3D Surface Velocity Field Inferred from SAR Interferometry: Cerro Prieto Step-Over, Mexico, Case Study
<p>Study area. (<b>a</b>) Location of the region described in (<b>b</b>). (<b>b</b>) Red square indicates the CPSO area described in (<b>c</b>). Footprints of Sentinel 1A ascending and descending SAR images are denoted by big squares (black and dark blue), and footprints of UAVSAR east and west passes are denoted by rectangles (gray). Black arrows denote the different sensors’ line of sight direction. Red lines are the main fault systems. (<b>c</b>) Gray contours show the subsidence displacement rate (cm/yr) from leveling measurements (2012–2015) surveyed by the Mexican Institute of Water Technology (IMTA). Recent earthquakes <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">M</mi> </mrow> <mrow> <mi mathvariant="normal">L</mi> </mrow> </msub> </mrow> </semantics></math> > 5 occurred before the study period are denoted by red stars. 1.-<math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">M</mi> </mrow> <mrow> <mi mathvariant="normal">L</mi> </mrow> </msub> </mrow> </semantics></math>5.4, May/2006; 2.-<math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">M</mi> </mrow> <mrow> <mi mathvariant="normal">L</mi> </mrow> </msub> </mrow> </semantics></math>5.3, September/2009; 3.-<math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">M</mi> </mrow> <mrow> <mi mathvariant="normal">L</mi> </mrow> </msub> </mrow> </semantics></math>6.0, December/2009. Main tectonic faults are indicated by continuous red lines. Large-scale tectonic motion is shown by black arrows. The CPGF area is marked as dashed gray lines. Abbreviations NA = North American plate; PA = Pacific plate; EZ = exploitation zone of the CPGF, RZ = recharge zone, CPF = Cerro Prieto Fault, GF = Guerrero Fault, HF = Hidalgo Fault, LF = L Fault, IMF = Imperial Fault, MF = Morelia Fault, SF = Saltillo Fault, SF’ = Saltillo Fault continuation, CPV = Cerro Prieto Volcano. Vector data of the CPGF limits were taken from [<a href="#B19-remotesensing-16-03788" class="html-bibr">19</a>].</p> "> Figure 2
<p>Timeframe of imagery from spaceborne Sentinel 1A/RADARSAT-2 and airborne UAVSAR missions. Abbreviations: SLC = Single Look Complex, T166 = Sentinel ascending orbital pass, T173 = Sentinel descending orbital pass, MF1 = RADARSAT-2 ascending orbital pass, MF4N = RADARSAT-2 descending orbital pass, 08514S3 = Segment #3 of the flight line 08514, 26515S2 = Segment #2 of the flight line 26515. Black dots are the UAVSAR acquisition times. Gray boxes indicate temporal matching between sensors used for 3D decomposition. Dates format: YYYY/MM/DD (e.g., 1 February 2012).</p> "> Figure 3
<p>Method flowchart for InSAR data processing. ECMWF global model is the European Centre for Medium-Range Weather Forecasts. <sup>1</sup> Jackknife test for uncertainty estimations. This workflow was elaborated based on the implemented processing software (<sup>2</sup> and <sup>3</sup>).</p> "> Figure 4
<p>Synthetic data of the components of the 3D displacement vector of the CPGF [<a href="#B17-remotesensing-16-03788" class="html-bibr">17</a>]. (<b>a</b>) Synthetic data. (<b>b</b>) Calculated 3D surface displacement data. In (<b>a</b>,<b>b</b>), colors denote the vertical displacement and red color vectors represent the horizontal displacements (east-north). (<b>c</b>) Differences between synthetic and calculated 3D surface displacement data. (<b>d</b>) Flowchart for 3D inversion code validation by using synthetic data. LOSdisp = Line of Sight displacement, WLSS = Weighted Least Squares Solution.</p> "> Figure 5
<p>Maps of average LOS displacement rate (mm/yr). (<b>a</b>,<b>b</b>) RADARSAT-2 ascending and descending orbital passes, respectively. Stable reference point used in (<b>a</b>,<b>b</b>) is located to the northwest of the Cerro Prieto basin out of the map’s data frame [<a href="#B21-remotesensing-16-03788" class="html-bibr">21</a>]. (<b>c</b>,<b>d</b>) UAVSAR east and west flight segments, respectively. Maps cover 2.8 years. Areas with a coherence value below 0.27 are masked. The red flag in (<b>c</b>,<b>d</b>) shows the location of the reference point. The color palette corresponds to the LOS displacement rate. Black arrows denote the sensors’ line of sight direction. Main faults are denoted by continuous red lines. Abbreviations Ifg = interferogram, LOS = line of sight, CPF = Cerro Prieto Fault, IMF = Imperial Fault, MF = Morelia Fault, SF = Saltillo, SF’ = Saltillo Fault continuation [<a href="#B30-remotesensing-16-03788" class="html-bibr">30</a>], and CPV = Cerro Prieto Volcano.</p> "> Figure 6
<p>Maps of average LOS displacement rate (mm/yr). (<b>a</b>,<b>b</b>) Sentinel 1A ascending and descending orbital passes, respectively. (<b>c</b>,<b>d</b>) UAVSAR east and west flight segments, respectively. Maps (<b>a</b>–<b>d</b>) cover one year. Areas with a coherence value below 0.2 are masked. In (<b>a</b>), the orange squares mark the location of specific points in the exploitation (EZ) and recharge (RZ) zones. The red flag shows the location of the reference point. Notation as in <a href="#remotesensing-16-03788-f005" class="html-fig">Figure 5</a>.</p> "> Figure 7
<p>Maps of displacement vector components, derived from the RADARSAT-2 and UAVSAR datasets’ combination for the February/2012–November/2014 period. (<b>a</b>) Vertical displacement rate. Negative values indicate subsidence. (<b>b</b>) North displacement rate. Negative values indicate southward movement. (<b>c</b>) East displacement rate. Negative values indicate westward movement. Areas of low coherence (<0.27) are masked out. In (<b>a</b>), the orange squares mark the location of specific points in the exploitation (EZ) and recharge (RZ) zones. Black dots a and b indicate the location of MBIG and NVLX GPS sites, respectively. SAR stands for Synthetic Aperture Radar. ADEW stands for Ascending/Descending/East/North, which refers to the flight direction combination of the different SAR geometries. Notation as in <a href="#remotesensing-16-03788-f005" class="html-fig">Figure 5</a>.</p> "> Figure 8
<p>Maps of displacement vector components, derived from the Sentinel 1A and UAVSAR datasets’ combination for the April/2015–April/2016 period. (<b>a</b>) Vertical displacement rate. Negative values indicate subsidence. (<b>b</b>) North displacement rate. Negative values indicate southward movement. (<b>c</b>) East displacement rate. Negative values indicate westward movement. Areas of low coherence (<0.2) and errors (<20 mm/yr) are masked out. In (<b>a</b>), the orange squares mark the location of the exploitation (EZ) and recharge (RZ) zones. The green inverted triangle marks the Ejido Nuevo León location and black dots a and b indicate the location of the MBIG and NVLX GPS sites, respectively. SAR stands for Synthetic Aperture Radar. ADEW stands for Ascending/Descending/East/North, which refers to the flight direction combination of the different SAR geometries. Notation as in <a href="#remotesensing-16-03788-f005" class="html-fig">Figure 5</a>.</p> "> Figure 8 Cont.
<p>Maps of displacement vector components, derived from the Sentinel 1A and UAVSAR datasets’ combination for the April/2015–April/2016 period. (<b>a</b>) Vertical displacement rate. Negative values indicate subsidence. (<b>b</b>) North displacement rate. Negative values indicate southward movement. (<b>c</b>) East displacement rate. Negative values indicate westward movement. Areas of low coherence (<0.2) and errors (<20 mm/yr) are masked out. In (<b>a</b>), the orange squares mark the location of the exploitation (EZ) and recharge (RZ) zones. The green inverted triangle marks the Ejido Nuevo León location and black dots a and b indicate the location of the MBIG and NVLX GPS sites, respectively. SAR stands for Synthetic Aperture Radar. ADEW stands for Ascending/Descending/East/North, which refers to the flight direction combination of the different SAR geometries. Notation as in <a href="#remotesensing-16-03788-f005" class="html-fig">Figure 5</a>.</p> "> Figure 9
<p>Contour maps of vertical displacement rate (cm/yr) from (<b>a</b>) leveling measurements (2012–2015) and (<b>b</b>) 3D displacement vector decomposition (2012–2014); (<b>c</b>) contour map of the difference (residual) between leveling measurements (IMTA) and InSAR vertical displacement rate. Blue triangles are benchmarks used for interpolation and contouring. In (<b>a</b>,<b>b</b>), the contours are every 1 cm, and in (<b>c</b>), are every 0.4 cm. In (<b>a</b>,<b>b</b>), RP is the reference area centered at the “10037” benchmark location and is represented by a black tringle. Tectonic faults are shown as continuous red lines. The red flag in (<b>b</b>,<b>c</b>) shows the location of the InSAR reference point. InSAR stands for Interferometric Aperture Radar. Notation as in <a href="#remotesensing-16-03788-f005" class="html-fig">Figure 5</a>.</p> "> Figure 10
<p>(<b>a</b>) Total RMSE and difference histogram of vertical displacement rate (cm/yr); (<b>b</b>) correlation coefficient between leveling data (2012–2015) and vertical InSAR (February/2012–Novemeber/2014).</p> "> Figure 11
<p>(<b>a</b>) The vertical displacement rate (mm/yr) obtained here vs. other works [<a href="#B13-remotesensing-16-03788" class="html-bibr">13</a>,<a href="#B19-remotesensing-16-03788" class="html-bibr">19</a>,<a href="#B67-remotesensing-16-03788" class="html-bibr">67</a>] in the exploitation and recharge zones in the CPSO. See <a href="#remotesensing-16-03788-f007" class="html-fig">Figure 7</a>a and <a href="#remotesensing-16-03788-f008" class="html-fig">Figure 8</a>a for zones’ location. (<b>b</b>) Production and injection wells (number of wells) vs. total electricity generated in the CPGF. In (<b>a</b>), continuous and dashed lines represent a location in the exploitation and recharge zones, respectively. Texts in parentheses denote the works of other authors and are associated with a color for clarity.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. SBAS Approach
4.2. Inversion Problem
4.2.1. 3DSVF (2012–2015 Period)
4.2.2. 3DSVF (2015–2016 Period)
4.3. 3DSVF Validaton
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuhrmann, T.; Garthwaite, M.C. Resolving three-dimensional surface motion with InSAR: Constraints from multi-geometry data fusion. Remote Sens. 2019, 11, 241. [Google Scholar] [CrossRef]
- Mehrabi, H.; Voosoghi, B.; Motagh, M.; Hanssen, R.F. Three-Dimensional Displacement Fields from InSAR through Tikhonov Regularization and Least-Squares Variance Component Estimation. J. Surv. Eng. 2019, 145, 04019011. [Google Scholar] [CrossRef]
- Fialko, Y.; Simons, M.; Agnew, D. The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw 7.1 Hector Mine earthquake, California, from space geodetic observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31, L01607. [Google Scholar] [CrossRef]
- González, P.J.; Fernández, J.; Camacho, A.G. Coseismic three-dimensional displacements determined Using SAR data: Theory and an application test. Pure Appl. Geophys. 2009, 166, 1403–1424. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Polcari, M.; Palano, M.; Fernández, J.; Samsonov, S.V.; Stramondo, S.; Zerbini, S. 3D displacement field retrieved by integrating Sentinel-1 InSAR and GPS data: The 2014 South Napa earthquake. Eur. J. Remote Sens. 2016, 49, 1–13. [Google Scholar] [CrossRef]
- Delbridge, B.G.; Bürgmann, R.; Fielding, E.; Hensley, S.; Schulz, W.H. Three-dimensional surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide. J. Geophys. Res. Solid Earth 2016, 121, 3951–3977. [Google Scholar] [CrossRef]
- Hu, X.; Bürgmann, R.; Schulz, W.H.; Fielding, E.J. Four-dimensional surface motions of the Slumgullion landslide and quantification of hydrometeorological forcing. Nat. Commun. 2020, 11, 2792. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Booth, A.M.; Huang, M.; Fielding, E.J. Inferring the Subsurface Geometry and Strength of Slow-Moving Landslides Using 3-D Velocity Measurements From the NASA/JPL UAVSAR. J. Geophys. Res. Earth Surf. 2021, 126, e2020JF005898. [Google Scholar] [CrossRef]
- Vasco, D.W.; Rutqvist, J.; Jeanne, P.; Samsonov, S.V.; Hartline, C. Using geodetic data in geothermal areas. Lead. Edge 2020, 39, 883–892. [Google Scholar] [CrossRef]
- Yazbeck, J.; Rundle, J.B. A Fusion of Geothermal and InSAR Data with Machine Learning for Enhanced Deformation Forecasting at the Geysers. Land 2023, 12, 1977. [Google Scholar] [CrossRef]
- Xu, X.; Sandwell, D.T.; Tymofyeyeva, E.; Gonzalez-Ortega, A.; Tong, X. Tectonic and Anthropogenic Deformation at the Cerro Prieto Geothermal Step-Over Revealed by Sentinel-1A InSAR. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5284–5292. [Google Scholar] [CrossRef]
- Carnec, C.; Fabriol, H. Monitoring and modeling land subsidence at the Cerro Prieto Geothermal Field, Baja California, Mexico, using SAR interferometry. Geophys. Res. Lett. 1999, 26, 1211–1214. [Google Scholar] [CrossRef]
- Glowacka, E.; González, J.; Fabriol, H. Recent Vertical Deformation in Mexicali Valley and its Relationship with Tectonics, Seismicity, and the Exploitation of the Cerro Prieto Geothermal Field, Mexico. Pure Appl. Geophys. 1999, 156, 591–614. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry; Springer: Dordrecht, The Netherlands, 2001; Volume 2. [Google Scholar] [CrossRef]
- Sarychikhina, O.; Glowacka, E.; Mellors, R.; Vidal, F.S. Land subsidence in the Cerro Prieto Geothermal Field, Baja California, Mexico, from 1994 to 2005. J. Volcanol. Geotherm. Res. 2011, 204, 76–90. [Google Scholar] [CrossRef]
- Sarychikhina, O.; Glowacka, E.; Robles, B.; Nava, F.A.; Guzmán, M. Estimation of Seismic and Aseismic Deformation in Mexicali Valley, Baja California, Mexico, in the 2006–2009 Period, Using Precise Leveling, DInSAR, Geotechnical Instruments Data, and Modeling. Pure Appl. Geophys. 2015, 172, 3139–3162. [Google Scholar] [CrossRef]
- Sarychikhina, O.; Glowacka, E.; Robles, B. Multi-sensor DInSAR applied to the spatiotemporal evolution analysis of ground surface deformation in Cerro Prieto basin, Baja California, Mexico, for the 1993–2014 period. Nat. Hazards 2018, 92, 225–255. [Google Scholar] [CrossRef]
- Trugman, D.T.; Borsa, A.A.; Sandwell, D.T. Did stresses from the Cerro Prieto Geothermal Field influence the El Mayor-Cucapah rupture sequence? Geophys. Res. Lett. 2014, 41, 8767–8774. [Google Scholar] [CrossRef]
- Samsonov, S.V.; Feng, W.; Fialko, Y. Subsidence at Cerro Prieto Geothermal Field and postseismic slip along the Indiviso fault from 2011 to 2016 RADARSAT-2 DInSAR time series analysis. Geophys. Res. Lett. 2017, 44, 2716–2724. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An Overview of the Small BAseline Subset Algorithm: A DInSAR Technique for Surface Deformation Analysis. Pure Appl. Geophys. 2007, 164, 637–661. [Google Scholar] [CrossRef]
- López-Quiroz, P.; Doin, M.-P.; Tupin, F.; Briole, P.; Nicolas, J.-M. Time series analysis of Mexico City subsidence constrained by radar interferometry. J. Appl. Geophys. 2009, 69, 1–15. [Google Scholar] [CrossRef]
- Tong, X.; Schmidt, D. Active movement of the Cascade landslide complex in Washington from a coherence-based InSAR time series method. Remote Sens. Environ. 2016, 186, 405–415. [Google Scholar] [CrossRef]
- Asaka, T.; Nonaka, T.; Hashiba, H.; Iwashita, K.; Sugimura, T. ALOS/PALSAR SBAS Analysis of Surface Deformation in the Pacific Side of Chiba Prefecture, Japan. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2018, 16, 593–598. [Google Scholar] [CrossRef]
- Han, Y.; Liu, G.; Liu, J.; Yang, J.; Xie, X.; Yan, W.; Zhang, W. Monitoring and Analysis of Land Subsidence in Jiaozuo City (China) Based on SBAS-InSAR Technology. Sustainability 2023, 15, 11737. [Google Scholar] [CrossRef]
- Lomnitz, C.; Mooser, F.; Allen, C.R.; Brune, J.N.; Tatcher, W. Sismicidad y tectónica de la región norte del Golfo de California, México. resultados preliminares. Geofísica Int. 1970, 10, 37–48. [Google Scholar] [CrossRef]
- Elders, W.A.; Bird, D.K.; Williams, A.E.; Schiffman, P. Hydrothermal flow regime and magmatic heat source of the Cerro Prieto geothermal system, Baja California, Mexico. Geothermics 1984, 13, 27–47. [Google Scholar] [CrossRef]
- Suárez-Vidal, F.; Mendoza-Borunda, R.; Nafarrete-Zamarripa, L.M.; Rámirez, J.; Glowacka, E. Shape and Dimensions of the Cerro Prieto Pull-Apart Basin, Mexicali, Baja California, Mexico, Based on the Regional Seismic Record and Surface Structures. Int. Geol. Rev. 2008, 50, 636–649. [Google Scholar] [CrossRef]
- Argus, D.F.; Gordon, R.G.; Heflin, M.B.; Ma, C.; Eanes, R.J.; Willis, P.; Peltier, W.R.; Owen, S.E. The angular velocities of the plates and the velocity of Earth’s centre from space geodesy. Geophys. J. Int. 2010, 180, 913–960. [Google Scholar] [CrossRef]
- DeMets, C.; Gordon, R.G.; Argus, D.F. Geologically current plate motions. Geophys. J. Int. 2010, 181, 1–80. [Google Scholar] [CrossRef]
- González-Ortega, J.A.; González-García, J.J.; Sandwell, D.T. Interseismic Velocity Field and Seismic Moment Release in Northern Baja California, Mexico. Seismol. Res. Lett. 2018, 89, 526–533. [Google Scholar] [CrossRef]
- Glowacka, E.; Sarychikhina, O.; Nava, F.A. Subsidence and Stress Change in the Cerro Prieto Geothermal Field, B.C., Mexico. Pure Appl. Geophys. 2005, 162, 2095–2110. [Google Scholar] [CrossRef]
- Truesdell, A.H.; Thompson, J.M.; Coplen, T.B.; Nehring, N.L.; Janik, C.J. The origin of the Cerro Prieto geothermal brine. Geothermics 1981, 10, 225–238. [Google Scholar] [CrossRef]
- Gutiérrez-Negrín, L.C.; Maya-González, R.; Luis Quijano-León, J. Present Situation and Perspectives of Geothermal in Mexico. In Proceedings of the Proceedings World Geothermal Congress, Melbourne, Australia, 19–25 April 2015; pp. 19–25. Available online: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/01002.pdf (accessed on 11 September 2024).
- Gutiérrez-Negrín, L.C.; Romo-Jones, J.M.; Izquierdo-Montalvo, G.; Canchola-Féliz, I. 2021 Annual Report IEA Geothermal. 2022. Available online: https://drive.google.com/file/d/1FuRq-r8rcVlLmd3nGKUOSuMqw91cS0N3/view?usp=share_link (accessed on 6 December 2023).
- Albores, A.; Reyes, A.; Brune, J.N.; Gonzalez, J.; Garcilazo, L.; Suarez, F. Seismicity studies in the region of the Cerro Prieto geothermal field. Geothermics 1980, 9, 65–77. [Google Scholar] [CrossRef]
- Frez, J.; González, J.J. Crustal Structure and Seismotectonics of Northern Baja California. In The Gulf and Peninsular Province of the Californias; American Association of Petroleum Geologists: Tulsa, OK, USA, 1991. [Google Scholar] [CrossRef]
- Hauksson, E.; Stock, J.; Hutton, K.; Yang, W.; Vidal-Villegas, J.A.; Kanamori, H. The 2010 Mw 7.2 El mayor-cucapah earthquake sequence, Baja California, Mexico and Southernmost California, USA: Active seismotectonics along the Mexican pacific margin. Pure Appl. Geophys. 2010, 168, 1255–1277. [Google Scholar] [CrossRef]
- Wei, S.; Fielding, E.; Leprince, S.; Sladen, A.; Avouac, J.; Helmberger, D.; Hauksson, E.; Chu, R.; Simons, M.; Hudnut, K.; et al. Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico. Nat. Geosci. 2011, 4, 615–618. [Google Scholar] [CrossRef]
- Fletcher, J.M.; Teran, O.J.; Rockwell, T.K.; Oskin, M.E.; Hudnut, K.W.; Mueller, K.J.; Spelz, R.M.; Akciz, S.O.; Masana, E.; Faneros, G.; et al. Assembly of a large earthquake from a complex fault system: Surface rupture kinematics of the 4 April 2010 El Mayor–Cucapah (Mexico) Mw 7.2 earthquake. Geosphere 2014, 10, 797–827. [Google Scholar] [CrossRef]
- Gonzalez-Ortega, A.; Fialko, Y.; Sandwell, D.; Alejandro Nava-Pichardo, F.; Fletcher, J.; Gonzalez-Garcia, J.; Lipovsky, B.; Floyd, M.; Funning, G. El Mayor-Cucapah (Mw 7.2) earthquake: Early near-field postseismic deformation from InSAR and GPS observations. J. Geophys. Res. Solid Earth 2014, 119, 1482–1497. [Google Scholar] [CrossRef]
- Majer, E.L.; McEvilly, T.V.; Albores, A.; Diaz, S.C. Seismological studies at Cerro Prieto. Geothermics 1980, 9, 79–88. [Google Scholar] [CrossRef]
- Fabriol, H.; Munguía, L. Seismic activity at the Cerro Prieto Geothermal Area (Mexico) from August 1994 to December 1995, and its relationship with tectonics and fluid exploitation. Geophys. Res. Lett. 1997, 24, 1807–1810. [Google Scholar] [CrossRef]
- Gonzalez, M. Two Mw 4.8 Cerro Prieto, Baja California, Mexico, Earthquakes on 1 June and 10 September 1999: Strong-Motion Observations. Bull. Seismol. Soc. Am. 2001, 91, 1456–1470. [Google Scholar] [CrossRef]
- Majer, E.L.; McEvilly, T.V. Seismological studies at Cerro Prieto field: 1978–1982. In Proceedings of the Fourth Symp. on the Cerro Prieto Geothermal Field, Baja California, Mexico, 10–12 August 1982; pp. 145–151. Available online: https://www.geothermal-library.org/index.php?mode=pubs&action=view&record=1005959 (accessed on 11 September 2024).
- Fabriol, H.; Glowacka, E. Seismicity and fluid reinjection at Cerro Prieto Geothermal Field: Preliminary Results. In Proceedings of the Twenty-Second Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 27–29 January 1997; pp. 11–17. Available online: https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/1997/Fabriol.pdf (accessed on 11 September 2024).
- Mellors, R.J. Comparison of Four Moderate-Size Earthquakes in Southern California Using Seismology and InSAR. Bull. Seismol. Soc. Am. 2004, 94, 2004–2014. [Google Scholar] [CrossRef]
- Dawson, J.; Tregoning, P. Uncertainty analysis of earthquake source parameters determined from InSAR: A simulation study. J. Geophys. Res. Solid Earth 2007, 112, B09406. [Google Scholar] [CrossRef]
- Lohman, R.B.; Simons, M. Locations of selected small earthquakes in the Zagros mountains. Geochem. Geophys. Geosystems 2005, 6, Q03001. [Google Scholar] [CrossRef]
- Dawson, J.; Cummins, P.; Tregoning, P.; Leonard, M. Shallow intraplate earthquakes in Western Australia observed by Interferometric Synthetic Aperture Radar. J. Geophys. Res. Solid Earth 2008, 113, B11408. [Google Scholar] [CrossRef]
- Funning, G.J.; Garcia, A. A systematic study of earthquake detectability using Sentinel-1 Interferometric Wide-Swath data. Geophys. J. Int. 2018, 216, 332–349. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Rosen, P.A.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR scientific computing environment. In Proceedings of the EUSAR 2012; 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012; pp. 730–733. Available online: https://ieeexplore.ieee.org/document/6217174 (accessed on 11 September 2024).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A 2001, 18, 338. [Google Scholar] [CrossRef] [PubMed]
- Agram, P.S.; Jolivet, R.; Simons, M. The Generic InSAR Analysis Toolbox; User Guide; Caltech: Pasadena, CA, USA, 2012; p. 100. Available online: https://ia601802.us.archive.org/34/items/manualzilla-id-5636918/5636918.pdf (accessed on 23 September 2024).
- Hensley, S.; Zebker, H.; Jones, C.; Michel, T.; Muellerschoen, R.; Chapman, B. First deformation results using the NASA/JPL UAVSAR instrument. In Proceedings of the 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, China, 26–30 October 2009; pp. 1051–1055. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ. 2018, 204, 109–121. [Google Scholar] [CrossRef]
- Jolivet, R.; Grandin, R.; Lasserre, C.; Doin, M.P.; Peltzer, G. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophys. Res. Lett. 2011, 38, L17311. [Google Scholar] [CrossRef]
- Donnellan, A.; Parker, J.; Hensley, S.; Pierce, M.; Wang, J.; Rundle, J. UAVSAR observations of triggered slip on the Imperial, Superstition Hills, and East Elmore Ranch Faults associated with the 2010 M 7.2 El Mayor-Cucapah earthquake. Geochem. Geophys. Geosystems 2014, 15, 815–829. [Google Scholar] [CrossRef]
- Lin, J.; Stein, R.S. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J. Geophys. Res. Solid Earth 2004, 109, B02303. [Google Scholar] [CrossRef]
- Toda, S.; Stein, R.S.; Richards-Dinger, K.; Bozkurt, S.B. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. J. Geophys. Res. Solid Earth 2005, 110, B05S16. [Google Scholar] [CrossRef]
- Yang, X.-M.; Davis, P.M. Deformation due to a rectangular tension crack in an elastic half-space. Bull. Seismol. Soc. Am. 1986, 76, 865–881. [Google Scholar] [CrossRef]
- CICESE. Red Geodésica del Noroeste de México (REGNOM). Centro de Investigación Científica y de Educación Superior de Ensenada. 2019. Available online: http://regnom.cicese.mx/index.html (accessed on 11 December 2023).
- Flores-Armenta, M. Geothermal activity and development in Mexico–keeping the production going. In Short Course on Geothermal Development and Geothermal Wells; 2012; Available online: https://api.semanticscholar.org/CorpusID:134565263 (accessed on 11 September 2024).
- Romo-Jones, J.M.; Gutiérrez-Negrín, L.C.; Sánchez-Cornejo, C.; González-Alcántar, N.; García-Gutiérrez, A. 2017 Mexico Country Report. IEA Geothermal. 2018, p. 10. Available online: https://drive.google.com/file/d/1uzwpWtRXY8Pblq9lU0cWMlTmFpwxa18t/view (accessed on 11 September 2024).
- IEA Geothermal. Available online: https://iea-gia.org/publications-2/annual-reports/ (accessed on 6 December 2023).
- FLores-Armenta, M.; Remírez-Montes, M.; Lilibeth, M.-A. Geothermal activity and development in Mexico-keeping the production going. In Proceedings of the Short course VI Utilization of Low- and Medium-Enthalpy Geothermal Resources and Financial Aspects of Utilization, Santa Tecla, El Salvador, 23–29 March 2014; Available online: https://gogn.orkustofnun.is/unu-gtp-sc/UNU-GTP-SC-18-03.pdf (accessed on 11 September 2024).
- Flores-Armenta, M.; Gutiérrez-Negrín, L.; Nieva, D. 2015 Mexico Country Report. IEA Geothermal. 2015. Available online: https://drive.google.com/file/d/1CjpI-_NQDX1a2iWlnbQH6LgM6fIV_HnV/view (accessed on 11 September 2024).
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosystems 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
Sensor | Subset | Orbit | Time Span 4 | (°) | (°) | N | M |
---|---|---|---|---|---|---|---|
Sentinel 1A 1 | T166 | asc | 3 April 2015–9 April 2016 | 347.39 | 37.2 | 26 | 49 |
Sentinel 1A 1 | T173 | dsc | 3 April 2015–9 April 2016 | 192.7 | 34.85 | 26 | 49 |
UAVSAR 2 | 08514S3 | east | 1 February 2012–1 April 2016 | 84.8 | 50.4 | 12 | 20 |
UAVSAR 2 | 26515S2 | west | 1 February 2012–1 April 2016 | −94.8 | 43.85 | 12 | 20 |
RADARSAT-2 3 | MF1 | asc | 13 September 2011–24 July 2016 | 349.4 | 38.4 | 53 | 434 |
RADARSAT-2 3 | MF4N | dsc | 1 October 2011–11 August 2016 | −170.3 | 44 | 58 | 344 |
Sensor | (°) 1 | (°) | du | dn | de |
---|---|---|---|---|---|
Sentinel 1A | 35 | 349 | 0.82 | 0.11 | 0.56 |
UAVSAR | 45 2 | 85 | 0.77 | 0.65 | 0.06 |
Location | Lat | Long | North 2 | East 2 | Up 2 | RMSE 2 3D | North 3 | East 3 | Up 3 | RMSE 3 3D |
---|---|---|---|---|---|---|---|---|---|---|
MBIG 1 | 32.4089 | −115.1960 | −23.3 | 7.9 | −96.7 | 6.8 | −6.1 | 7.0 | −90.0 | 6.5 |
NVLX 1 | 32.3935 | −115.1832 | 8.3 | −9.5 | −83.7 | 7.8 | 25.8 | −8.3 | −76.3 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Meza, I.F.; González-Ortega, J.A.; Sarychikhina, O.; Fielding, E.J.; Samsonov, S. 3D Surface Velocity Field Inferred from SAR Interferometry: Cerro Prieto Step-Over, Mexico, Case Study. Remote Sens. 2024, 16, 3788. https://doi.org/10.3390/rs16203788
Garcia-Meza IF, González-Ortega JA, Sarychikhina O, Fielding EJ, Samsonov S. 3D Surface Velocity Field Inferred from SAR Interferometry: Cerro Prieto Step-Over, Mexico, Case Study. Remote Sensing. 2024; 16(20):3788. https://doi.org/10.3390/rs16203788
Chicago/Turabian StyleGarcia-Meza, Ignacio F., J. Alejandro González-Ortega, Olga Sarychikhina, Eric J. Fielding, and Sergey Samsonov. 2024. "3D Surface Velocity Field Inferred from SAR Interferometry: Cerro Prieto Step-Over, Mexico, Case Study" Remote Sensing 16, no. 20: 3788. https://doi.org/10.3390/rs16203788
APA StyleGarcia-Meza, I. F., González-Ortega, J. A., Sarychikhina, O., Fielding, E. J., & Samsonov, S. (2024). 3D Surface Velocity Field Inferred from SAR Interferometry: Cerro Prieto Step-Over, Mexico, Case Study. Remote Sensing, 16(20), 3788. https://doi.org/10.3390/rs16203788