Assessment of CCMP in Capturing High Winds with Respect to Individual Satellite Datasets
<p>Demonstration of local time (LT) coverages for SMAP (<b>a</b>), ASCATB (<b>b</b>), and ASMR2 (<b>c</b>) on 1 September 2023.</p> "> Figure 2
<p>(<b>a</b>–<b>d</b>) Demonstration of local time (LT) coverages for CYGNSS at the indicated UT time plus or minus 0.75 hours (as shown in each title), on 1 September 2023.</p> "> Figure 3
<p>Each pair of global hourly (4 UT hours per day from February to October 2023) pixel-by-pixel (0.25° × 0.25°) ocean wind speed maps are compared between CCMP and AMSR2, SMAP, ASCAT2, or CYGNSS, and then statistical moments of all such pairs are shown in histograms, represented by different colors. (<b>a</b>–<b>c</b>) Histograms of the mean, standard deviation (STD), and standard error of the mean (SEM) of the percent differences. (<b>d</b>) Histograms of spatial correlation coefficients of these hourly maps. Note that in the legend, the median and standard deviation describe the current histogram’s median and spread.</p> "> Figure 4
<p>CCMP is linearly interpolated from the 4 UTs onto 0.5-hourly intervals, and same statistical moments of percent differences between CCMP and SMAP are calculated to compare with the results based on the 4 UTs per day. The maxima of the red histograms are adjusted (8–10 times) to match the blue curves. The y-axis numbers correspond to the blue histogram. The (<b>a</b>–<b>d</b>) resemble those in <a href="#remotesensing-16-04215-f003" class="html-fig">Figure 3</a>.</p> "> Figure 5
<p>(<b>a</b>) A global map of CCMP for a selected day to demonstrate the distribution of high-wind structures. Both Saola and Haikui (within the white rectangle) are notable, and a magnified regional map is shown in (<b>b</b>).</p> "> Figure 6
<p>Same as <a href="#remotesensing-16-04215-f003" class="html-fig">Figure 3</a>, except that the individual cases are 10° Lon × 10° Lat blocks identified as containing high-wind structures (i.e., TCs) in the low-latitude region between 35°S and 35°N. CYGNSS is not included because, based on our criteria, no high-wind features were identified. The (<b>a</b>–<b>d</b>) resemble those in <a href="#remotesensing-16-04215-f003" class="html-fig">Figure 3</a>.</p> "> Figure 7
<p>AMSR2 maps (<b>top</b>) and CCMP maps (<b>bottom</b>) at coincidences for the five selected high spatial correlation cases, based on the results in <a href="#remotesensing-16-04215-f006" class="html-fig">Figure 6</a>.</p> "> Figure 8
<p>Same as <a href="#remotesensing-16-04215-f007" class="html-fig">Figure 7</a>, except for SMAP.</p> "> Figure 9
<p>Same as <a href="#remotesensing-16-04215-f007" class="html-fig">Figure 7</a>, except for ASCATB.</p> "> Figure 10
<p>Same as <a href="#remotesensing-16-04215-f006" class="html-fig">Figure 6</a>, except for the mid-high latitude region south of 35°S or north of 35°N. The (<b>a</b>–<b>d</b>) resemble those in <a href="#remotesensing-16-04215-f003" class="html-fig">Figure 3</a>.</p> "> Figure 11
<p>AMSR2 maps (<b>top</b>) and CCMP maps (<b>bottom</b>) at coincidences for the five selected high spatial correlation cases in the mid-high latitude region, based on the results in <a href="#remotesensing-16-04215-f010" class="html-fig">Figure 10</a>.</p> "> Figure 12
<p>Same as <a href="#remotesensing-16-04215-f011" class="html-fig">Figure 11</a>, except for SMAP.</p> "> Figure 13
<p>Same as <a href="#remotesensing-16-04215-f011" class="html-fig">Figure 11</a>, except for ASCATB.</p> "> Figure 14
<p>Histograms of the statistics for the SAR and CCMP pixel-by-pixel ocean wind speed comparisons over individual tiles. (<b>a</b>,<b>b</b>) The histograms of tile-wise means, STDs, and SEMs of the pixel-by-pixel percent differences. (<b>c</b>) Spatial correlations of CCMP and SAR ocean wind speed over individual SAR tiles. CCMP values are sampled over the SAR tiles, and the SAR data are resampled onto the CCMP’s grid.</p> "> Figure 15
<p>Same as <a href="#remotesensing-16-04215-f006" class="html-fig">Figure 6</a>, except with a block size of 5° × 5°, to compare with <a href="#remotesensing-16-04215-f014" class="html-fig">Figure 14</a>.</p> "> Figure 16
<p>Selected SAR (<b>top</b>) and CCMP (<b>bottom</b>) TC maps at coincidences with spatial correlations greater than 0.9.</p> "> Figure 17
<p>Demonstration of the TC eye center and eye region identification routines. The black crosses are filled into the detected eye-region size, and the red circle marks the eye center position, which is generally the pixel that possesses the lowest ocean wind speed. (<b>a</b>) and (<b>b</b>) here correspond to (d) and (i) in <a href="#remotesensing-16-04215-f016" class="html-fig">Figure 16</a>, except that they are magnified.</p> "> Figure 18
<p>(<b>a</b>–<b>e</b>) SAR and CCMP TC equivalent radii for different ocean wind speed levels (2.0 m/s intervals) for the five pairs of maps shown in <a href="#remotesensing-16-04215-f016" class="html-fig">Figure 16</a>.</p> "> Figure 19
<p>TC structure comparisons between SAR and CCMP, via histograms of differences in TC eye-center locations (<b>a</b>), eye-region sizes (<b>b</b>), equivalent radii (<b>c</b>), and S–N and W–E asymmetries (<b>d</b>), using all coincident pairs throughout February–October 2023.</p> "> Figure 20
<p>The performance levels of the RF model described by the statistical moments of the scatter plots. (<b>a</b>) Statistical moments when the model is applied to the training set (which are the 75% of ocean wind speed values for the selected set of TCs for model training). (<b>b</b>) The same statistics for the remaining 25% of the wind speed values for the same set of TCs. (<b>c</b>) The same statistics, except for the result from applying the model to a blind TC set. The ty1n2 in the title refers to the case when all predictors in Table 2 are used for the RF model training.</p> "> Figure 21
<p>Histograms of the statistics when the RF model is applied to the individual TC tiles in the blind set. In each panel, the comparison between different curves illustrates the improvement in the predicted ocean wind speed maps relative to the CCMP maps, assuming that the SAR maps are considered the true states, in terms of accuracy (<b>a</b>), bias (<b>b</b>), correlation coefficient (<b>c</b>), and STD of the differences (<b>d</b>).</p> "> Figure 22
<p>Three selected ocean wind speed tiles (in rows 1st–3rd) are used to demonstrate the performance of the ty1, ty2, and ty1n2 (3rd–5th columns) relative to SAR maps (1st column) and the CCMP maps (2nd column).</p> ">
Abstract
:1. Introduction
2. Datasets
2.1. CCMP
2.2. Spaceborne Sensors for Wind Measurements
2.2.1. AMSR2 (2012–Now)
2.2.2. SMAP (2015–Now)
2.2.3. ASCATB and C (2012 and 2018–Now)
2.2.4. CYGNSS (2016–Now)
2.2.5. RCM1-3/Radarsat-2 (2019/2007–Now)
2.2.6. Sentinel A/B-1 (2014/2016–Now)
2.2.7. Orbiting and Local Time Coverages
3. Results
3.1. Radiometer and Scatterometer Related Comparisons
3.1.1. Global Comparisons
3.1.2. Identifying High-Wind Structures Within 10° × 10° Blocks
3.1.3. High-Wind Structure Comparisons Between Radiometers and CCMP
TCs
Extratropical Cyclones
3.2. SAR and CCMP Comparisons
3.2.1. TC Selections Captured by SAR
3.2.2. Basic Statistics
3.2.3. TC Structural Indices
4. A Machine Learning Model to Produce a Dataset Drawn Closer to SAR Within TCs
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodruff, J.D.; Irish, J.L.; Camargo, S.J. Coastal flooding by tropical cyclones and sea-level rise. Nature 2013, 504, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.W.; He, Y.H.; Lui, Y.S. Forecasting Super Typhoon Saola and its effects on Hong Kong. Weather 2024. early view. [Google Scholar] [CrossRef]
- Kong, V.S.F.; Wai, R.C.T.; Chu, E.K.H. Factual Report on Hong Kong Rainfall and Landslides in 2020. GEO Report No. 351. Available online: https://www.cedd.gov.hk/filemanager/eng/content_998/er351.pdf (accessed on 1 May 2024).
- Lai, Y.; Li, J.; Lee, T.-C.; Tse, W.P.; Chan, F.; Chen, Y.D.; Gu, X. A 131-year evidence of more extreme and higher total amount of hourly precipitation in Hong Kong. Environ. Res. Lett. 2024, 19, 034008. [Google Scholar] [CrossRef]
- Lan, P.; Guo, L.; Zhang, Y.; Qin, G.; Li, X.; Mello, C.R.; Boyer, E.W.; Zhang, Y.; Fan, B. Updating probable maximum precipitation for Hong Kong under intensifying extreme precipitation events. Clim. Chang. 2024, 177, 19. [Google Scholar] [CrossRef]
- Escobar, C.A.; Alvarez, D.R. Estimation of global ocean surface winds blending reanalysis, satellite and buoy datasets. Remote Sens. Appl. Soc. Environ. 2023, 32, 101012. [Google Scholar] [CrossRef]
- Atlas, R.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Am. Meteorol. Soc. 2011, 92, 157–174. [Google Scholar] [CrossRef]
- Hauser, D.; Abdalla, S.; Ardhuin, F.; Bidlot, J.-R.; Bourassa, M.; Cotton, D.; Gommenginger, C.; Evers-King, H.; Johnsen, H.; Knaff, J.; et al. Satellite remote sensing of surface winds, waves, and currents: Where are we now? Surv. Geophys. 2023, 44, 1357. [Google Scholar] [CrossRef]
- Alsweiss, S.; Sapp, J.; Jelenak, Z.; Chang, P. An Operational All-Weather Wind Speed from AMSR2. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 7334–7337. [Google Scholar] [CrossRef]
- Meissner, T.; Ricciardulli, L.; Wentz, F.J. Capability of the SMAP Mission to Measure Ocean Surface Winds in Storms. Bull. Am. Meteorol. Soc. 2017, 98, 1660–1677. [Google Scholar] [CrossRef]
- Figa-Saldaña, J.; Wilson, J.J.W.; Attema, E.; Gelsthorpe, R.; Drinkwater, M.R.; Stoffelen, A. The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Can. J. Remote Sens. 2002, 28, 404–412. [Google Scholar] [CrossRef]
- Ricciardulli, L.; Mears, C.; Manaster, A.; Meissner, T. Assessment of CYGNSS Wind Speed Retrievals in Tropical Cyclones. Remote Sens. 2021, 13, 5110. [Google Scholar] [CrossRef]
- Kroupnik, G.; De Lisle, D.; Côté, S.; Lapointe, M.; Casgrain, C.; Fortier, R. RADARSAT Constellation Mission Overview and Status. In Proceedings of the 2021 IEEE Radar Conference (RadarConf21), Atlanta, GA, USA, 8–14 May 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Badger, M.; Ahsbahs, T.T.; Hasager, C.B.; Karagali, I. Ocean wind retrieval from Sentinel-1 SAR and its potential for offshore wind energy. In Proceedings of the European Geosciences Union General Assembly, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Schlundt, M.; Farrar, J.T.; Bigorre, S.P.; Plueddemann, A.J.; Weller, R.A. Accuracy of Wind Observations from Open-Ocean Buoys: Correction for Flow Distortion. J. Atmos. Ocean. Technol. 2020, 37, 687–703. [Google Scholar] [CrossRef]
- Mears, C.A.; Scott, J.; Wentz, F.J.; Ricciardulli, L.; Leidner, S.M.; Hoffman, R.; Atlas, R. A Near-Real-Time Version of the Cross-Calibrated Multiplatform (CCMP) Ocean Surface Wind Velocity Data Set. J. Geophys. Res. Ocean. 2019, 124, 6997–7010. [Google Scholar] [CrossRef]
- Wallcraft, A.J.; Kara, A.B.; Barron, C.N.; Metzger, E.J.; Pauley, R.L.; Bourassa, M.A. Comparisons of monthly mean 10 m wind speeds from satellites and NWP products over the global ocean. J. Geophys. Res. Atmos. 2009, 114, D16109. [Google Scholar] [CrossRef]
- Pescio, A.E.; Dragani, W.C.; Martin, P.B. Performance of surface winds from atmospheric reanalyses in the Southwestern South Atlantic Ocean. Int. J. Clim. 2021, 42, 2368–2383. [Google Scholar] [CrossRef]
- Kerns, B.W.; Chen, S.S. Evaluation of satellite surface winds in relation to weather regimes over the Indian Ocean using DYNAMO observations. J. Geophys. Res. Atmos. 2018, 123, 8561–8580. [Google Scholar] [CrossRef]
- Paiva, V.; Kampel, M.; Camayo, R. Comparison of Multiple Surface Ocean Wind Products with Buoy Data over Blue Amazon (Brazilian Continental Margin). Adv. Meteorol. 2021, 2021, 6680626. [Google Scholar] [CrossRef]
- Xiang, K.; Zhou, W.; Bao, Q. Sea surface wind speed estimation from the combination of satellite scatterometer and radiometer parameters. J. Geophys. Res. Mach. Learn. Comput. 2024, 1, e2024JH000165. [Google Scholar] [CrossRef]
- Lu, C.; Wang, Z.; Wu, Z.; Zheng, Y.; Liu, Y. Global Ocean Wind Speed Retrieval from GNSS Reflectometry Using CNN-LSTM Network. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5801112. [Google Scholar] [CrossRef]
- Zhang, Z.; Yin, J. Spatial-temporal offshore wind speed characteristics prediction based on an improved purely 2D CNN approach in a large-scale perspective using reanalysis dataset. Energy Convers. Manag. 2023, 299, 117880. [Google Scholar] [CrossRef]
- Wang, X.; Lee, T.; Mears, C. Evaluation of Blended Wind Products and Their Implications for Offshore Wind Power Estimation. Remote Sens. 2023, 15, 2620. [Google Scholar] [CrossRef]
- Mears, C.; Lee, T.; Ricciardulli, L.; Wang, X.; Wentz, F. Improving the Accuracy of the Cross-Calibrated Multi-Platform (CCMP) Ocean Vector Winds. Remote Sens. 2022, 14, 4230. [Google Scholar] [CrossRef]
- Wentz, F.J. A well-calibrated ocean algorithm for special sensor microwave/imager. J. Geophys. Res. Ocean. 1997, 102, 8703–8718. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J. Wind-vector retrievals under rain with passive satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3065–3083. [Google Scholar] [CrossRef]
- Khan, S.; Young, I.; Ribal, A.; Hemer, M. High-resolution calibrated and validated Synthetic Aperture Radar Ocean surface wind data around Australia. Sci. Data 2023, 10, 163. [Google Scholar] [CrossRef]
- Ricciardulli, L.; Howell, B.; Jackson, C.R.; Hawkins, J.; Courtney, J.; Stoffelen, A.; Langlade, S.; Fogarty, C.; Mouche, A.; Blackwell, W.; et al. Remote sensing and analysis of tropical cyclones: Current and emerging satellite sensors. Trop. Cyclone Res. Rev. 2023, 12, 267–293. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Yueh, S.H.; Fore, A.G.; Tang, W.; Hayashi, A.; Stiles, B.; Reul, N.; Weng, Y.; Zhang, F. SMAP L-Band Passive Microwave Observations of Ocean Surface Wind During Severe Storms. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7339–7350. [Google Scholar] [CrossRef]
- Anderson, C.; Figa-Saldaña, J.; Wilson, J.; Bauch, H.; Duff, C.; Miller, J. Calibration and Validation of the Advanced Scatterometer On MetOp-B. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013; p. 137. [Google Scholar]
- Chou, K.; Wu, C.; Lin, S. Assessment of the ASCAT wind error characteristics by global dropwindsonde observations. J. Geophys. Res. Atmos. 2013, 118, 9011–9021. [Google Scholar] [CrossRef]
- Ruf, C.S.; Atlas, R.; Chang, P.S.; Clarizia, M.P.; Garrison, J.L.; Gleason, S.; Katzberg, S.J.; Jelenak, Z.; Johnson, J.T.; Majumdar, S.J.; et al. New ocean winds satellite mission to probe hurricanes and tropical convection. Bull. Am. Meteorol. Soc. 2016, 97, 385–395. [Google Scholar] [CrossRef]
- Ruf, C.S.; Balasubramaniam, R. Development of the CYGNSS Geophysical Model Function for Wind Speed. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 12, 66–77. [Google Scholar] [CrossRef]
- Cote, S.; Lapointe, M.; De Lisle, D.; Arsenault, E.; Wierus, M. The RADARSAT Constellation: Mission Overview and Status, EUSAR 2021. In Proceedings of the 13th European Conference on Synthetic Aperture Radar, Online, 29–31 April 2021; pp. 1–5. [Google Scholar]
- Browning, K.A. The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Q. J. R. Meteorol. Soc. 2004, 130, 375–399. [Google Scholar] [CrossRef]
- Pichugin, M.; Gurvich, I.; Baranyuk, A. Assessment of Extreme Ocean Winds Within Intense Wintertime Windstorms over the North Pacific Using SMAP L-Band Radiometer Observations. Remote Sens. 2023, 15, 5181. [Google Scholar] [CrossRef]
- Hersbach, H.; Stoffelen, A.; de Haan, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res. 2007, 112, C03006. [Google Scholar] [CrossRef]
- de León, S.P.; Soares, C.G. Hindcast of extreme sea states in North Atlantic extratropical storms. Ocean Dyn. 2015, 65, 241–254. [Google Scholar] [CrossRef]
- Pfahl, S.; Sprenger, M. On the relationship between extratropical cyclone precipitation and intensity. Geophys. Res. Lett. 2016, 43, 1752–1758. [Google Scholar] [CrossRef]
- de Montera, L.; Remmers, T.; O’Connell, R.; Desmond, C. Validation of Sentinel-1 offshore winds and average wind power estimation around Ireland. Wind. Energy Sci. 2020, 5, 1023–1036. [Google Scholar] [CrossRef]
- Goldstein, B.A.; Polley, E.C.; Briggs, F. Random forests for genetic association studies. Stat. Appl. Genet. Mol. Biol. 2011, 10, 32. [Google Scholar] [CrossRef]
- Probst, P.; Boulesteix, A.-L. To tune or not to tune the number of trees in random forest? arXiv 2017, arXiv:1705.05654. [Google Scholar] [CrossRef]
- Probst, P.; Wright, M.N.; Boulesteix, A.-L. Hyperparameters and tuning strategies for random forest. WIREs Data Min. Knowl. Discov. 2019, 9, e1301. [Google Scholar] [CrossRef]
Bias (m/s) | Error (m/s) | RMSE (m/s) | Corr | Accu | |
---|---|---|---|---|---|
Ty-1 | −0.18 | 2.94 | 4.28 | 0.87 | 89% |
Ty-2 | −0.17 | 2.92 | 4.28 | 0.87 | 89% |
Ty-1n2 | −0.32 | 2.86 | 4.16 | 0.88 | 89% |
CCMP | dis_ cen1 | dis_ cen2 | dis_ core1 | dis_core2 | Δlon_cen1 | Δlat_cen1 | Δlon_cen2 | Δlat_cen2 | Δlon_core1 | Δlat_core1 | Δlon_core2 | Δlat_core2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ty-1 | 0.63 | -- | -- | -- | -- | 0.03 | 0.03 | 0.04 | 0.03 | 0.07 | 0.06 | 0.04 | 0.08 |
Ty-2 | 0.62 | 0.07 | 0.05 | 0.21 | 0.05 | -- | -- | -- | -- | -- | -- | -- | -- |
Ty-1n2 | 0.61 | 0.05 | 0.04 | 0.20 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, P.; Su, H. Assessment of CCMP in Capturing High Winds with Respect to Individual Satellite Datasets. Remote Sens. 2024, 16, 4215. https://doi.org/10.3390/rs16224215
Rong P, Su H. Assessment of CCMP in Capturing High Winds with Respect to Individual Satellite Datasets. Remote Sensing. 2024; 16(22):4215. https://doi.org/10.3390/rs16224215
Chicago/Turabian StyleRong, Pingping, and Hui Su. 2024. "Assessment of CCMP in Capturing High Winds with Respect to Individual Satellite Datasets" Remote Sensing 16, no. 22: 4215. https://doi.org/10.3390/rs16224215
APA StyleRong, P., & Su, H. (2024). Assessment of CCMP in Capturing High Winds with Respect to Individual Satellite Datasets. Remote Sensing, 16(22), 4215. https://doi.org/10.3390/rs16224215