Self-Supervised Deep Multi-Level Representation Learning Fusion-Based Maximum Entropy Subspace Clustering for Hyperspectral Band Selection
<p>Overall flowchart of the proposed MLRLFMESC framework.</p> "> Figure 2
<p>The IP dataset with (<b>a</b>) a pseudo-color map of IP, and (<b>b</b>) true image class distribution with labels.</p> "> Figure 3
<p>The PU dataset, with (<b>a</b>) a pseudo-color map of PU, and (<b>b</b>) true image class distribution with labels.</p> "> Figure 4
<p>The SA dataset, with (<b>a</b>) a pseudo-color map of SA, and (<b>b</b>) true image class distribution with labels.</p> "> Figure 5
<p>Box plot of the OA for different BS methods on three hyperspectral datasets. (<b>a</b>) Indian Pines, (<b>b</b>) Pavia University, and (<b>c</b>) Salinas.</p> "> Figure 6
<p>Classification performance with a different number of selected bands on IP, (<b>a</b>) OA, (<b>b</b>) AA, (<b>c</b>) Kappa.</p> "> Figure 7
<p>Distribution of bands selected using various BS algorithms on IP data.</p> "> Figure 8
<p>Classification result maps, (<b>a</b>) labeled image, and (<b>b</b>–<b>h</b>) classification result maps on IP-selected 30 bands using UBS, E-FDPC, ISSC, ASPS_MN, DSC, MLRLFMESC, and all bands, respectively.</p> "> Figure A1
<p>Classification performance of PU dataset with a different number of selected bands, (<b>a</b>) OA, (<b>b</b>) AA, (<b>c</b>) Kappa.</p> "> Figure A2
<p>Distribution of bands selected using various BS algorithms for PU dataset.</p> "> Figure A3
<p>Classification result maps with (<b>a</b>) a labeled image of PU, and (<b>b</b>–<b>h</b>) classification result maps with 20 bands using UBS, E-FDPC, ISSC, ASPS_MN, DSC, MLRLFMESC, and all bands.</p> "> Figure A4
<p>Classification performance of SA dataset with a different number of selected bands, (<b>a</b>) OA, (<b>b</b>) AA, (<b>c</b>) Kappa.</p> "> Figure A5
<p>Distribution of bands selected using various BS algorithms for SA dataset.</p> "> Figure A6
<p>Classification result maps with a (<b>a</b>) labeled image of SA, and (<b>b</b>–<b>h</b>) classification result maps with 30 bands using UBS, E-FDPC, ISSC, ASPS_MN, DSC, MLRLFMESC, and all bands.</p> ">
Abstract
:1. Introduction
- (1)
- Considering the multi-level spectral–spatial information of hyperspectral data, self-representation-based subspace clustering, comprising multiple fully connected layers, is respectively inserted between the encoder layers of the deep stacked convolutional autoencoder and its corresponding decoder layers, respectively, to realize multi-level representation learning (MLRL), which can fully extract low-level and high-level information and obtain more informative and discriminative multi-level representations.
- (2)
- Self-supervised information is provided to further enhance the representation capability of the MLRL, and a new auxiliary task is constructed for MLRL to perform multi-level self-supervised learning (MLSL). Furthermore, a fusion module is designed to fuse the multi-level spectral–spatial information extracted by the proposed MLRL to obtain a more informative subspace representation matrix.
- (3)
- To enhance the connectivity within the same subspace, the MER method is applied to ensure that the elements within the same subspace are uniformly and densely distributed, which is beneficial for subsequent spectral clustering.
2. Proposed Method
2.1. Multi-Level Representation Learning (MLRL)
2.2. Multi-Level Self-Supervised Learning (MLSL)
2.3. Fusion Module with Maximum Entropy Regularization (MER)
2.4. Implementation Details
3. Experiments and Results
3.1. Hyperspectral Datasets
3.1.1. Indian Pines (IP) Dataset
3.1.2. Pavia University (PU) Dataset
3.1.3. Salinas (SA) Dataset
3.2. Experimental Setup
3.3. Randomness Validation by Random Selection of Training and Testing Sets
3.4. Ablation Study of the Proposed MLRLFMESC Method
3.5. Classification Results Analysis for Different BS Algorithms
3.5.1. BS Results with Different Number of Selected Bands
3.5.2. Classification Performance Analysis by Band Subsets Using Various BS Algorithms
3.6. Time Consuming for Different BS Algorithms
4. Conclusions and Discussion
- (1)
- From the results in Section 3, it can be seen that the proposed MLSL model retains good band subsets with multi-level spectral–spatial information and multi-level discriminative information representations.
- (2)
- A fusion module is employed to fuse the multi-level discriminative information representations, where the MER method is applied to enhance the objectiveness of the bands in each subspace while ensuring the uniform and dense distribution of bands in the same subspace, which was shown to be successful in the ablation study.
- (3)
- Comparable experiments indicate that the proposed MLRLFMESC approach performs better than the other five state-of-the-art BS methods on three real HSI datasets for classification performance.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. BS Results and Analysis for PU
Algorithms | UBS | E-FDPC | ISSC | ASPS_MN | DSC | MLRLFMESC | All Bands |
---|---|---|---|---|---|---|---|
OA | 89.88 ± 0.50 | 89.38 ± 0.94 | 90.88 ± 0.49 | 92.23 ± 0.36 | 92.63 ± 0.21 | 94.06 ± 0.38 | 95.71 ± 0.31 |
AA | 86.39 ± 0.71 | 85.88 ± 1.13 | 87.17 ± 0.74 | 88.33 ± 0.54 | 89.01 ± 0.43 | 90.48 ± 0.56 | 92.95 ± 0.82 |
Kappa | 84.94 ± 0.66 | 84.12 ± 1.32 | 86.41 ± 0.73 | 88.42 ± 0.57 | 88.99 ± 0.37 | 91.12 ± 0.55 | 93.57 ± 0.43 |
1 | 96.10 ± 0.56 | 95.85 ± 1.00 | 95.88 ± 0.72 | 96.16 ± 0.90 | 96.23 ± 0.81 | 96.70 ± 0.74 | 97.23 ± 0.63 |
2 | 95.16 ± 0.45 | 94.40 ± 0.36 | 96.01 ± 0.60 | 97.15 ± 0.38 | 97.19 ± 0.55 | 98.09 ± 0.55 | 98.82 ± 0.23 |
3 | 77.67 ± 4.26 | 75.45 ± 4.22 | 78.62 ± 2.46 | 80.28 ± 3.50 | 80.86 ± 2.74 | 82.85 ± 2.36 | 87.37 ± 3.99 |
4 | 82.13 ± 4.74 | 85.88 ± 2.95 | 85.77 ± 3.82 | 90.16 ± 3.63 | 90.81 ± 2.41 | 91.85 ± 3.03 | 94.10 ± 2.87 |
5 | 99.81 ± 0.53 | 99.79 ± 0.53 | 99.79 ± 0.36 | 99.82 ± 0.35 | 99.80 ± 0.70 | 99.77 ± 0.54 | 99.87 ± 0.19 |
6 | 70.20 ± 4.49 | 68.49 ± 7.46 | 73.34 ± 4.82 | 77.17 ± 3.77 | 78.36 ± 2.08 | 83.61 ± 2.06 | 88.14 ± 1.43 |
7 | 76.76 ± 4.18 | 74.60 ± 4.47 | 74.86 ± 5.72 | 73.81 ± 3.12 | 76.65 ± 2.89 | 79.09 ± 5.35 | 85.05 ± 4.85 |
8 | 79.70 ± 2.78 | 78.50 ± 1.93 | 80.32 ± 2.67 | 80.47 ± 2.02 | 81.19 ± 2.34 | 82.47 ± 1.53 | 86.00 ± 2.60 |
9 | 100.00 ± 0.00 | 100.00 ± 0.00 | 99.97 ± 0.25 | 99.92 ± 0.25 | 100.00 ± 0.00 | 99.90 ± 0.50 | 99.95 ± 0.25 |
Appendix B. BS Results and Analysis for SA
Algorithms | UBS | E-FDPC | ISSC | ASPS_MN | DSC | MLRLFMESC | All Bands |
---|---|---|---|---|---|---|---|
OA | 92.05 ± 0.85 | 92.18 ± 0.50 | 91.80 ± 0.62 | 92.12 ± 0.53 | 92.11 ± 0.56 | 92.49 ± 0.73 | 94.02 ± 0.35 |
AA | 97.10 ± 0.44 | 97.27 ± 0.32 | 97.08 ± 0.39 | 97.30 ± 0.33 | 97.21 ± 0.23 | 97.40 ± 0.32 | 97.79 ± 0.21 |
Kappa | 90.83 ± 0.98 | 90.97 ± 0.59 | 90.53 ± 0.69 | 90.90 ± 0.62 | 90.89 ± 0.64 | 91.32 ± 0.84 | 93.10 ± 0.41 |
1 | 100.00 ± 0.00 | 99.92 ± 0.12 | 99.98 ± 0.12 | 99.95 ± 0.12 | 99.97 ± 0.23 | 99.99 ± 0.12 | 99.95 ± 0.12 |
2 | 99.92 ± 0.24 | 99.92 ± 0.19 | 99.88 ± 0.34 | 99.92 ± 0.24 | 99.92 ± 0.29 | 99.95 ± 0.19 | 99.95 ± 0.24 |
3 | 99.04 ± 1.27 | 99.80 ± 0.70 | 99.68 ± 0.47 | 99.76 ± 0.57 | 99.61 ± 0.80 | 99.78 ± 0.80 | 99.87 ± 0.34 |
4 | 99.36 ± 0.99 | 99.44 ± 0.99 | 99.45 ± 0.97 | 99.43 ± 1.30 | 99.38 ± 0.83 | 99.49 ± 0.98 | 99.38 ± 1.14 |
5 | 99.01 ± 1.53 | 99.50 ± 0.86 | 99.48 ± 0.77 | 99.48 ± 1.02 | 99.46 ± 1.28 | 99.50 ± 1.11 | 99.53 ± 1.03 |
6 | 99.97 ± 0.13 | 99.96 ± 0.13 | 99.96 ± 0.09 | 99.94 ± 0.18 | 99.96 ± 0.13 | 99.96 ± 0.09 | 99.96 ± 0.13 |
7 | 99.97 ± 0.05 | 99.98 ± 0.05 | 99.99 ± 0.05 | 99.94 ± 0.21 | 99.96 ± 0.10 | 99.99 ± 0.10 | 99.97 ± 0.15 |
8 | 84.46 ± 2.67 | 84.34 ± 2.59 | 83.56 ± 1.67 | 83.95 ± 2.49 | 84.48 ± 2.40 | 84.73 ± 2.59 | 89.96 ± 1.57 |
9 | 99.67 ± 0.14 | 99.67 ± 0.19 | 99.62 ± 0.26 | 99.65 ± 0.14 | 99.68 ± 0.17 | 99.73 ± 0.19 | 99.73 ± 0.21 |
10 | 98.07 ± 1.22 | 98.71 ± 0.88 | 98.38 ± 1.48 | 98.48 ± 1.55 | 98.52 ± 1.11 | 98.58 ± 0.65 | 98.37 ± 1.29 |
11 | 98.86 ± 2.08 | 99.23 ± 0.85 | 98.56 ± 1.91 | 99.94 ± 0.22 | 99.36 ± 1.69 | 99.21 ± 1.06 | 99.62 ± 1.48 |
12 | 99.71 ± 0.70 | 99.61 ± 0.81 | 99.78 ± 0.70 | 99.64 ± 0.59 | 99.62 ± 0.83 | 99.62 ± 1.16 | 99.69 ± 0.47 |
13 | 99.67 ± 0.78 | 99.80 ± 0.51 | 99.75 ± 0.78 | 99.90 ± 0.52 | 99.75 ± 0.74 | 99.95 ± 0.26 | 99.80 ± 0.51 |
14 | 98.84 ± 2.67 | 98.73 ± 2.86 | 98.69 ± 2.12 | 98.92 ± 2.67 | 98.57 ± 3.04 | 99.03 ± 1.86 | 98.52 ± 2.23 |
15 | 77.39 ± 2.79 | 77.88 ± 1.54 | 76.95 ± 3.71 | 78.14 ± 2.22 | 77.36 ± 2.30 | 79.08 ± 2.59 | 80.80 ± 1.78 |
16 | 99.68 ± 0.87 | 99.77 ± 0.63 | 99.62 ± 0.63 | 99.75 ± 0.51 | 99.75 ± 0.64 | 99.75 ± 0.77 | 99.47 ± 1.25 |
References
- Wang, J.; Liu, J.; Cui, J.; Luan, J.; Fu, Y. Multiscale fusion network based on global weighting for hyperspectral feature selection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 2977–2991. [Google Scholar] [CrossRef]
- Yu, C.; Zhou, S.; Song, M.; Gong, B.; Zhao, E.; Chang, C.-I. Unsupervised hyperspectral band selection via hybrid graph convolutional network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5530515. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, X.; Xu, Y.; Wang, S.; Jia, T.; Hu, X.; Zhao, J.; Wei, L.; Zhang, L. Mini-UAV-borne hyperspectral remote sensing: From observation and processing to applications. IEEE Geosci. Remote Sens. Mag. 2018, 6, 46–62. [Google Scholar] [CrossRef]
- Ghamisi, P.; Yokoya, N.; Li, J.; Liao, W.; Liu, S.; Plaza, J.; Rasti, B.; Plaza, A. Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 2017, 5, 37–78. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Q.; Li, X. Hyperspectral band selection via adaptive subspace partition strategy. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 4940–4950. [Google Scholar] [CrossRef]
- Li, S.; Liu, Z.; Fang, L.; Li, Q. Block diagonal representation learning for hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5509213. [Google Scholar] [CrossRef]
- Ma, M.; Mei, S.; Li, F.; Ge, Y.; Du, Q. Spectral correlation-based diverse band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5508013. [Google Scholar] [CrossRef]
- Deng, Y.-J.; Li, H.-C.; Tan, S.-Q.; Hou, J.; Du, Q.; Plaza, A. t-Linear tensor subspace learning for robust feature extraction of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5501015. [Google Scholar] [CrossRef]
- Yu, W.; Huang, H.; Shen, G. Deep spectral–spatial feature fusion-based multiscale adaptable attention network for hyperspectral feature extraction. IEEE Trans. Instrum. Meas. 2023, 72, 5500813. [Google Scholar] [CrossRef]
- Ou, X.; Wu, M.; Tu, B.; Zhang, G.; Li, W. Multi-objective unsupervised band selection method for hyperspectral images classification. IEEE Trans. Image Process. 2023, 32, 1952–1965. [Google Scholar] [CrossRef]
- Li, S.; Peng, B.; Fang, L.; Zhang, Q.; Cheng, L.; Li, Q. Hyperspectral band selection via difference between intergroups. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5503310. [Google Scholar] [CrossRef]
- Habermann, M.; Fremont, V.; Shiguemori, E.H. Supervised band selection in hyperspectral images using single-layer neural networks. Int. J. Remote Sens. 2019, 40, 3900–3926. [Google Scholar] [CrossRef]
- Esmaeili, M.; Abbasi-Moghadam, D.; Sharifi, A.; Tariq, A.; Li, Q. Hyperspectral image band selection based on CNN embedded GA (CNNeGA). IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 1927–1950. [Google Scholar] [CrossRef]
- Sun, W.; Yang, G.; Peng, J.; Du, Q. Hyperspectral band selection using weighted kernel regularization. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 3665–3676. [Google Scholar] [CrossRef]
- Sellami, A.; Farah, I.R. A spatial hypergraph based semi-supervised band selection method for hyperspectral imagery semantic interpretation. Int. J. Comput. Inf. Eng. 2016, 10, 1839–1846. [Google Scholar]
- He, F.; Nie, F.; Wang, R.; Jia, W.; Zhang, F.; Li, X. Semisupervised band selection with graph optimization for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10298–10311. [Google Scholar] [CrossRef]
- Cao, X.; Wei, C.; Ge, Y.; Feng, J.; Zhao, J.; Jiao, L. Semi-supervised hyperspectral band selection based on dynamic classifier selection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 1289–1298. [Google Scholar] [CrossRef]
- Chein, I.C.; Su, W. Constrained band selection for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1575–1585. [Google Scholar] [CrossRef]
- Jia, S.; Tang, G.; Zhu, J.; Li, Q. A novel ranking-based clustering approach for hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 88–102. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, A.; Sun, G.; Ren, J.; Jia, X.; Pan, Z.; Ma, H. A novel band selection and spatial noise reduction method for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5535713. [Google Scholar] [CrossRef]
- Ji, H.; Zuo, Z.; Han, Q.L. A divisive hierarchical clustering approach to hyperspectral band selection. IEEE Trans. Instrum. Meas. 2022, 71, 5014312. [Google Scholar] [CrossRef]
- Sun, W.; Tian, L.; Xu, Y.; Zhang, D.; Du, Q. Fast and robust self-representation method for hyperspectral band selection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 5087–5098. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Jiang, X.; Zhou, Y. Robust dual graph self-representation for unsupervised hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5538513. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Jiang, X.; Zhou, Y. Marginalized graph self-representation for unsupervised hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5516712. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, L.; Du, B.; Li, W.; Lai, Y.M. Band selection using improved sparse subspace clustering for hyperspectral imagery classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2784–2797. [Google Scholar] [CrossRef]
- Zhai, H.; Zhang, H.; Zhang, L.; Li, P. Laplacian-regularized low-rank subspace clustering for hyperspectral image band selection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1723–1740. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, H.; Pižurica, A. A structural subspace clustering approach for hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5509515. [Google Scholar] [CrossRef]
- Sun, H.; Ren, J.; Zhao, H.; Yuen, P.; Tschannerl, J. Novel gumbel-softmax trick enabled concrete autoencoder with entropy constraints for unsupervised hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5506413. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Zhu, Y.; Xu, F.; Fu, X. A global-local spectral weight network based on attention for hyperspectral band selection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6004905. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, W.; Li, Y.; Lei, J.; Du, Q.; Yang, G. Rank-aware generative adversarial network for hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5521812. [Google Scholar] [CrossRef]
- Feng, J.; Bai, G.; Li, D.; Zhang, X.; Shang, R.; Jiao, L. MR-selection: A meta-reinforcement learning approach for zero-shot hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5500320. [Google Scholar] [CrossRef]
- Zeng, M.; Cai, Y.; Cai, Z.; Liu, X.; Hu, P.; Ku, J. Unsupervised hyperspectral image band selection based on deep subspace clustering. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1889–1893. [Google Scholar] [CrossRef]
- Das, S.; Pratiher, S.; Kyal, C.; Ghamisi, P. Sparsity regularized deep subspace clustering for multicriterion-based hyperspectral band selection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 4264–4278. [Google Scholar] [CrossRef]
- Dou, Z.; Gao, K.; Zhang, X.; Wang, H.; Han, L. Band selection of hyperspectral images using attention-based autoencoders. IEEE Geosci. Remote Sens. Lett. 2021, 18, 147–151. [Google Scholar] [CrossRef]
- Goel, A.; Majumdar, A. K-means embedded deep transform learning for hyperspectral band selection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6008705. [Google Scholar] [CrossRef]
- Kang, X.D.; Li, S.T.; Benediktsson, J.A. Spectral—Spatial Hyperspectral Image Classification with Edge-Preserving Filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2666–2677. [Google Scholar] [CrossRef]
Descriptions | IP | PU | SA |
---|---|---|---|
Size | 145 × 145 | 610 × 340 | 512 × 227 |
Bands | 200 | 103 | 204 |
Classes | 16 | 9 | 16 |
Samples | 10,249 | 42,776 | 54,129 |
Resolution | 20 m | 1.3 m | 3.7 m |
Sensors | AVIRIS | ROSIS | AVIRIS |
Wavelength | 0.4–2.5 μm | 0.43–0.86 μm | 0.36–2.5 μm |
Ablation Components | Number of Selected Bands (OA Values) | ||||||
---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | |||
√ | × | × | 70.67 ± 1.43 | 79.16 ± 1.28 | 81.20 ± 0.65 | 82.98 ± 0.42 | 83.88 ± 0.52 |
√ | √ | × | 73.02 ± 1.40 | 81.19 ± 1.64 | 82.77 ± 1.95 | 84.41 ± 2.54 | 85.09 ± 1.33 |
√ | × | √ | 73.16 ± 1.48 | 80.94 ± 0.93 | 83.44 ± 0.08 | 84.72 ± 0.63 | 84.95 ± 0.86 |
√ | √ | √ | 74.15 ± 1.59 | 82.90 ± 1.58 | 85.05 ± 1.25 | 85.77 ± 1.61 | 86.00 ± 1.79 |
Algorithms | UBS | E-FDPC | ISSC | ASPS_MN | DSC | MLRLFMESC | All Bands |
---|---|---|---|---|---|---|---|
OA | 82.98 ± 1.37 | 83.85 ± 1.53 | 81.52 ± 1.15 | 83.39 ± 1.27 | 83.72 ± 1.51 | 86.95 ± 1.09 | 88.43 ± 1.24 |
AA | 81.86 ± 2.67 | 83.48 ± 1.73 | 81.55 ± 3.80 | 82.65 ± 2.18 | 82.11 ± 3.97 | 86.43 ± 2.87 | 86.69 ± 3.23 |
Kappa | 80.06 ± 1.58 | 81.09 ± 1.67 | 78.35 ± 1.36 | 80.53 ± 1.49 | 80.91 ± 1.80 | 84.68 ± 1.27 | 86.42 ± 1.47 |
1 | 76.30 ± 25.74 | 85.47 ± 15.58 | 85.26 ± 34.62 | 81.20 ± 24.44 | 78.16 ± 36.84 | 86.28 ± 23.90 | 91.89 ± 8.11 |
2 | 76.49 ± 4.96 | 77.40 ± 5.65 | 76.78 ± 4.17 | 75.85 ± 3.22 | 78.58 ± 3.31 | 82.45 ± 3.23 | 84.83 ± 1.95 |
3 | 73.75 ± 7.15 | 77.19 ± 6.32 | 71.97 ± 4.14 | 75.46 ± 7.01 | 71.73 ± 10.16 | 80.19 ± 4.80 | 83.54 ± 2.35 |
4 | 61.55 ± 10.41 | 61.71 ± 13.52 | 60.35 ± 7.00 | 60.51 ± 8.64 | 56.46 ± 10.96 | 68.03 ± 13.12 | 66.93 ± 3.82 |
5 | 79.61 ± 8.40 | 87.84 ± 5.70 | 81.81 ± 8.37 | 86.96 ± 6.40 | 88.57 ± 7.68 | 89.94 ± 7.35 | 92.48 ± 3.06 |
6 | 95.61 ± 3.33 | 93.65 ± 2.78 | 91.36 ± 5.34 | 94.05 ± 2.75 | 95.58 ± 2.79 | 96.47 ± 3.31 | 96.10 ± 1.42 |
7 | 92.80 ± 18.75 | 86.72 ± 27.27 | 93.18 ± 20.00 | 93.27 ± 14.29 | 87.56 ± 25.00 | 93.24 ± 14.29 | 87.73 ± 5.13 |
8 | 96.98 ± 2.64 | 98.29 ± 2.92 | 94.76 ± 3.51 | 97.42 ± 1.77 | 97.43 ± 3.95 | 98.53 ± 2.12 | 97.19 ± 1.83 |
9 | 63.60 ± 38.96 | 77.04 ± 34.44 | 76.29 ± 50.00 | 63.45 ± 40.00 | 67.75 ± 44.64 | 75.43 ± 34.34 | 71.39 ± 18.61 |
10 | 73.09 ± 4.83 | 73.26 ± 6.68 | 69.52 ± 2.84 | 74.68 ± 2.33 | 74.67 ± 4.87 | 77.00 ± 4.61 | 80.28 ± 1.91 |
11 | 86.69 ± 3.09 | 87.79 ± 4.41 | 85.33 ± 2.83 | 86.28 ± 2.25 | 87.46 ± 3.62 | 89.38 ± 3.08 | 91.93 ± 1.18 |
12 | 78.99 ± 9.31 | 78.34 ± 8.03 | 75.92 ± 11.73 | 81.29 ± 9.21 | 75.12 ± 7.63 | 83.69 ± 9.58 | 81.97 ± 3.31 |
13 | 98.10 ± 3.66 | 96.52 ± 6.93 | 94.52 ± 5.75 | 95.62 ± 4.92 | 96.97 ± 8.07 | 97.91 ± 4.49 | 97.45 ± 2.55 |
14 | 96.86 ± 1.77 | 96.15 ± 1.83 | 96.48 ± 1.64 | 96.43 ± 1.72 | 96.89 ± 1.75 | 97.11 ± 1.33 | 97.50 ± 0.94 |
15 | 63.32 ± 18.33 | 63.06 ± 15.95 | 57.77 ± 10.63 | 64.37 ± 16.38 | 66.52 ± 13.70 | 71.87 ± 10.09 | 68.07 ± 6.64 |
16 | 95.95 ± 7.69 | 95.27 ± 5.25 | 93.49 ± 9.20 | 95.53 ± 12.20 | 94.26 ± 12.20 | 95.34 ± 9.30 | 97.77 ± 2.23 |
Algorithms | MLRLFMESC | DSC | ASPS_MN | ISSC | E-FDPC | UBS |
---|---|---|---|---|---|---|
Time (s) | 26.07 | 39.81 | 0.54 | 0.49 | 1.54 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ma, H.; Yang, Y.; Zhao, E.; Song, M.; Yu, C. Self-Supervised Deep Multi-Level Representation Learning Fusion-Based Maximum Entropy Subspace Clustering for Hyperspectral Band Selection. Remote Sens. 2024, 16, 224. https://doi.org/10.3390/rs16020224
Wang Y, Ma H, Yang Y, Zhao E, Song M, Yu C. Self-Supervised Deep Multi-Level Representation Learning Fusion-Based Maximum Entropy Subspace Clustering for Hyperspectral Band Selection. Remote Sensing. 2024; 16(2):224. https://doi.org/10.3390/rs16020224
Chicago/Turabian StyleWang, Yulei, Haipeng Ma, Yuchao Yang, Enyu Zhao, Meiping Song, and Chunyan Yu. 2024. "Self-Supervised Deep Multi-Level Representation Learning Fusion-Based Maximum Entropy Subspace Clustering for Hyperspectral Band Selection" Remote Sensing 16, no. 2: 224. https://doi.org/10.3390/rs16020224
APA StyleWang, Y., Ma, H., Yang, Y., Zhao, E., Song, M., & Yu, C. (2024). Self-Supervised Deep Multi-Level Representation Learning Fusion-Based Maximum Entropy Subspace Clustering for Hyperspectral Band Selection. Remote Sensing, 16(2), 224. https://doi.org/10.3390/rs16020224