Piping Plover Habitat Changes and Nesting Responses Following Post-Tropical Cyclone Fiona on Prince Edward Island, Canada
<p>Map of all nesting sites on PEI with breeding activity since 2011.</p> "> Figure 2
<p>Classified landcover pre-storm (A) and 1-year post-storm (B) and total change in open sand area (C) over critical barrier island habitats for PIPL on PEI. Counts of breeding pairs (BP) and fledglings (FL) from each site indicated by light and dark blue bars, respectively. Black circle on the island map indicates nesting site with no data (ND).</p> "> Figure 3
<p>Classified landcover pre-storm (A) and post-storm (B) and total change in open sand area (C) over critical sandspit/bar habitats for PIPL on PEI. Counts of breeding pairs (BP) and fledglings (FL) from each site indicated by light and dark blue bars, respectively. Black circles on the island map indicate nesting sites with no data (ND). Additional classified sandspit/bar nesting sites are displayed in <a href="#app1-remotesensing-16-04764" class="html-app">Figure S3</a>.</p> "> Figure 4
<p>Classified landcover pre-storm (A) and 1-year post-storm (B) and total change in open sand area (C) over critical mainland beach habitats for PIPL on PEI. Counts of breeding pairs (BP) and fledglings (FL) from each site indicated by light and dark blue bars, respectively. Black circles on the island map indicate nesting sites with no data (ND).</p> "> Figure 5
<p>Nest locations and outcomes during three breeding seasons preceding (top three panels) and the initial season following (fourth panel) PTC Fiona over Conway Sandhills, PEI. Classified change in dry and wet sand area after one-year post-storm depicted in bottom panel, with colours representing change classes (in <a href="#remotesensing-16-04764-f002" class="html-fig">Figure 2</a>, <a href="#remotesensing-16-04764-f003" class="html-fig">Figure 3</a> and <a href="#remotesensing-16-04764-f004" class="html-fig">Figure 4</a>).</p> "> Figure 6
<p>Fledging rate across common nesting sites with at least three years of nesting attempts between 2020 and 2023. Horizontal line at 1.65 fledglings/pair indicates ECCC productivity target for the Eastern Canadian recovery unit. Vertical line distinguishes between pre- and post-storm breeding seasons.</p> "> Figure 7
<p>Model-averaged coefficient estimates (log-odds scale) from the top-ranked logistic regression GLMs of binary hatch success (<b>left</b>) and data summaries of hatch outcomes across habitat metrics from 2020–2023 on PEI (<b>right</b>). Number in white indicates nest counts in each respective category; error bars in GLM output display 95% confidence intervals (SE * 1.96). D2 ACCESS is represented as a categorical and continuous variable to convey complimentary insights.</p> "> Figure 8
<p>Summaries of binary hatch success by year across habitat measures on PEI from 2020–2023. Number in white indicates the number of nests in each respective category. D2 ACCESS is represented as a categorical and continuous variable to convey complimentary insights.</p> "> Figure 9
<p>Model averaged coefficient estimates (log-odds scale) from the top-ranked logistic regression GLMs of flooding and predation occurrences (<b>left</b>) and data summaries of nest outcomes across habitat metrics from 2020–2023 on PEI (<b>right</b>). Error bars in GLM output display 95% confidence intervals (SE * 1.96). D2 ACCESS is represented as a categorical and continuous variable to convey complimentary insights.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. PTC Fiona
2.3. Image Classification
2.4. Nest Data Collection
2.5. Nest Data Analysis
3. Results
3.1. Habitat Change Classification
3.2. Post-Storm Nesting
3.3. Hatch Success Across Habitat Conditions
4. Discussion
4.1. Habitat Change from PTC Fiona
4.2. Habitat Influences on Nest Success
4.3. Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and climate extreme events in a changing climate. In Climate Change 2021: The Physical Science Basis; Contribution of WGI to the AR6 of the IPCC; Masson-Delmotte, V., Zhai, P., Pirani, A., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 1513–1766. [Google Scholar]
- Waycott, M.; Duarte, C.M.; Carruthers, T.J.B.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12377–12381. [Google Scholar] [CrossRef]
- Orth, R.J.; Carruthers, T.J.B.; Dennison, W.C.; Duarte, C.M.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; Kendrick, G.A.; Kenworthy, W.J.; Olyarnik, S.; et al. A global crisis for seagrass ecosystems. BioScience 2006, 56, 987. [Google Scholar] [CrossRef]
- Lagomasino, D.; Fatoyinbo, T.; Castañeda-Moya, E.; Cook, B.D.; Montesano, P.M.; Neigh, C.S.R.; Corp, L.A.; Ott, L.E.; Chavez, S.; Morton, D.C. Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. Nat. Commun. 2021, 12, 4003. [Google Scholar] [CrossRef]
- Anthony, A.; Atwood, J.; August, P.; Byron, C.; Cobb, S.; Foster, C.; Fry, C.; Gold, A.; Hagos, K.; Heffner, L.; et al. Coastal lagoons and climate change: Ecological and social ramifications in U.S. Atlantic and Gulf Coast ecosystems. Ecol. Soc. 2009, 14, 8. [Google Scholar] [CrossRef]
- Day, J.W.; Agboola, J.; Chen, Z.; D’Elia, C.; Forbes, D.L.; Giosan, L.; Kemp, P.; Kuenzer, C.; Lane, R.R.; Ramachandran, R.; et al. Approaches to defining deltaic sustainability in the 21st century. Estuar. Coast. Shelf Sci. 2016, 183, 275–291. [Google Scholar] [CrossRef]
- Yannic, G.; Aebischer, A.; Sabard, B.; Gilg, O. Complete breeding failures in ivory gull following unusual rainy storms in North Greenland. Polar Res. 2014, 33, 22749. [Google Scholar] [CrossRef]
- Büẞer, C.; Kahles, A.; Quillfeldt, P. Breeding success and chick provisioning in Wilson’s storm-petrels (Oceanites oceanicus) over seven years: Frequent failures due to food shortage and entombment. Polar Biol. 2004, 27, 613–622. [Google Scholar] [CrossRef]
- Mallory, M.L.; Gaston, A.J.; Forbes, M.R.; Gilchrist, H.G. Influence of weather on reproductive success of northern fulmars in the Canadian high Arctic. Polar Biol. 2009, 32, 529–538. [Google Scholar] [CrossRef]
- Wilcox, L.R. A twenty year banding study of the piping plover. Auk 1959, 76, 129–152. [Google Scholar] [CrossRef]
- Cohen, J.B.; Houghton, L.M.; Fraser, J.D. Nesting density and reproductive success of piping plovers in response to storm- and human-created habitat changes. Wildl. Monogr. 2009, 173, 1–24. [Google Scholar] [CrossRef]
- Walker, K.M.; Fraser, J.D.; Catlin, D.H.; Ritter, S.J.; Robinson, S.G.; Bellman, H.A.; DeRose-Wilson, A.; Karpanty, S.M.; Papa, S.T. Hurricane Sandy and engineered response created habitat for a threatened shorebird. Ecosphere 2019, 10, e02771. [Google Scholar] [CrossRef]
- Catlin, D.H.; Fraser, J.D.; Felio, J.H. Demographic responses of piping plovers to habitat creation on the Missouri river. Wildl. Monogr. 2015, 192, 1–42. [Google Scholar] [CrossRef]
- Hunt, K.L.; Fraser, J.D.; Karpanty, S.M.; Catlin, D.H. Body condition of piping plovers (Charadrius melodus) and prey abundance on flood-created habitat on the Missouri River, USA. Wilson J. Ornithol. 2017, 129, 754–764. [Google Scholar] [CrossRef]
- Hunt, K.L.; Fraser, J.D.; Friedrich, M.J.; Karpanty, S.M.; Catlin, D.H. Demographic response of piping plovers suggests that engineered habitat restoration is no match for natural riverine processes. Condor 2018, 120, 149–165. [Google Scholar] [CrossRef]
- Dorsey, S.S.L. Factors Affecting Piping Plover Nest Site Selection Following Landscape and Predator Community Changes. MSc Thesis, Virginia Polytech Institute & State University, Blacksburg, VA, USA, 2024; 107p. [Google Scholar]
- Robinson, S.; Fraser, J.; Catlin, D.; Karpanty, S.; Altman, J.; Boettcher, R.; Holcomb, K.; Huber, C.; Hunt, K.; Wilke, A. Irruptions: Evidence for breeding season habitat limitation in Piping Plover (Charadrius melodus). Avian Conserv. Ecol. 2019, 14, 19. [Google Scholar] [CrossRef]
- Robinson, S.G.; Gibson, D.; Riecke, T.V.; Fraser, J.D.; Bellman, H.A.; DeRose-Wilson, A.; Karpanty, S.M.; Walker, K.M.; Catlin, D.H. Piping Plover population increase after Hurricane Sandy mediated by immigration and reproductive output. Condor 2020, 122, duaa041. [Google Scholar] [CrossRef]
- Schupp, C.A.; Winn, N.T.; Pearl, T.L.; Kumer, J.P.; Carruthers, T.J.B.; Zimmerman, C.S. Restoration of overwash processes creates piping plover (Charadrius melodus) habitat on a barrier island (Assateague Island, Maryland). Estuar. Coast. Shelf Sci. 2013, 113, 11–20. [Google Scholar] [CrossRef]
- McIntyre, A.F.; Heath, J.A.; Jannsen, J. Trends in piping plover reproduction at Jones Beach State Park, NY, 1995–2007. Northeast. Nat. 2010, 17, 493–504. [Google Scholar] [CrossRef]
- Swaisgood, R.R.; Nordstrom, L.A.; Schuetz, J.G.; Boylan, J.T.; Fournier, J.J.; Shemai, B. A management experiment evaluating nest-site selection by beach-nesting birds. J. Wildl. Manag. 2017, 82, 192–201. [Google Scholar] [CrossRef]
- Le Fer, D.; Fraser, J.; Kruse, C. Piping plover foraging-site selection on the Missouri River. Waterbirds 2008, 31, 587–592. [Google Scholar] [CrossRef]
- Hecht, A.; Melvin, S.M. Population trends of Atlantic Coast piping plovers, 1986–2006. Waterbirds 2009, 32, 64–72. [Google Scholar] [CrossRef]
- Mahoney, M. Assessing Short Term Coastal Dynamics to Predict Impacts from Severe Weather Events on Piping Plover Nesting Preferences. MSc Thesis, Mount Allison University, Sackville, NB, Canada, 2015. [Google Scholar]
- Maslo, B.; Handel, S.N.; Pover, T. Restoring beaches for Atlantic Coast piping plovers (Charadrius melodus): A classification and regression tree analysis of nest-site selection. Restor. Ecol. 2011, 19, 194–203. [Google Scholar] [CrossRef]
- Maslo, B.; Leu, K.; Pover, T.; Weston MAGilby, B.L.; Schlacher, T.A. Optimizing conservation benefits for threatened beach fauna following severe natural disturbances. Sci. Total Environ. 2019, 649, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.G.; Walker, K.M.; Bellman, H.A.; Gibson, D.; Catlin, D.H.; Karpanty, S.M.; Ritter, S.J.; Fraser, J.D. Piping plover chick ecology following landscape-level disturbance. J. Wildl. Manag. 2023, 87, e22325. [Google Scholar] [CrossRef]
- Zeigler, S.L.; Gutierrez, B.T.; Sturdivant, E.J.; Catlin, D.H.; Fraser, J.D.; Hecht, A.; Karpanty, S.M.; Plant, N.G.; Thieler, E.R. Using a Bayesian network to understand the importance of coastal storms and undeveloped landscapes for the creation and maintenance of early successional habitat. PLoS ONE 2019, 14, e0209986. [Google Scholar] [CrossRef] [PubMed]
- Zeigler, S.L.; Gutierrez, B.T.; Hecht, A.; Plant, N.G.; Sturdivant, E.J. Piping plovers demonstrate regional differences in nesting habitat selection patterns along the U.S. Atlantic coast. Ecosphere 2021, 12, e03418. [Google Scholar] [CrossRef]
- Cohen, J.B. Factors Limiting Piping Plover Nesting Pair Density and Reproductive Output on Long Island, New York. Ph.D. Dissertation, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2005; 251p. [Google Scholar]
- Houghton, L.M. Piping Plover Population Dynamics and Effects of Beach Management Practices on Piping Plovers at West Hampton Dunes and Westhampton Beach, New York. Ph.D. Dissertation, Faculty of Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2005; 176p. [Google Scholar]
- Bourque, N.R.; Villard, M.; Mazerolle, M.J.; Amirault-Langlais, D.; Tremblay, E.; Jolicoeur, S. Piping Plover response to coastal storms occurring during the nonbreeding season. Avian Conserv. Ecol. 2015, 10, 12. [Google Scholar] [CrossRef]
- Czaplewski, M.M.; Peyton, M.; Jenniges, J. Observation of hailstorm-caused mortality of least terns and piping plovers on the Niobrara River, Nebraska. Neb. Bird Rev. 2007, 76, 129–130. [Google Scholar]
- Gratto-Trevor, C.L.; Abbot, S. Conservation of piping plover (Charadrius melodus) in North America: Science, successes, and challenges. Can. J. Zool. 2011, 89, 401–418. [Google Scholar] [CrossRef]
- Cameron, J.E. Assessing Climate-Impact Risk to Piping Plover (Charadrius melodus melodus) Breeding Sites in Nova Scotia, Canada. MES Thesis, Dalhousie University, Halifax, NS, Canada, 2022; 170p. [Google Scholar]
- Amirault-Langlais, D.L.; Imlay, T.L.; Boyne, A.W. Dispersal patterns suggest two breeding populations of piping plovers in Eastern Canada. Wilson J. Ornithol. 2014, 126, 352–359. [Google Scholar] [CrossRef]
- Calvert, A.M.; Amirault-Langlais, D.L.; Shaffer, F.; Elliot, R.; Hanson, A.; McKnight, J.; Taylor, P.D. Population assessment of an endangered shorebird: The piping plover (Charadrius melodus melodus) in Eastern Canada. Avian Conserv. Ecol. 2006, 1, 4. [Google Scholar] [CrossRef]
- Rioux, S.; Amirault-Langlais, D.L.; Shaffer, F. Piping Plovers make decisions regarding dispersal based on personal and public information in a variable coastal ecosystem. J. Field Ornithol. 2011, 82, 32–43. [Google Scholar] [CrossRef]
- NSDLF (Nova Scotia Department of Lands and Forestry). Recovery Plan for Piping plover (Charadrius melodus melodus) in Nova Scotia [Final]; Nova Scotia Endangered Species Act Recovery Plan Series; Environment Canada: Ottawa, ON, Canada, 2021; 304p. [Google Scholar]
- ECCC (Environment and Climate Change Canada). Recovery Strategy (Amended) and Action Plan for the Piping Plover melodus subspecies (Charadrius melodus melodus) in Canada [Proposed]; Species at Risk Act Recovery Strategy Series; Environment and Climate Change Canada: Ottawa, ON, Canada, 2021; viii + 124p. [Google Scholar]
- Murphy, K.A. The Impacts of Human Recreational Activities, Habitat Quality and Weather Conditions on the Foraging Behaviour and Fledging Success of Breeding Piping Plovers (Charadrius melodus). MSc Thesis, St. Mary’s University, Halifax, NS, Canada, 2007; 147p. [Google Scholar]
- Guild, R.G.; Wang, X.; Hirtle, S.; Mader, S. Spatiotemporal and weather effects on the reproductive success of piping plovers on Prince Edward Island, Canada. Ecol. Evol. 2024, 14, e11581. [Google Scholar] [CrossRef]
- Boyne, A.W.; Amirault-Langlais, D.L.; McCue, A.J. Characteristics of piping plover nesting habitat in the Canadian maritime provinces. Northeast. Nat. 2014, 21, 164–173. [Google Scholar] [CrossRef]
- Thomas, L.; Lajeunesse, D. Recovery efforts for Piping Plovers in Prince Edward Island National Park of Canada. In Proceedings of the Species at Risk 2004 Pathways to Recovery Conference, Victoria, BC, Canada, 2–6 March 2024; Hooper, T.D., Ed.; 12p. [Google Scholar]
- Stewart, J.I. A Multiscale Habitat Suitability Assessment for Piping Plover (Charadrius melodus) on Prince Edward Island. MES Thesis, Dalhousie University, Halifax, NS, Canada, 2004; 189p. [Google Scholar]
- Davis, K.L.; Schoenemann, K.L.; Catlin, D.H.; Hunt, K.L.; Friedrich, M.J.; Ritter, S.J.; Fraser, J.D.; Karpanty, S.M. Hatch-year piping plover (Charadrius melodus) prospecting and habitat quality influence second-year nest site selection. Auk 2017, 134, 92–103. [Google Scholar] [CrossRef]
- Shaw, J.; Taylor, R.B.; Forbes, D.L.; Ruz, M.H.; Solomon, S. Sensitivity of the Coasts of Canada to Sea-Level Rise; Report for Geological Survey of Canada Bulletin 505; Natural Resources Canada: Ottawa, ON, Canada, 1998; 96p. [Google Scholar]
- Forbes, D.L.; Parkes, G.S.; Manson, G.K.; Ketch, L.A. Storms and shoreline retreat in the southern Gulf of St. Lawrence. Mar. Geol. 2004, 210, 169–204. [Google Scholar] [CrossRef]
- Davies, M. Geomorphic Shoreline Classification of Prince Edward Island; Report Prepared by Coldwater Consulting Ltd. for Prince Edward Island’s Department of Energy, Environment & Forestry: Charlottetown, PE, Canada, 2011; 70p. [Google Scholar]
- Mathew, S.; Davidson-Arnott, R.G.; Ollerhead, J. Evolution of a beach–dune system following a catastrophic storm overwash event: Greenwich Dunes, Prince Edward Island, 1936–2005. Can. J. Earth Sci. 2010, 47, 273–290. [Google Scholar] [CrossRef]
- Parkes, G.S.; Forbes, D.L.; Ketch, L.A. Sea-level Rise. In Coastal Impacts of Climate Change and Sea-Level Rise on Prince Edward Island; Forbes, D.L., Shaw, R.W., Eds.; Geological Survey of Canada: Ottawa, ON, Canada, 2002; Open File 4261. [Google Scholar]
- Pasch, R.J.; Reinhart, B.J.; Alaka, L. National Hurricane Center Tropical Cyclone Report: Hurricane Fiona; Joint Publication by National Oceanic and Atmospheric Administration & National Weather Service: Miami, FL, USA, 2023; 60p. Available online: https://www.nhc.noaa.gov/data/tcr/AL072022_Fiona.pdf (accessed on 5 September 2024).
- Ollerhead, J.; Davidson-Arnott, R.; Bauer, B.O. The Importance of Coastal Foredunes as a Nature-Based Solution for Shoreline Protection: What Hurricane Fiona Tells Us. Bulletin of the Canadian Meteorological and Oceanographic Society. 2022. Available online: https://bulletin.cmos.ca/the-importance-of-coastal-foredunes-as-a-nature-based-solution-for-shoreline-protection-what-hurricane-fiona-tells-us/ (accessed on 5 June 2023).
- Jardine, D. Post Tropical Storm Fiona Highwater Mark and Shoreline Erosion Field Notes with Photos. Report Prepared for the Government of Prince Edward Island by DE Jardine Consulting. 2023. 117p. Available online: https://www.princeedwardisland.ca/sites/default/files/publications/post_tropical_storm_fiona_highwater_mark_and_shoreline_erosion.pdf (accessed on 1 September 2024).
- Pang, T.; Wang, X.; Basheer, S.; Guild, R. Landcover-based detection of rapid impacts of extreme storm on coastal landscape. Sci. Total Environ. 2024, 932, 173099. [Google Scholar] [CrossRef]
- Zharikov, Y.; Skilleter, G.A.; Loneragan, N.R.; Taranto, T.; Cameron, B.E. Mapping and characterising subtropical estuarine landscapes using aerial photography and GIS for potential application in wildlife conservation and management. Biol. Conserv. 2005, 125, 87–100. [Google Scholar] [CrossRef]
- Uhl, F.; Græsdal Rasmussen, T.; Oppelt, N. Classification ensembles for beach cast and drifting vegetation mapping with Sentinel-2 and PlanetScope. Geosciences 2021, 12, 15. [Google Scholar] [CrossRef]
- McAllister, E.; Payo, A.; Novallino, A.; Dolphin, T.; Medina-Lopez, E. Shoreline extraction using high resolution satellite imagery at Start Bay, UK. Proc. IAHR World Congr. 2022, 2022, 5811–5820. [Google Scholar]
- Robinson, S.; Bellman, H.; Walker, K.; Catlin, D.; Karpanty, S.; Ritter, S.; Fraser, J. Adult piping plover habitat selection varies by behaviour. Ecosphere 2021, 12, e03870. [Google Scholar] [CrossRef]
- Elliot-Smith, E.; Bidwell, M.; Holland, A.E.; Haig, S.M. Data from the 2011 International Piping Plover Census; Report Prepared Jointly by the U.S. Geological Survey and Environment Canada; Geological Survey Data Series 922; Geological Survey and Environment Canada: Reston, VA, USA, 2015; 296p. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundational for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org (accessed on 5 November 2024).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 5 October 2024).
- Wickham, H.; Vaughan, D.; Girlich, M. tidyr: Tidy Messy Data. R Package Version 1.3.1. 2024. Available online: https://github.com/tidyverse/tidyr (accessed on 5 October 2024).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 5 October 2024).
- Bartoń, K. MuMIn: Multi-Model Inference. R Package Version 1.48.4. 2024. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 2 October 2024).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Catlin, D.H.; Fraser, J.D.; Felio, J.H.; Cohen, J.B. Piping plover habitat selection and nest success on natural, managed, and engineered sandbars. J. Wildl. Manag. 2011, 75, 305–310. [Google Scholar] [CrossRef]
- Gieder, K.; Karpanty, S.M.; Fraser, J.D.; Catlin, D.H.; Gutierrez, B.T.; Plant, N.G.; Turecek, A.M.; Thieler, E.R. A Bayesian network approach to predicting nest presence of the federally threatened piping plover (Charadrius melodus) using barrier island features. Ecol. Model. 2014, 276, 38–50. [Google Scholar] [CrossRef]
- Espie, R.H.; James, P.C.; Brigham, R. The effects of flooding on piping plover Charadrius melodus reproductive success at Lake Diefenbaker, Saskatchewan, Canada. Biol. Conserv. 1998, 86, 215–222. [Google Scholar] [CrossRef]
- Prindiville-Gaines, E.; Ryan, M.R. Piping plover habitat use and reproductive success in North Dakota. J. Wildl. Manag. 1988, 52, 266. [Google Scholar] [CrossRef]
- Ogden, J.; Dowding, J.E. Population estimates and conservation of the New Zealand dotterel (Charadrius obscurus) on Great Barrier Island, New Zealand. Notornis 2013, 60, 210–223. [Google Scholar]
- Johnston-González, R.; Abril, E. Predation risk and resource availability explain roost locations of Whimbrel Numenius phaeopus in a tropical mangrove delta. Ibis 2019, 161, 839–853. [Google Scholar] [CrossRef]
- Donnelly, C.; Kraus, N.; Larson, M. State of knowledge on measurement and modeling of coastal overwash. J. Coast. Res. 2006, 224, 965–991. [Google Scholar] [CrossRef]
- Kossin, J.P.; Knapp, K.R.; Olander, T.L.; Velden, C.S. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl. Acad. Sci. USA 2020, 117, 11975–11980. [Google Scholar] [CrossRef]
- Ashton, A.D.; Lorenzo-Trueba, J. Morphodynamics of barrier response to sea-level rise. In Barrier Dynamics and Response to Changing Climate; Moore, L.J., Murray, A.B., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 277–304. [Google Scholar] [CrossRef]
- Harris, W.C.; Duncan, D.C.; Franken, R.J.; McKinnon, D.T.; Dundas, H.A. Reproductive success of piping plovers at Big Quill Lake, Saskatchewan. Wilson Bull. 2005, 117, 165–171. [Google Scholar] [CrossRef]
- Burger, J. Physical and social determinants of nest-site selection in piping plover in New Jersey. Condor 1987, 89, 811. [Google Scholar] [CrossRef]
- Kumer, J. Status of the endangered piping plover, Charadrius melodus, population in the Maryland coastal bays. In Maryland’s Coastal Bays: Ecosystem Health Assessment 2004; Wazniak, C.E., Hall, M.R., Eds.; Maryland Department of Natural Resources, Tidewater Ecosystem Assessment: Annapolis, MD, USA, 2004; pp. 8.94–8.99. [Google Scholar]
- Nordstrom, L.H.; Ryan, M.R. Invertebrate abundance at occupied and potential piping plover nesting beaches: Great Plains alkali wetlands vs. the Great Lakes. Wetlands 1996, 16, 429–435. [Google Scholar] [CrossRef]
- Casagrande, G.; Bezzi, A.; Fracaros, S.; Martinucci, D.; Pillon, S.; Salvador, P.; Sponza, S.; Fontolan, G. Quantifying transgressive coastal changes using UAVs: Dune migration, overwash recovery, and barrier flooding assessment and interferences with human and natural assets. J. Mar. Sci. Eng. 2023, 11, 1044. [Google Scholar] [CrossRef]
- Brenner, O.T.; Lentz, E.E.; Hapke, C.J.; Henderson, R.E.; Wilson, K.E.; Nelson, T.R. Characterizing storm response and recovery using the beach change envelope: Fire Island, New York. Geomorphology 2018, 300, 189–202. [Google Scholar] [CrossRef]
- Walker, I.J.; Davidson-Arnott, R.G.; Bauer, B.O.; Hesp, P.A.; Delgado-Fernandez, I.; Ollerhead, J.; Smyth, T.A. Scale-dependent perspectives on the geomorphology and evolution of beach-dune systems. Earth Sci. Rev. 2017, 171, 220–253. [Google Scholar] [CrossRef]
- Ezer, T. Analysis of the changing patterns of seasonal flooding along the U.S. East Coast. Ocean Dyn. 2020, 70, 241–255. [Google Scholar] [CrossRef]
Habitat Metric | Abbreviated Term | Variable Type | Description |
---|---|---|---|
Habitat Type * | HABITAT | Categorical | Nesting substrate; either cobble, open sand, or sparse vegetation |
Renest Status * | RENEST | Categorical | Confirmed renest or confirmed/assumed original nest |
Nest Outcome * | - | Categorical | Hatched, flooded, predated, abandoned/buried, or unknown loss reason |
Geomorphological Type † | GEO (TYPE) | Categorical | Geomorphology of nesting site; either barrier island, mainland beach/inlet, or sandspit/sandbar |
Beach Zone † | ZN | Categorical | Geophysical region of beach; either backshore, foredune, washover, or bayside |
Terminal End Habitat † | TERMINAL HAB. | Categorical | Binary; if nest is at the terminal end of a barrier island/sandspit/sandbar |
Access to Low-Energy Shoreline Intertidal Zone † | ACCESS LES MOSH | Categorical | Binary; if nest is within 250 m of low-energy shoreline (bayside or tidal inlet) moist-sand habitat (MOSH) |
Change in Habitat Area from Previous Year † | Δ HABITAT (1-YR) | Categorical | Binary; if nesting site experienced significant visible change in habitat area since last year |
Recreational Access † | REC. ACCESS | Categorical | Binary; “closed” if access is either physically impeded (e.g., remote barrier island) or restricted by the National Park Authority during breeding season, else “open” |
Beach Width † | - | Continuous | Nesting beach width (m) measured from ocean high tide line to either dune toe, high tide of low-energy shoreline, or dense vegetation |
Distance to Beach Access † | D2 ACCESS | Continuous | Least-cost path distance from nest to nearest beach access point for humans |
Distance to Conspecific † | D2 CONSPECIFIC | Continuous | Distance from nest to nearest active nest |
Distance to Previous Nest † | D2 PREV NEST | Continuous | Distance from nest to previous nesting attempt by same breeding pair in current season |
Distance to Low-Energy Shoreline Intertidal Zone † | D2 LES ITZ | Continuous | Least-cost path distance from nest to the nearest low-energy shoreline intertidal zone |
Distance to Ocean Intertidal Zone † | D2 OCEAN ITZ | Continuous | Least-cost path distance from nest to the nearest ocean intertidal zone |
Land Cover Classes | ||||||
---|---|---|---|---|---|---|
Dry Sand | Wet Sand | Vegetation | Water | Overall Accuracy | ||
± σ | ± σ | ± σ | ± σ | |||
Pre-storm | PA | 0.98 ± 0.04 | 0.94 ± 0.05 | 0.99 ± 0.02 | 0.99 ± 0.01 | |
UA | 0.98 ± 0.03 | 0.97 ± 0.03 | 0.99 ± 0.01 | 0.99 ± 0.02 | ||
OA | 0.98 ± 0.04 | |||||
Post-storm | PA | 0.99 ± 0.02 | 0.95 ± 0.03 | 0.92 ± 0.10 | 0.98 ± 0.03 | |
UA | 0.98 ± 0.03 | 0.96 ± 0.06 | 0.97 ± 0.04 | 0.94 ± 0.06 | ||
OA | 0.96 ± 0.08 | |||||
1-Year Revisit | PA | 0.99 ± 0.01 | 0.95 ± 0.05 | 0.96 ± 0.05 | 0.99 ± 0.02 | |
UA | 0.98 ± 0.02 | 0.98 ± 0.03 | 0.99 ± 0.01 | 0.96 ± 0.05 | ||
OA | 0.98 ± 0.05 |
Year | No. Breeding Pairs 1 | No. Fledglings | Fledging Rate 2 | No. Nests 3 | Average Hatch Success 4 | Average Clutch Size | Average Brood Size | Average No. Fledglings per Brood |
---|---|---|---|---|---|---|---|---|
2020 | 26 | 38 | 1.46 | 30 | 36.7% | 3.67 | 2.80 | 2.53 |
2021 | 24 | 39 | 1.63 | 31 | 38.7% | 3.84 | 3.13 | 2.44 |
2022 | 34 | 53 | 1.56 | 42 | 43.8% | 3.45 | 3.05 | 2.41 |
2023 | 32 | 54 | 1.69 | 48 | 35.9% | 3.17 | 3.72 | 3.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guild, R.; Wang, X. Piping Plover Habitat Changes and Nesting Responses Following Post-Tropical Cyclone Fiona on Prince Edward Island, Canada. Remote Sens. 2024, 16, 4764. https://doi.org/10.3390/rs16244764
Guild R, Wang X. Piping Plover Habitat Changes and Nesting Responses Following Post-Tropical Cyclone Fiona on Prince Edward Island, Canada. Remote Sensing. 2024; 16(24):4764. https://doi.org/10.3390/rs16244764
Chicago/Turabian StyleGuild, Ryan, and Xiuquan Wang. 2024. "Piping Plover Habitat Changes and Nesting Responses Following Post-Tropical Cyclone Fiona on Prince Edward Island, Canada" Remote Sensing 16, no. 24: 4764. https://doi.org/10.3390/rs16244764
APA StyleGuild, R., & Wang, X. (2024). Piping Plover Habitat Changes and Nesting Responses Following Post-Tropical Cyclone Fiona on Prince Edward Island, Canada. Remote Sensing, 16(24), 4764. https://doi.org/10.3390/rs16244764