Investigation of Global International GNSS Service Control Information Extraction for Geometric Calibration of Remote Sensing Images
<p>Dataset distribution. Red points are the location of tested IGS stations, while blue rectangles are the coverage of raw satellite images.</p> "> Figure 2
<p>Illustration of the IGS antenna monuments investigated in our experiment. The left images of each sub-image are the satellite-view DOMs, and the right images are its corresponding close-range photos.</p> "> Figure 3
<p>The workflow of our proposed method.</p> "> Figure 4
<p>Flowchart of GCP extraction from IGS information.</p> "> Figure 5
<p>Global distribution of IGS stations (copyright @ 2020 International GNSS Service).</p> "> Figure 6
<p>Illustration of placement of different antenna monuments. (<b>a</b>–<b>i</b>) Photos of different IGS antenna monuments obtained from handheld devices in different views, respectively. (<b>j</b>–<b>l</b>) The Google Earth remote sensing images (the green points are the published coordinates of IGS antenna monuments, and the red crosses are the corresponding projected coordinates), respectively.</p> "> Figure 7
<p>Illustration of geolocation differences between the calibrated GEM chips and LiDAR-derived DSMs.</p> "> Figure 8
<p>Matching results between raw satellite images and the calibrated GEM chips.</p> "> Figure 9
<p>The geolocation performance of the experimental datasets in the IGS stations of BLYT00USA. (<b>a</b>) The original geolocation accuracy of multi-view remote sensing images; (<b>b</b>) the geometric performance after free block adjustment; and (<b>c</b>,<b>d</b>) the corresponding performance after being processed with the GEM reference information and IGS reference information, respectively.</p> "> Figure 10
<p>The geolocation performance of the experimental datasets in the IGS stations of MRC100USA. (<b>a</b>) The original geolocation accuracy of multi-view remote sensing images; (<b>b</b>) the geometric performance after free block adjustment; and (<b>c</b>,<b>d</b>) the corresponding performance after being processed with the GEM reference information and IGS reference information, respectively.</p> "> Figure 11
<p>The geolocation performance of the experimental datasets in the IGS stations of NLIB00USA. (<b>a</b>) The original geolocation accuracy of multi-view remote sensing images; (<b>b</b>) the geometric performance after free block adjustment; and (<b>c</b>,<b>d</b>) the corresponding performance after being processed with the GEM reference information and IGS reference information, respectively.</p> "> Figure 12
<p>The geolocation performance of the experimental datasets in the IGS stations of P77900USA. (<b>a</b>) The original geolocation accuracy of multi-view remote sensing images; (<b>b</b>) the geometric performance after free block adjustment; and (<b>c</b>,<b>d</b>) the corresponding performance after being processed with the GEM reference information and IGS reference information, respectively.</p> "> Figure 13
<p>The geolocation performance of the experimental datasets in the IGS stations of QUIN00USA. (<b>a</b>) The original geolocation accuracy of multi-view remote sensing images; (<b>b</b>) the geometric performance after free block adjustment; and (<b>c</b>,<b>d</b>) the corresponding performance after being processed with the GEM reference information and IGS reference information, respectively.</p> "> Figure 14
<p>The geolocation performance of the experimental datasets in the IGS stations of SGPO00USA. (<b>a</b>) The original geolocation accuracy of multi-view remote sensing images; (<b>b</b>) the geometric performance after free block adjustment; and (<b>c</b>,<b>d</b>) the corresponding performance after being processed with the GEM reference information and IGS reference information, respectively.</p> ">
Abstract
:1. Introduction
1.1. Motivation
1.2. Related Works
1.3. Contribution
- An IGS-assisted geolocation method is introduced to transform the IGS information into satellite image geometric calibration.
- High-resolution GEMs are applied for the accurate extraction and location of the footprint of the IGS monument, and the calibrated GEMs are considered as the “cloud control” data.
1.4. Organization
2. Study Area and Dataset
2.1. Study Sites
2.2. Raw Satellite Imagery
2.3. Ground Truth
3. Methodology
3.1. GCP Extraction from IGS
3.2. Geometric Calibration Model
4. Results
4.1. GCP Extraction from IGS
4.2. Geolocation Accuracy Improvement Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- AbdelRahman, M.A. An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications. Rend. Lincei. Sci. Fis. Nat. 2023, 34, 767–808. [Google Scholar] [CrossRef]
- Xiao, J.; Aggarwal, A.K.; Duc, N.H.; Arya, A.; Rage, U.K.; Avtar, R. A review of remote sensing image spatiotemporal fusion: Challenges, applications and recent trends. Remote Sens. Appl. Soc. Environ. 2023, 32, 101005. [Google Scholar] [CrossRef]
- Tadono, T.; Shimada, M.; Watanabe, M.; Hashimoto, T.; Iwata, T. Calibration and validation of PRISM onboard ALOS. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 13–18. [Google Scholar]
- Joshi, A.; Pradhan, B.; Gite, S.; Chakraborty, S. Remote-sensing data and deep-learning techniques in crop mapping and yield prediction: A systematic review. Remote Sens. 2023, 15, 2014. [Google Scholar] [CrossRef]
- Zhang, Z.; Tao, P. An overview on “cloud control” photogrammetry in big data era. Acta Geod. Cartogr. Sin. 2017, 46, 1238. [Google Scholar]
- Li, B.; Ge, H.; Bu, Y.; Zheng, Y.; Yuan, L. Comprehensive assessment of real-time precise products from IGS analysis centers. Satell. Navig. 2022, 3, 12. [Google Scholar] [CrossRef]
- Wang, M.; Tian, Y.; Cheng, Y. Development of on-orbit geometric calibration for high resolution optical remote sensing satellite. Geomat. Inf. Sci. Wuhan Univ. 2017, 42, 1580–1588. [Google Scholar]
- Merchanta, D.; Schenka, A.; Habibb, A.; Yoona, T. USGS/OSU progress with digital camera in situ calibration methods. In Proceedings of the Post-Launch Calibration of Satellite Sensors: Proceedings of the International Workshop on Radiometric and Geometric Calibration, Gulfport, MI, USA, 2–5 December 2003; p. 77. [Google Scholar]
- Michael, C. 10 Years ifp Test Site Vaihingen/Enz: An Independent Performance Study. Photogramm. Week 2005, 5, 79–92. [Google Scholar]
- Breton, E.; Bouillon, A.; Gachet, R.; Delussy, F. Pre-flight and in-flight geometric calibration of SPOT5 HRG and HRS images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 34, 20–25. [Google Scholar]
- Bresnahan, P.C. Geolacation Accuracy Re-Evalution of GeoEye-1 and QuickBird-2. In Proceedings of the JACIE Workshop, New York, NY, USA, 2012. [Google Scholar]
- Zhang, Y. Design and Implenmentation of Songshan Test Field for High Resolution Remote Sensing and Mapping. J. Geomat. Sci. Technol. 2012, 29, 79–82. [Google Scholar]
- Li, C.; Ma, L.; Tang, L.; Gao, C.; Qian, Y.; Wang, N.; Wang, X. A comprehensive calibration site for high resolution remote sensors dedicated to quantitative remote sensing and its applications. Natl. Remote Sens. Bull. 2021, 25, 198–219. [Google Scholar]
- Gachet, R. SPOT5 In-flight Commission: Inner Orientation of HRG and HRS Instruments. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 535–539. [Google Scholar]
- Grodecki, J.; Lutes, J. IKONOS geometric calibrations. In Proceedings of the ASPRS 2005 Annual Conference, Baltimore, MD, USA, 7–11 March 2005; pp. 7–11. [Google Scholar]
- Cao, J.; Yuan, X.; Fang, Y.; Gong, J. Geometric calibration of Ziyuan-3 three-line cameras using ground control lines. Photogramm. Eng. Remote Sens. 2016, 82, 893–902. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Zheng, T.; Zhang, Y.; Li, L.; Yu, Y.; Li, L. On-Orbit Geometric Calibration and Performance Validation of the GaoFen-14 Stereo Mapping Satellite. Remote Sens. 2023, 15, 4256. [Google Scholar] [CrossRef]
- Lu, X.; Wang, J.; Yang, X.; Lyu, Y.; Hu, Y.; Cao, B.; Zhou, J. On-orbit Geometric Calibration and Preliminary Accuracy Evaluation of GF-14 Satellite. J. Geod. Geoinf. Sci. 2023, 6, 62. [Google Scholar]
- Wang, J.; Ge, Y.; Heuvelink, G.B.; Zhou, C.; Brus, D. Effect of the sampling design of ground control points on the geometric correction of remotely sensed imagery. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 91–100. [Google Scholar] [CrossRef]
- Tawfeik, H.M.; Hamza, E.; Shawky, A. Determination of suitable requirements for geometric correction of remote sensing satellite images when using ground control points. Int. Res. J. Eng. Technol. 2016, 3, 54–62. [Google Scholar]
- Sanz-Ablanedo, E.; Chandler, J.H.; Rodríguez-Pérez, J.R.; Ordóñez, C. Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sens. 2018, 10, 1606. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement 2017, 98, 221–227. [Google Scholar] [CrossRef]
- Szypuła, B. Accuracy of UAV-based DEMs without ground control points. GeoInformatica 2024, 28, 1–28. [Google Scholar] [CrossRef]
- Zhou, P.; Tang, X.; Wang, Z.; Cao, N.; Wang, X. Vertical accuracy effect verification for satellite imagery with different GCPs. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1268–1272. [Google Scholar] [CrossRef]
- Yilmaz, H.; Yakar, M.; Mutluoglu, O.; Yildiz, F. Selection of the most suitable sizes of ground control points in the satellite images. In Proceedings of the ISPRS Congress Istanbul. Citeseer, Istanbul, Turkey, 12–23 July 2004; Volume 12, p. 13. [Google Scholar]
- Ulvi, A. The effect of the distribution and numbers of ground control points on the precision of producing orthophoto maps with an unmanned aerial vehicle. J. Asian Archit. Build. Eng. 2021, 20, 806–817. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Wang, L.; Huang, X. A New Approach on Optimization of the Rational Function Model of High-Resolution Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2758–2764. [Google Scholar] [CrossRef]
- Pi, Y.; Li, X.; Yang, B. Global iterative geometric calibration of a linear optical satellite based on sparse GCPs. IEEE Trans. Geosci. Remote Sens. 2019, 58, 436–446. [Google Scholar] [CrossRef]
- Jiao, N.; Wang, F.; You, H.; Liu, J.; Qiu, X. A generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery. ISPRS J. Photogramm. Remote Sens. 2020, 169, 377–388. [Google Scholar] [CrossRef]
- Zhou, S.; Pan, H.; Huang, T.; Zhou, P. High Accuracy Georeferencing of GF-6 Wide Field of View Scenes Toward Analysis Ready Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Yu, J.; Tao, P. Georeferencing of Satellite Images with Geocoded Image Features. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 10, 313–319. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Nemmaoui, A.; Aguilar, F.J.; Novelli, A.; Garcia Lorca, A. Improving georeferencing accuracy of Very High Resolution satellite imagery using freely available ancillary data at global coverage. Int. J. Digit. Earth 2017, 10, 1055–1069. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Peterson, J.; Chandra, S. LiDAR-derived high quality ground control information and DEM for image orthorectification. GeoInformatica 2007, 11, 37–53. [Google Scholar] [CrossRef]
- Qiu, C.; Schmitt, M.; Zhu, X.X. Towards automatic SAR-optical stereogrammetry over urban areas using very high resolution imagery. ISPRS J. Photogramm. Remote Sens. 2018, 138, 218–231. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Wei, S.; Xu, M.; Zhang, G.; Wang, J.Y. Combined adjustment pipeline for improved global geopositioning accuracy of optical satellite imagery with the aid of SAR and GLAS. IEEE JOurnal Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5076–5085. [Google Scholar] [CrossRef]
- Marsetič, A.; Pehani, P. Towards sub-pixel automatic geometric corrections of very-high resolution panchromatic satellite data of urban areas. Remote Sens. 2019, 11, 1097. [Google Scholar] [CrossRef]
- Özcihan, B.; Özlü, L.D.; Karakap, M.İ.; Sürmeli, H.; Algancı, U.; Sertel, E. A comprehensive analysis of different geometric correction methods for the Pleiades-1A and Spot-6 satellite images. Int. J. Eng. Geosci. 2023, 8, 146–153. [Google Scholar] [CrossRef]
- Potere, D. Horizontal positional accuracy of Google Earth’s high-resolution imagery archive. Sensors 2008, 8, 7973–7981. [Google Scholar] [CrossRef]
- Helbich, M.; Amelunxen, C.; Neis, P.; Zipf, A. Comparative spatial analysis of positional accuracy of OpenStreetMap and proprietary geodata. Proc. Gi_Forum 2012, 4, 24. [Google Scholar]
- Brovelli, M.A.; Zamboni, G. A new method for the assessment of spatial accuracy and completeness of OpenStreetMap building footprints. ISPRS Int. J. Geo-Inf. 2018, 7, 289. [Google Scholar] [CrossRef]
- Chandelier, L.; Coeurdevey, L.; Bosch, S.; Favé, P.; Gachet, R.; Orsoni, A.; Tilak, T.; Barot, A. A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 2, 15–23. [Google Scholar] [CrossRef]
- Mukul, M.; Srivastava, V.; Mukul, M. Analysis of the accuracy of shuttle radar topography mission (SRTM) height models using international global navigation satellite system service (IGS) network. J. Earth Syst. Sci. 2015, 124, 1343–1357. [Google Scholar] [CrossRef]
- Ren, X.; Chen, J.; Li, X.; Zhang, X.; Freeshah, M. Performance evaluation of real-time global ionospheric maps provided by different IGS analysis centers. GPS Solut. 2019, 23, 113. [Google Scholar] [CrossRef]
- Wang, X.; Wang, F. The Precision of Google Earth Map Analysis With the Coordinates of IGS Stations. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 42, 1053–1056. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, H.; Li, Z.; Hackman, K.O.; Liu, C. Automatic high-resolution land cover production in madagascar using sentinel-2 time series, tile-based image classification and google earth engine. Remote Sens. 2020, 12, 3663. [Google Scholar] [CrossRef]
- Fu, Q.; Tong, X.; Liu, S.; Ye, Z.; Jin, Y.; Wang, H.; Hong, Z. GPU-accelerated PCG method for the block adjustment of large-scale high-resolution optical satellite imagery without GCPs. Photogramm. Eng. Remote Sens. 2023, 89, 211–220. [Google Scholar] [CrossRef]
- Ye, Y.; Shan, J.; Bruzzone, L.; Shen, L. Robust Registration of Multimodal Remote Sensing Images Based on Structural Similarity. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2941–2958. [Google Scholar] [CrossRef]
- Xiang, Y.; Tao, R.; Wan, L.; Wang, F.; You, H. OS-PC: Combining Feature Representation and 3-D Phase Correlation for Subpixel Optical and SAR Image Registration. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6451–6466. [Google Scholar] [CrossRef]
- Xiang, Y.; Tao, R.; Wang, F.; You, H.; Han, B. Automatic Registration of Optical and SAR Images Via Improved Phase Congruency Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5847–5861. [Google Scholar] [CrossRef]
- Jiao, N.; Wang, F.; Xiang, Y.; Wang, L.; You, H. A Coarse-to-Fine Geometric Calibration Framework of RPCS for Remote Sensing Images. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 6350–6353. [Google Scholar] [CrossRef]
Item | Parameters |
---|---|
Imaging Swath | 45 km |
Orbit Height | 631 km |
Imaging Angle | −35∼35° |
Revisiting Period | 5 Day |
Nominal Resolution | 0.8(PAN)/3.2(MSS) m |
Systematic Geolocation Accuracy | 50 m |
IGS Station | Overlaps | Image Idx | Coverage | Elevation Range |
---|---|---|---|---|
BLYT00USA | 8 | BLYT-1∼8 | −114.902∼−114.481 33.398∼33.824 | 78∼463 |
MRC100USA | 6 | MRC1-1∼6 | −77.5514∼−77.109 38.313∼38.683 | 15∼168 |
NLIB00USA | 7 | NLIB-1∼7 | −91.629∼−91.299 41.562∼41.969 | 158∼234 |
P77900USA | 4 | P779-1∼4 | −83.073∼−82.673 35.004∼35.296 | 685∼1081 |
QUIN00USA | 6 | QUIN-1∼6 | −121.175∼−120.626 39.755∼40.170 | 976∼1734 |
SGPO00USA | 6 | SGPO-1∼6 | −97.666∼−97.269 36.379∼36.815 | 136∼318 |
IGS Station | Geolocation Error/m | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial | Free GC | GC with GEM | GC with IGS | |||||||||
X | Y | P | X | Y | P | X | Y | P | X | Y | P | |
BLYT00USA | 60.41 | 36.74 | 70.71 | 29.01 | 5.72 | 29.57 | 1.46 | 1.41 | 2.03 | 1.02 | 1.01 | 1.44 |
MRC100USA | 58.93 | 56.21 | 81.44 | 43.26 | 31.01 | 53.23 | 1.58 | 1.51 | 2.19 | 1.06 | 1.04 | 1.49 |
NLIB00USA | 52.49 | 26.67 | 58.88 | 32.22 | 2.62 | 32.33 | 1.64 | 1.92 | 2.53 | 1.25 | 1.37 | 1.86 |
P77900USA | 28.95 | 28.11 | 40.36 | 10.53 | 22.32 | 24.68 | 1.33 | 1.86 | 2.53 | 0.78 | 1.52 | 1.71 |
QUIN00USA | 80.48 | 33.19 | 87.06 | 68.83 | 11.67 | 69.82 | 1.23 | 1.58 | 2.01 | 0.69 | 1.05 | 1.26 |
SGPO00USA | 66.99 | 31.51 | 74.03 | 60.84 | 13.96 | 62.42 | 1.68 | 1.51 | 2.26 | 1.04 | 0.99 | 1.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, N.; Xiang, Y.; Wang, F.; Zhou, G.; You, H. Investigation of Global International GNSS Service Control Information Extraction for Geometric Calibration of Remote Sensing Images. Remote Sens. 2024, 16, 3860. https://doi.org/10.3390/rs16203860
Jiao N, Xiang Y, Wang F, Zhou G, You H. Investigation of Global International GNSS Service Control Information Extraction for Geometric Calibration of Remote Sensing Images. Remote Sensing. 2024; 16(20):3860. https://doi.org/10.3390/rs16203860
Chicago/Turabian StyleJiao, Niangang, Yuming Xiang, Feng Wang, Guangyao Zhou, and Hongjian You. 2024. "Investigation of Global International GNSS Service Control Information Extraction for Geometric Calibration of Remote Sensing Images" Remote Sensing 16, no. 20: 3860. https://doi.org/10.3390/rs16203860
APA StyleJiao, N., Xiang, Y., Wang, F., Zhou, G., & You, H. (2024). Investigation of Global International GNSS Service Control Information Extraction for Geometric Calibration of Remote Sensing Images. Remote Sensing, 16(20), 3860. https://doi.org/10.3390/rs16203860