Temporal Vine Water Status Modeling Through Machine Learning Ensemble Technique and Sentinel-2 Multispectral Images Under Semi-Arid Conditions
<p>Location of the experimental vineyard in Italy (<b>a</b>), Sentinel-2 image of the plots where stem water potential values were acquired in 2019 and 2020 within the vineyard. Per each plot the reflectance value of the pixels was averaged (<b>b</b>), and Google Earth image of the vineyard (<b>c</b>). Google Earth Pro© and Sentinel-2 images©.</p> "> Figure 2
<p>Workflow of the methodology used for predicting vine stem water potential (SWP) using Sentinel-2 data.</p> "> Figure 3
<p>Monthly trend of average temperature, amount of rainfall, and reference evapotranspiration calculated following the equation proposed by Hargreaves–Samani [<a href="#B44-remotesensing-16-04784" class="html-bibr">44</a>] for the two years of the experiment around the area of the vineyard.</p> "> Figure 4
<p>Boxplot of stem water potential during the different phenological phases in the two years of the experiment (according to Lorenz et al. [<a href="#B45-remotesensing-16-04784" class="html-bibr">45</a>]); whiskers indicate maximum and minimum values, and the horizontal line within the boxplot represents the median.</p> "> Figure 5
<p>Scatterplot of the predicted and the observed values (validation dataset) of stem water potential (ΨSTEM; MPa).</p> "> Figure 6
<p>Optimization of random forest parameters for the models with S-2 bands (<b>a</b>) and the calculated VIs as predictors (<b>b</b>) (min node size; mtry and splitting rule).</p> "> Figure 7
<p>Results of permutation procedure to assess variable importance of the models with S-2 bands (<b>a</b>) and the calculated VIs (<b>b</b>) as predictors.</p> "> Figure 8
<p>Daily rainfall in the area of the experiment and stem water potential in 2019 (<b>a</b>) and 2020 (<b>b</b>).</p> "> Figure 9
<p>Predictive maps of the vineyard stem water potential (ΨSTEM) produced by applying the RF-based model trained with vegetation indices as predictors to Sentinel-2 images. Maps are referred to 18 August 2019 (<b>a</b>) and 20 August 2019 (<b>b</b>). The 95% confidence intervals for ΨSTEM predictions ranged from −1.77 to −0.19 MPa; the plot of the 95% confidence interval for the RF model predictions (test set) is reported in <a href="#app1-remotesensing-16-04784" class="html-app">Supplementary Material</a> (<a href="#app1-remotesensing-16-04784" class="html-app">Figure S2</a>).</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Site and Vineyard Description, Soil, and Meteorological Data
2.2. Plant Water Status Determination
2.3. Sentinel-2 Image Processing
2.4. Statistical and Machine Learning Analysis
3. Results
3.1. Agrometeorological Data and Vine Water Status
3.2. Models Evaluation
3.3. Remote Sensing Vine Water Status Modeling and Predictive Maps
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. Climate Change 2023: Synthesis Report; Lee, H., Romero, J., Eds.; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Gomez-Zavaglia, A.; Mejuto, J.C.; Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 2020, 134, 109256. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, C.; Destrac-Irvine, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. Oeno One 2017, 51, 147–154. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; De Rességuier, L.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Guilpart, N.; Metay, A.; Gary, C. Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. Eur. J. Agron. 2014, 54, 9–20. [Google Scholar] [CrossRef]
- Irvin Ojeda, H. Influence of pre-and post-veraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. Am. J. Enol. Vitic. 2014, 53, 261–267. [Google Scholar]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.C.; Jha, S.K. Remote sensing and machine learning for crop water stress determination in various crops: A critical review. Precis. Agric. 2020, 21, 1121–1155. [Google Scholar] [CrossRef]
- Garofalo, S.P.; Intrigliolo, D.S.; Camposeo, S.; Alhajj Ali, S.; Tedone, L.; Lopriore, G.; De Mastro, G.; Vivaldi, G.A. Agronomic Responses of Grapevines to an Irrigation Scheduling Approach Based on Continuous Monitoring of Soil Water Content. Agronomy 2023, 13, 2821. [Google Scholar] [CrossRef]
- Vuolo, F.; Essl, L.; Atzberger, C. Costs and benefits of satellite-based tools for irrigation management. Front. Environ. Sci. 2015, 3, 52. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Vivaldi, G.A.; Garofalo, S.P.; Costanza, L.; Camposeo, S. Land Suitability Analysis of Six Fruit Tree Species Immune/Resistant to Xylella fastidiosa as Alternative Crops in Infected Olive-Growing Areas. Agronomy 2023, 13, 547. [Google Scholar] [CrossRef]
- Costanza, L.; Maldera, F.; Garofalo, S.P.; Vivaldi, G.A.; Camposeo, S. Ecological optima show the potential diffusion of minor tree crops in Xylella fastidiosa subsp. pauca-infected areas through a GIS-based approach. Front. Agron. 2024, 6, 1421627. [Google Scholar] [CrossRef]
- Campi, P.; Modugno, A.F.; De Carolis, G.; Pedrero Salcedo, F.; Lorente, B.; Garofalo, S.P. A Machine Learning Approach to Monitor the Physiological and Water Status of an Irrigated Peach Orchard under Semi-Arid Conditions by Using Multispectral Satellite Data. Water 2024, 16, 2224. [Google Scholar] [CrossRef]
- Helman, D.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Alchanatis, V.; Peeters, A.; Cohen, Y. Using time series of high-resolution planet satellite images to monitor grapevine stem water potential in commercial vineyards. Remote Sens. 2018, 10, 1615. [Google Scholar] [CrossRef]
- Tang, Z.; Jin, Y.; Alsina, M.M.; McElrone, A.J.; Kustas, W.P. Vine water status mapping with multispectral UAV imagery and machine learning. Irrig. Sci. 2022, 40, 715–730. [Google Scholar] [CrossRef]
- Laroche-Pinel, E.; Duthoit, S.; Albughdadi, M.; Costard, A.D.; Rousseau, J.; Chéret, V.; Clenet, H. Towards vine water status monitoring on a large scale using sentinel-2 images. Remote Sens. 2021, 13, 1837. [Google Scholar] [CrossRef]
- López-Pérez, E.; Sanchis-Ibor, C.; Jiménez-Bello M, Á.; Pulido-Velazquez, M. Mapping of irrigated vineyard areas through the use of machine learning techniques and remote sensing. Agric. Water Manag. 2024, 302, 108988. [Google Scholar] [CrossRef]
- Sozzi, M.; Kayad, A.; Marinello, F.; Taylor, J.; Tisseyre, B. Comparing vineyard imagery acquired from Sentinel-2 and Unmanned Aerial Vehicle (UAV) platform. OENO One 2020, 54, 273–281. [Google Scholar] [CrossRef]
- Bellvert, J.; Zarco-Tejada, P.J.; Girona, J.; Fereres, E. Mapping crop water stress index in a ‘Pinot-noir’ vineyard: Comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis. Agric. 2014, 15, 361–376. [Google Scholar] [CrossRef]
- Cilli, R.; Elia, M.; D’Este, M.; Giannico, V.; Amoroso, N.; Lombardi, A.; Pantaleo, E.; Monaco, A.; Sanesi, G.; Tangaro, S.; et al. Explainable artificial intelligence (XAI) detects wildfire occurrence in the Mediterranean countries of Southern Europe. Sci. Rep. 2022, 12, 16349. [Google Scholar] [CrossRef]
- Climate-Data.Org. 2024. Available online: https://en.climate-data.org/ (accessed on 15 September 2024).
- Protezione Civile. Sezione Protezione Civile Regione Puglia. 2024. Available online: https://pr2127.regione.puglia.it/it/web/protezionecivile/bollettini-meteorologici-regionali-mensili (accessed on 15 September 2024).
- Copernicus.Eu. 2023. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus (accessed on 11 June 2024).
- Available online: https://step.esa.int/main/download/snap-download/ (accessed on 11 June 2024).
- Rouse, W.; Haas, R.H.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; Third ERTS Symposium (NASA SP-351); NASA: Washington, DC, USA, 1974; Volume 1. [Google Scholar]
- Alexandridis, T.K.; Moshou, D.; Pantazi, X.E.; Tamouridou, A.A.; Kozhukh, D.; Castef, F.; Lagopodi, A.; Zartaloudis, Z.; Mourelatos, S.; de Santos, F.J.N. Olive Trees Stress Detection Using Sentinel-2 Images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Cogato, A.; Pagay, V.; Marinello, F.; Meggio, F.; Grace, P.; Migliorati, M.D.A. Assessing the feasibility of using sentinel-2 imagery to quantify the impact of heatwaves on irrigated vineyards. Remote Sens. 2019, 11, 2869. [Google Scholar] [CrossRef]
- Lin, Y.; Zhu, Z.; Guo, W.; Sun, Y.; Yang, X.; Kovalskyy, V. Continuous monitoring of cotton stem water potential using Sentinel-2 imagery. Remote Sens. 2020, 12, 1176. [Google Scholar] [CrossRef]
- Laroche-Pinel, E.; Albughdadi, M.; Duthoit, S.; Chéret, V.; Rousseau, J.; Clenet, H. Understanding vine hyperspectral signature through different irrigation plans: A first step to monitor vineyard water status. Remote Sens. 2021, 13, 536. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; van der Fels-Klerx, H.J. Regional prediction of multi-mycotoxin contamination of wheat in Europe using machine learning. Food Res. Int. 2022, 159, 111588. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression Shrinkage and Selection via The Lasso: A Retrospective. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 273–282. [Google Scholar] [CrossRef]
- Venkatesh, K.A.; Mishra, D.; Manimozhi, T. Model selection and regularization. In Statistical Modeling in Machine Learning; Academic Press: Cambridge, MA, USA, 2023; pp. 159–178. [Google Scholar]
- Didari, S.; Talebnejad, R.; Bahrami, M.; Mahmoudi, M.R. Dryland farming wheat yield prediction using the Lasso regression model and meteorological variables in dry and semi-dry region. Stoch. Environ. Res. Risk Assess. 2023, 37, 3967–3985. [Google Scholar] [CrossRef]
- Guo, Y.; He, J.; Zhang, H.; Zeng, K.; Wang, L.; Chen, Z.; Zhang, Y. Predictive modeling of nitrogen content in winter wheat plants based on LASSO feature screening and UAV imagery. In Proceedings of the Fourth International Conference on Sensors and Information Technology (ICSI 2024), Xiamen, China, 5–7 January 2024; SPIE: St Bellingham, WA, USA, 2024; Volume 13107, pp. 345–354. [Google Scholar]
- Marcillo, G.S.; Mirsky, S.; Poncet, A.; Reberg-Horton, C.; Timlin, D.; Schomberg, H.; Ramos, P. Using statistical learning algorithms to predict cover crop biomass and cover crop nitrogen content. Agron. J. 2020, 112, 4898–4913. [Google Scholar] [CrossRef]
- Devi, M.; Malik, D.P.; Mehala, V.; Mishra, P. Measuring Variability and Factors Affecting the Agricultural Production: A Ridge Regression Approach. Ann. Data Sci. 2023, 10, 513–526. [Google Scholar] [CrossRef]
- Lei, L.; Zheng, Q.; Dong, L.; Mo, Y.; Wang, C.; Zhang, J.; Liang, B. Improving the frequency resolution of distribution of relaxation times by integrating elastic net regularization and quantum particle swarm optimization. Int. J. Hydrogren Energy 2024, 84, 457–467. [Google Scholar] [CrossRef]
- Garofalo, S.P.; Giannico, V.; Lorente, B.; Vivaldi, G.A.; Jose, A. Predicting Carob Tree Physiological Parameters under Different Irrigation Systems Using Random Forest and Planet Satellite Images. Front. Plant Sci. 2024, 15, 1302435. [Google Scholar] [CrossRef]
- Wright, M.N.; Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef]
- Racine, J.S. RStudio: A platform-independent IDE for R and Sweave. J. Appl. Econom. 2012, 27, 167–172. [Google Scholar] [CrossRef]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Janitza, S.; Strobl, C.; Boulesteix, A.L. An AUC-based permutation variable importance measure for random forests. BMC Bioinform. 2013, 14, 119. [Google Scholar] [CrossRef]
- Acharjee, A.; Larkman, J.; Xu, Y.; Cardoso, V.R.; Gkoutos, G.V. A random forest based biomarker discovery and power analysis framework for diagnostics research. BMC Med. Genom. 2020, 13, 178. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth Stages of the Grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- Khanal, S.; Kc, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote sensing in agriculture—Accomplishments, limitations, and opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Mzid, N.; Boussadia, O.; Albrizio, R.; Stellacci, A.M.; Braham, M.; Todorovic, M. Salinity Properties Retrieval from Sentinel-2 Satellite Data and Machine Learning Algorithms. Agronomy 2023, 13, 716. [Google Scholar] [CrossRef]
- Sellami, M.H.; Albrizio, R.; Čolović, M.; Hamze, M.; Cantore, V.; Todorovic, M.; Piscitelli, L.; Stellacci, A.M. Selection of Hyperspectral Vegetation Indices for Monitoring Yield and Physiological Response in Sweet Maize under Different Water and Nitrogen Availability. Agronomy 2022, 12, 489. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; Ferraz, R.P.D.; Verón, S.R. Remote sensing and cropping practices: A review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Dehghanisanij, H.; Emami, H.; Emami, S.; Rezaverdinejad, V. A hybrid machine learning approach for estimating the water-use efficiency and yield in agriculture. Sci. Rep. 2022, 12, 6728. [Google Scholar] [CrossRef]
- Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.-M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L. Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 574–583. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Elavarasan, D.; Vincent, P.D.R. A reinforced random forest model for enhanced crop yield prediction by integrating agrarian parameters. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 10009–10022. [Google Scholar] [CrossRef]
- Mpakairi, K.S.; Dube, T.; Sibanda, M.; Mutanga, O. Fine-scale characterization of irrigated and rainfed croplands at national scale using multi-source data, random forest, and deep learning algorithms. ISPRS J. Photogramm. Remote Sens. 2023, 204, 117–130. [Google Scholar] [CrossRef]
- Lee, H.; Wang, J.; Leblon, B. Using linear regression, random forests, and support vector machine with unmanned aerial vehicle multispectral images to predict canopy nitrogen weight in corn. Remote Sens. 2020, 12, 2071. [Google Scholar] [CrossRef]
- López-Serrano, P.M.; López-Sánchez, C.A.; Álvarez-González, J.G.; García-Gutiérrez, J. A Comparison of Machine Learning Techniques Applied to Landsat-5 TM Spectral Data for Biomass Estimation. Can. J. Remote Sens. 2016, 42, 690–705. [Google Scholar] [CrossRef]
- Ahmed, O.S.; Franklin, S.E.; Wulder, M.A.; White, J.C. Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm. ISPRS J. Photogramm. Remote Sens. 2015, 101, 89–101. [Google Scholar] [CrossRef]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Mohammed, G.H.; Noland, T.L. Chlorophyll Fluorescence Effects on Vegetation Apparent Reflectance. I. Leaf-Level Measurements and Model Simulation. Remote Sens. Environ. 2000, 74, 582–595. [Google Scholar] [CrossRef]
- Teixeira, A.H.d.C.; de Miranda, F.R.; Leivas, J.F.; Pacheco, E.P.; Garçon, E.A.M. Water productivity assessments for dwarf coconut by using Landsat 8 images and agrometeorological data. ISPRS J. Photogramm. Remote Sens. 2019, 155, 150–158. [Google Scholar] [CrossRef]
- Van Beek, J.; Tits, L.; Somers, B.; Coppin, P. Stem Water Potential Monitoring in Pear Orchards through worldview-2 Multispectral Imagery. Remote Sens. 2013, 5, 6647–6666. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Patakas, A.; Noitsakis, B.; Chouzouri, A. Optimization of irrigation water use in grapevines using the relationship between transpiration and plant water status. Agric. Ecosyst. Environ. 2005, 106, 253–259. [Google Scholar] [CrossRef]
- Jahangir, M.H.; Arast, M. Remote sensing products for predicting actual evapotranspiration and water stress footprints under different land cover. J. Clean. Prod. 2020, 266, 121818. [Google Scholar] [CrossRef]
- Girona, J.; Mata, M.; Del Campo, J.; Arbonés, A.; Bartra, E.; Marsal, J. The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrig. Sci. 2006, 24, 115–127. [Google Scholar] [CrossRef]
- Nadler, A.; Raveh, E.; Yermiyahu, U.; Green, S.R. Evaluation of TDR Use to Monitor Water Content in Stem of Lemon Trees and Soil and Their Response to Water Stress. Soil Sci. Soc. Am. J. 2003, 67, 437–448. [Google Scholar] [CrossRef]
- Oogathoo, S.; Houle, D.; Duchesne, L.; Kneeshaw, D. Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions, even during a short-term drought. Agric. For. Meteorol. 2020, 291, 108063. [Google Scholar] [CrossRef]
- Suter, B.; Triolo, R.; Pernet, D.; Dai, Z.; Van Leeuwen, C. Modeling Stem Water Potential by Separating the Effects of Soil Water Availability and Climatic Conditions on Water Status in Grapevine (Vitis vinifera L.). Front. Plant Sci. 2019, 10, 1485. [Google Scholar] [CrossRef]
VIs | Equation | Reference | |
---|---|---|---|
Leaf Area Index | LAI | SNAP—biophysical processor | [24] |
Fraction Vegetation Cover | FVC | SNAP—biophysical processor | |
Normalized Difference Vegetation Index | NDVI | (B8 − B4)/(B8 + B4) | [25] |
Enhanced Vegetation Index | EVI | 2.5 ∗ (B8 − B4)/(B8 + (6 ∗ B4) − (7.5 ∗ B2) + 1) | [14] |
Green Normalized Difference Vegetation Index | GNDVI | (B8 − B3)/(B8 + B3) | |
Soil Adjusted Vegetation Index | SAVI | (1 + 0.5) ∗ (B8 − B4)/(B8 + B4 + 0.5) | |
Normalized Moisture Stress Index | NMSI1 | (B8 − B11)/(B8 + B11) | |
Normalized Moisture Stress Index | NMSI2 | (B8 − B12)/(B8 + B12) | |
CRI700 | CRI2 | (1/B2) − (1/B5) | [26] |
Chlorophyll Green | CHLgreen | (B7/B3)−1 | [27] |
Chlorophyll Red-Edge | CHLrededge | (B7/B5)−1 | |
Linear Red-Edge Index | LREI | 700 + 40 ∗ (((B4 + B7)/2) − B5)/(B6 − B5) | |
Modified Chlorophyll absorption in reflectance | MCARI | ((B5 − B4) − 0.2 ∗ (B5 − B3)) ∗ (B5/B4) | |
Modified Simple Ratio | MSR | (B8/B4 − 1)/((B8/B4)1/2 + 1) | |
Ratio Difference Vegetation Index | RDVI | (B8 − B4)/((B8 + B4)0.5) | |
Atmospherically Resistant Vegetation Index | ARVI | (B8A − B04 − 0.106 ∗ (B04 − B02))/(B8A + B04 − 0.106 ∗ (B04 − B02)) | [28] |
Modified Soil Adjusted Vegetation Index | MSAVI | MSAVI = (2 ∗ B08 + 1 – sqrt((2 ∗ B08 + 1)2 – 8 ∗ (B08 – B04))) / 2 | |
Infrared Percentage Vegetation Index | IPVI | B8/(B8 + B4) | |
Weighted Difference Vegetation Index | WDVI | B8 − 0.5 ∗ B4 | |
Transformed NDVI | TNDVI | ((B8 − B4)/(B8 + B4)) + 0.5)0.5 | |
Simple Ratio 1 | SR1 | B8/B11 | |
Simple Ratio 2 | SR2 | B8/B12 | |
Normalized Difference Red-Edge | NDRE 1 | (B8 − B5)/(B8 + B5) | [29] |
Normalized Difference Red-Edge | NDRE 2 | (B8 − B6)/(B8 + B6) | |
Inverted Red-Edge Chlorophyll Index | IRECI | (B8 − B4)/(B5/B6) | |
Red-Edge Chlorophyll Absorption Index | RECAI | (B8 − B6)/B3 ∗ (B6/B3) | |
Red-Edge Position | REP | ((B4 + B8)/2) − B5)/(B6 − B5) |
Model | Predictors | Calibration | Testing | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | nRMSE | MAE | R2 | RMSE | nRMSE | MAE | ||
Lasso | VIs | 0.52 | 0.19 | 12.7% | 0.15 | 0.46 | 0.21 | 17.2% | 0.16 |
Spectral Bands | 0.45 | 0.21 | 13.7% | 0.16 | 0.38 | 0.23 | 18.4% | 0.17 | |
Ridge | VIs | 0.50 | 0.20 | 13% | 0.15 | 0.45 | 0.21 | 17.3% | 0.16 |
Spectral Bands | 0.41 | 0.22 | 14.2% | 0.17 | 0.39 | 0.23 | 18.2% | 0.18 | |
EN | VIs | 0.57 | 0.18 | 12.1% | 0.14 | 0.49 | 0.20 | 16.7% | 0.16 |
Spectral Bands | 0.45 | 0.21 | 13.7% | 0.16 | 0.37 | 0.23 | 18.5% | 0.17 | |
RF | VIs | 0.95 | 0.07 | 4.3% | 0.50 | 0.72 | 0.15 | 12.4% | 0.12 |
Spectral Bands | 0.91 | 0.08 | 5.5% | 0.60 | 0.58 | 0.19 | 15.1% | 0.14 | |
LM | VIs | 0.63 | 0.18 | 11.3% | 0.14 | 0.49 | 0.21 | 16.8% | 0.16 |
Spectral Bands | 0.47 | 0.21 | 13.5% | 0.15 | 0.35 | 0.24 | 18.9% | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannico, V.; Garofalo, S.P.; Brillante, L.; Sciusco, P.; Elia, M.; Lopriore, G.; Camposeo, S.; Lafortezza, R.; Sanesi, G.; Vivaldi, G.A. Temporal Vine Water Status Modeling Through Machine Learning Ensemble Technique and Sentinel-2 Multispectral Images Under Semi-Arid Conditions. Remote Sens. 2024, 16, 4784. https://doi.org/10.3390/rs16244784
Giannico V, Garofalo SP, Brillante L, Sciusco P, Elia M, Lopriore G, Camposeo S, Lafortezza R, Sanesi G, Vivaldi GA. Temporal Vine Water Status Modeling Through Machine Learning Ensemble Technique and Sentinel-2 Multispectral Images Under Semi-Arid Conditions. Remote Sensing. 2024; 16(24):4784. https://doi.org/10.3390/rs16244784
Chicago/Turabian StyleGiannico, Vincenzo, Simone Pietro Garofalo, Luca Brillante, Pietro Sciusco, Mario Elia, Giuseppe Lopriore, Salvatore Camposeo, Raffaele Lafortezza, Giovanni Sanesi, and Gaetano Alessandro Vivaldi. 2024. "Temporal Vine Water Status Modeling Through Machine Learning Ensemble Technique and Sentinel-2 Multispectral Images Under Semi-Arid Conditions" Remote Sensing 16, no. 24: 4784. https://doi.org/10.3390/rs16244784
APA StyleGiannico, V., Garofalo, S. P., Brillante, L., Sciusco, P., Elia, M., Lopriore, G., Camposeo, S., Lafortezza, R., Sanesi, G., & Vivaldi, G. A. (2024). Temporal Vine Water Status Modeling Through Machine Learning Ensemble Technique and Sentinel-2 Multispectral Images Under Semi-Arid Conditions. Remote Sensing, 16(24), 4784. https://doi.org/10.3390/rs16244784