cold-point mesopause to solar activity based on SABER data set. J. Geophys. Res. Space Phys. 2016, 121, 7245–7255. [Google Scholar] [CrossRef]
- Forbes, J.M.; Zhang, X.; Marsh, D.R.; Al, F.E.T. Solar cycle dependence of middle atmosphere temperatures. J. Geophys. Res. Atmos. 2014, 119, 9615–9625. [Google Scholar] [CrossRef]
- Remsberg, E.; Damadeo, R.; Natarajan, M.; Bhatt, P. Observed responses of mesospheric water vapor to solar cycle and dynamical forcings. J. Geophys. Res. Atmos. 2018, 123, 3830–3843. [Google Scholar] [CrossRef] [PubMed]
- Vardavas, I.M.; Carver, J.H.; Taylor, F.W. The role of water-vapour photodissociation on the formation of a deep minimum in mesopause ozone. Ann. Geophys. 1998, 16, 189–196. [Google Scholar] [CrossRef]
- Hervig, M.E.; Siskind, D.E.; Bailey, S.M.; Merkel, A.W.; DeLand, M.T.; Russell, J.M. The Missing Solar Cycle Response of the Polar Summer Mesosphere. Geophys. Res. Lett. 2019, 46, 10132–10139. [Google Scholar] [CrossRef]
- Lee, J.N.; Wu, D.L.; Ruzmaikin, A.; Fontenla, J. Solar cycle variations in mesospheric carbon monoxide. J. Atmos. Sol.-Terr. Phys. 2018, 170, 21–34. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.N.; Wu, D.L.; Thurairajah, B.; Hozumi, Y.; Tsuda, T. The Sensitivity of Polar Mesospheric Clouds to Mesospheric Temperature and Water Vapor. Remote Sens. 2024, 16, 1563. https://doi.org/10.3390/rs16091563
Lee JN, Wu DL, Thurairajah B, Hozumi Y, Tsuda T. The Sensitivity of Polar Mesospheric Clouds to Mesospheric Temperature and Water Vapor. Remote Sensing. 2024; 16(9):1563. https://doi.org/10.3390/rs16091563
Chicago/Turabian StyleLee, Jae N., Dong L. Wu, Brentha Thurairajah, Yuta Hozumi, and Takuo Tsuda. 2024. "The Sensitivity of Polar Mesospheric Clouds to Mesospheric Temperature and Water Vapor" Remote Sensing 16, no. 9: 1563. https://doi.org/10.3390/rs16091563
APA StyleLee, J. N., Wu, D. L., Thurairajah, B., Hozumi, Y., & Tsuda, T. (2024). The Sensitivity of Polar Mesospheric Clouds to Mesospheric Temperature and Water Vapor. Remote Sensing, 16(9), 1563. https://doi.org/10.3390/rs16091563