Evaluating the Impact of Interferogram Networks on the Performance of Phase Linking Methods
<p>Visualization of different interferogram networks: (<b>a</b>) single-master network, (<b>b</b>) multi-master network, and (<b>c</b>) fully-connected network. The x-axis represents the acquisition date, while the y-axis represents the perpendicular baseline in meters.</p> "> Figure 2
<p>Visualization of the coherence matrix structures under different interferogram network configurations (with corresponding graphs on the top right of each matrix). Row (<b>a</b>) represents the banded matrix configuration, focusing on short temporal baselines. Row (<b>b</b>) shows the sparse matrix configuration, and row (<b>c</b>) presents the coherence thresholding configuration. White cells indicate the lack of interferograms or removed indices in the coherence and/or SCM matrix.</p> "> Figure 3
<p>RMSE of the estimated single-master phase series results for both the EMI and EVD methods. Figures (<b>a</b>–<b>c</b>) correspond to Case A of the simulation, while figures (<b>d</b>–<b>f</b>) represent the results of Case B. Each figure displays two columns: the left column shows the results for EMI, and the right column shows the results for EVD.</p> "> Figure 4
<p>Comparison of RMSE for EMI and EVD under different coherence matrix configurations. (<b>a</b>) RMSE of EMI using a sparsed estimated coherence matrix from the banded sparse SCM for inversion. (<b>b</b>) RMSE of EMI using an estimated coherence matrix from the banded SCM without sparsity. (<b>c</b>) RMSE of EMI using the true but banded coherence matrix from the modeling step. (<b>d</b>) RMSE of EVD.</p> "> Figure 5
<p>(<b>a</b>) Plot of the estimated single-master phase series values displaying five different series. The true phase series (blue), which remained nearly zero except for small values in the short-term indices simulating phase bias, was compared against four other series: resulting from bw-3, 5, 10, and the fully-connected network. As the bandwidth increased and more long-term interferograms were included, the estimated phase series results moved progressively closer to the true phase series. (<b>b</b>) The rate of displacement calculated from all five phase series, showing how even a small phase bias in the short-term interferograms resulted in a significant overestimation of the rate of displacement.</p> "> Figure 6
<p>Study area overview. (<b>a</b>) The study site is located in southwest Iran, west of the city of Ahvaz, with the boundaries of the area marked by the white polygon. The background imagery was sourced from USGS Landsat 8 Level 2, Collection 2, Tier 1 (LANDSAT/LC08/C02/T1_L2). (<b>b</b>) Land cover classification map of the study area, derived from Google Earth Engine using The European Space Agency (ESA) WorldCover 10 m 2020 land cover map product [<a href="#B30-remotesensing-16-03954" class="html-bibr">30</a>].</p> "> Figure 7
<p>(<b>a</b>) Series of rate of displacement maps (in mm/year) for both the EMI and EVD results. The first row shows the rate of displacement for EMI, while the second row presents the results for EVD. Each column corresponds to a different banded network configuration: bandwidths of 3, 5, 15, 30, 45, and the fully-connected network, as indicated in the column titles. (<b>b</b>–<b>d</b>) The mean rate of displacement for EMI, calculated from the line of sight (LOS) cumulative displacements of 100 adjacent pixels for built-up areas, cropland, and bare land, respectively. (<b>e</b>–<b>g</b>) The same mean rate of displacement, calculated from cumulative displacements, but for the EVD results.</p> "> Figure 8
<p>Histograms showing the differences between the rate of displacement for banded configurations (bw-5, 10, 15) and their respective sparsified networks at varying percentages for the EMI method. (<b>a</b>–<b>c</b>) Represent the differences between bw-5 and its sparsified versions across different land covers: built-up (<b>a</b>), cropland (<b>b</b>), and bare land (<b>c</b>). (<b>d</b>–<b>f</b>) Show the same structure for bw-10, and (<b>g</b>–<b>i</b>) for bw-15. Each plot includes the mean and standard deviation values of the histograms to highlight the impact of increasing sparsity on the rate of displacement estimation for each land cover type.</p> "> Figure 9
<p>Histograms showing the differences between the rate of displacement for banded configurations (bw-5, 10, 15) and their respective sparsified networks at varying percentages for the EVD method. (<b>a</b>–<b>c</b>) Represent the differences between bw-5 and its sparsified versions across different land covers: built-up (<b>a</b>), cropland (<b>b</b>), and bare land (<b>c</b>). (<b>d</b>–<b>f</b>) Show the same structure for bw-10, and (<b>g</b>–<b>i</b>) for bw-15. Each plot includes the mean and standard deviation values of the histograms to highlight the impact of increasing sparsity on the displacement accuracy for each land cover type.</p> "> Figure 10
<p>(<b>a</b>–<b>c</b>) Reconstructed interferograms of one of the original 6-day interferograms using the linked phase results from EMI, and (<b>d</b>–<b>f</b>) the corresponding velocity maps derived from the different interferogram networks. (<b>a</b>,<b>d</b>) Represent the results from the fully-connected network, while (<b>b</b>,<b>e</b>) are the results by applying a coherence threshold of 0.4, and (<b>c</b>,<b>f</b>) used a threshold of 0.5.</p> "> Figure 11
<p>(<b>a</b>–<b>c</b>) Reconstructed interferograms of one of the original 6-day interferograms using the linked phase results from EVD, and (<b>d</b>–<b>f</b>) the corresponding velocity maps derived from the different interferogram networks. (<b>a</b>,<b>d</b>) represent the results from the fully-connected network, while (<b>b</b>,<b>e</b>) are the results by applying a coherence threshold of 0.4, and (<b>c</b>,<b>f</b>) used a threshold of 0.5.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Correlation Matrix
2.2. PL Methods
3. Interferogram Network Configurations
3.1. Banded Matrix Configuration
3.2. Sparse Matrix Configuration
3.3. Coherence Thresholding Configuration
4. Simulated Data Analysis
4.1. Simulation Settings
4.2. Simulation Results
4.2.1. Case A
4.2.2. Case B
5. Real Data Analysis
5.1. Study Area
5.2. Real Data Results
5.2.1. Banded Matrix Configuration Results
5.2.2. Sparse Matrix Configuration Results
5.2.3. Coherence Thresholding Configuration Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferretti, A.; Prati, C.; Rocca, F. Non-Uniform Motion Monitoring Using the Permanent Scatterers Technique; European Space Agency, (Special Publication) ESA SP: Strasbourg, France, 2000; pp. 431–436. [Google Scholar]
- Ansari, H.; De Zan, F.; Bamler, R. Efficient Phase Estimation for Interferogram Stacks. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4109–4125. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE T. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Fornaro, G.; Verde, S.; Reale, D.; Pauciullo, A. CAESAR: An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline–Multitemporal Interferometric SAR Processing. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2050–2065. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers. Geophyiscal Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Samiei Esfahany, S.; Martins, J.; Van Leijen, F.; Hanssen, R. Phase Estimation for Distributed Scatterers in InSAR Stacks Using Integer Least Squares Estimation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5671–5687. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in Interferometric Radar Echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Rocca, F. Modeling Interferogram Stacks. Geosci. Remote Sens. IEEE Trans. 2007, 45, 3289–3299. [Google Scholar] [CrossRef]
- Goel, K.; Adam, N. A Distributed Scatterer Interferometry Approach for Precision Monitoring of Known Surface Deformation Phenomena. Geosci. Remote Sens. IEEE Trans. 2014, 52, 5454–5468. [Google Scholar] [CrossRef]
- Parizzi, A.; Brcic, R. Adaptive InSAR Stack Multilooking Exploiting Amplitude Statistics: A Comparison Between Different Techniques and Practical Results. IEEE Geosci. Remote Sens. Lett. 2011, 8, 441–445. [Google Scholar] [CrossRef]
- Shamshiri, R.; Nahavandchi, H.; Motagh, M.; Hooper, A. Efficient Ground Surface Displacement Monitoring Using Sentinel-1 Data: Integrating Distributed Scatterers (DS) Identified Using Two-Sample t-Test with Persistent Scatterers (PS). Remote Sens. 2018, 10, 794. [Google Scholar] [CrossRef]
- Zheng, Y.; Fattahi, H.; Agram, P.; Simons, M.; Rosen, P. On Closure Phase and Systematic Bias in Multilooked SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Maghsoudi, Y.; Hooper, A.J.; Wright, T.J.; Lazecky, M.; Ansari, H. Characterizing and Correcting Phase Biases in Short-Term, Multilooked Interferograms. Remote Sens. Environ. 2022, 275, 113022. [Google Scholar] [CrossRef]
- Mirzaee, S.; Amelung, F.; Fattahi, H. Non-Linear Phase Linking Using Joined Distributed and Persistent Scatterers. Comput. Geosci. 2023, 171, 105291. [Google Scholar] [CrossRef]
- Cao, N.; Lee, H.; Jung, H.C. Mathematical Framework for Phase-Triangulation Algorithms in Distributed-Scatterer Interferometry. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1838–1842. [Google Scholar] [CrossRef]
- Guarnieri, A.M.; Tebaldini, S. On the Exploitation of Target Statistics for SAR Interferometry Applications. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3436–3443. [Google Scholar] [CrossRef]
- Ansari, H.; De Zan, F.; Bamler, R. Sequential Estimator: Toward Efficient InSAR Time Series Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5637–5652. [Google Scholar] [CrossRef]
- Ansari, H.; De Zan, F.; Parizzi, A. Study of Systematic Bias in Measuring Surface Deformation With SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1285–1301. [Google Scholar] [CrossRef]
- De Zan, F.; Zonno, M.; Lopez Dekker, P. Phase Inconsistencies and Multiple Scattering in SAR Interferometry. Geosci. Remote Sens. IEEE Trans. 2015, 53, 6608–6616. [Google Scholar] [CrossRef]
- Lazecký, M.; Spaans, K.; González, P.J.; Maghsoudi, Y.; Morishita, Y.; Albino, F.; Elliott, J.; Greenall, N.; Hatton, E.; Hooper, A.; et al. LiCSAR: An Automatic InSAR Tool for Measuring and Monitoring Tectonic and Volcanic Activity. Remote Sens. 2020, 12, 2430. [Google Scholar] [CrossRef]
- Buzzanga, B.; Bekaert, D.; Hamlington, B.; Sangha, S. Toward Sustained Monitoring of Subsidence at the Coast Using InSAR and GPS: An Application in Hampton Roads, Virginia. Geophys. Res. Lett. 2020, 47, e2020GL090013. [Google Scholar] [CrossRef]
- Verde, S.; Reale, D.; Pauciullo, A.; Fornaro, G. Improved Small Baseline Processing by Means of CAESAR Eigen-Interferograms Decomposition. ISPRS J. Photogramm. Remote Sens. 2018, 139, 1–13. [Google Scholar] [CrossRef]
- Cao, N.; Lee, H.; Jung, H.C. A Phase-Decomposition-Based PSInSAR Processing Method. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1074–1090. [Google Scholar] [CrossRef]
- Ansari, H.; De Zan, F.; Gomba, G.; Bamler, R. EMI: Efficient Temporal Phase Estimation and Its Impact on High-Precision InSAR Time Series Analysis. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 270–273. [Google Scholar] [CrossRef]
- Bamler, R.; Hartl, P. Synthetic Aperture Radar Interferometry. Inverse Probl. 1998, 14, 4. [Google Scholar] [CrossRef]
- Fattahi, H.; Agram, P.; Simons, M. A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis. IEEE Trans. Geosci. Remote Sens. 2016, 55, 777–786. [Google Scholar] [CrossRef]
- Farr, T.; Rosen, P.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 V100 2021. [CrossRef]
- Morishita, Y.; Lazecky, M.; Wright, T.J.; Weiss, J.R.; Elliott, J.R.; Hooper, A. LiCSBAS: An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor. Remote Sens. 2020, 12, 424. [Google Scholar] [CrossRef]
STC | VSTD | ||||||
---|---|---|---|---|---|---|---|
Network Configuration | Built-Up | Cropland | Bare | Network Configuration | Built-Up | Cropland | Bare |
Fully-Connected | 0.35 | 2.50 | 0.43 | Fully-Connected | 2.13 | 2.90 | 8.44 |
|Γ| > 0.4 | 0.42 | 1.63 | 0.42 | |Γ| > 0.4 | 2.18 | 2.32 | 8.44 |
|Γ| > 0.5 | 0.40 | 0.87 | 0.39 | |Γ| > 0.5 | 2.09 | 2.03 | 8.37 |
STC | VSTD | ||||||
---|---|---|---|---|---|---|---|
Network Configuration | Built-Up | Cropland | Bare | Network Configuration | Built-Up | Cropland | Bare |
Fully-Connected | 0.26 | 3.24 | 0.61 | Fully-Connected | 2.04 | 3.37 | 8.35 |
|Γ| > 0.4 | 0.26 | 2.14 | 0.48 | |Γ| > 0.4 | 2.04 | 2.58 | 8.34 |
|Γ| > 0.5 | 0.26 | 1.10 | 0.44 | |Γ| > 0.5 | 2.04 | 2.09 | 8.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haji Safari, S.; Maghsoudi, Y. Evaluating the Impact of Interferogram Networks on the Performance of Phase Linking Methods. Remote Sens. 2024, 16, 3954. https://doi.org/10.3390/rs16213954
Haji Safari S, Maghsoudi Y. Evaluating the Impact of Interferogram Networks on the Performance of Phase Linking Methods. Remote Sensing. 2024; 16(21):3954. https://doi.org/10.3390/rs16213954
Chicago/Turabian StyleHaji Safari, Saeed, and Yasser Maghsoudi. 2024. "Evaluating the Impact of Interferogram Networks on the Performance of Phase Linking Methods" Remote Sensing 16, no. 21: 3954. https://doi.org/10.3390/rs16213954