Integration of Drone and Satellite Imagery Improves Agricultural Management Agility
<p>Location of commercial sheep farm “Okehampton” (42°30′S, 147°59′E) near Triabunna, southeastern Tasmania, Australia. The yellow panel represents Site 1 (12 subplots of 0.25 ha), while the red panel represents Cottage paddock, and the blue panel represents Old Bougainville (located on the hilltop) is Site 2. Red dots depict sampling points located within each polygon of the imagery. The study site was mapped using 2020/21 global land cover from the European Space Agency (ESA), developed and validated with 10 m resolution of Sentinel–2 and Sentinel–1 imagery (<a href="https://doi.org/10.5281/zenodo.5571936" target="_blank">https://doi.org/10.5281/zenodo.5571936</a>).</p> "> Figure 2
<p>Representative ground cover for the Cottage and Old Bougainville fields at Okehampton, Triabunna, Australia, January 2019. (<b>a</b>) Typical ground cover of Phalaris (<span class="html-italic">Phalaris aquatica</span> L.) shows a high proportion of bare ground and Flatweed (<span class="html-italic">Hypochaeris radicata</span>), (<b>b</b>) sheep track beside the heavily browsed ground from historical management. (<b>c</b>) Flatweed and Phalaris, and (<b>d</b>) healthy Phalaris, (<b>e</b>,<b>f</b>) were taken in November 2022 at the Vault paddock. Panel (<b>e</b>) shows an extremely high volume (>10,000 kg DM/ha) of grassland, while (<b>f</b>) depicts a 0.5 × 0.5 m quadrat, where physical biomass measurements were taken.</p> "> Figure 3
<p>UAS campaign with survey protocol installations to compare UAS grass height measurements and destructively sampled biomass at the Okehampton farm, Triabunna, Tasmania, Australia. (<b>a</b>) Ground control point at the boundary of Vault paddocks, (<b>b</b>) bricks and pins installation to identify the ground control points, (<b>c</b>,<b>d</b>) diagonal transects along each paddock where sampled biomass data was collected, and (<b>e</b>) example of 3D point cloud photo of one of the processed UAS images captured for a pre-grazing event at Okehampton sheep grazing farm, Triabunna (photo taken in the pre-trial flight on 2 December 2021), and (<b>f</b>) DJI Matrice 300 RTK with Zenmuse P1. Images (<b>b</b>,<b>d</b>,<b>e</b>) were adopted from Harrison et al. [<a href="#B45-remotesensing-16-04688" class="html-bibr">45</a>].</p> "> Figure 4
<p>Workflow showing main components of the method.</p> "> Figure 5
<p>Relationship between mean sward height predicted from UAS and actual sampled biomass. The relationship translates delta pasture height (i.e., pasture height before and after grazing) into biomass.</p> "> Figure 6
<p>Sentinel−2 random forest model outputs compared with UAS−calibrated biomass data using linear regression for Vault and Bougainville.</p> "> Figure 7
<p>Sentinel-2 biomass calibration using UAS-derived biomass change data. Sentinel-2 data was based on the test set-obtained S2-RF–enabled model. Each point represents the average biomass at the paddock level for the drone and satellite. The calibration was conducted to elucidate whether UAS imagery could improve the temporal frequency and accuracy of biomass estimates from Sentinel-2 imagery, addressing challenges posed by frequent cloud cover obscuring satellite images in the high latitudes of southern Australia.</p> "> Figure 8
<p>Comparison of the seasonality of UAS biomass in two representative paddocks against Sentinel-2 model estimates. The UAS model estimates biomass changes based on grass height variations between pre- and post-grazing events, while the Sentinel-2 estimates biomass using the nearest temporal imagery and a random forest algorithm. Each point represents the average biomass (mean) at the paddock level for both the drone and satellite.</p> "> Figure 9
<p>Pixel-based comparison and spatial resolution between the RGB fitted-UAS and Sentinel-2 instruments deployed for investigating grassland biomass at Okehampton in Triabunna, Australia. The field size is 0.25 ha. (<b>a</b>) RGB (red, green, and blue) image for pre-graze on 25 January 2023 for the Vault paddocks, (<b>b</b>) post-grazing event on 27 January 2023, and (<b>c</b>) Sentinel-2 image available on 24 January 2023. Field biomass was sampled on 25 January 2023. Units of each legend are shown in kg DM/ha. Note: The Sentinel-2 image (<b>c</b>) was enlarged for improved visual clarity.</p> "> Figure 10
<p>Botanical composition as a contribution toward grassland biomass in each paddock. Note: scaling is unique to each paddock as species distribution differs across plots.</p> "> Figure 11
<p>NDVI response to weekly rainfall and grazing management in Cottage and Old Bougainville paddocks, highlighting pasture species productivity and grazing patterns. The Cottage paddock (<b>a</b>) was used as business-as-usual by opening its gate to adjoining paddocks. Pasture species show peak heights when sheep move to adjoining paddocks. The Old Bougainville paddock (<b>b</b>) shows non-selective grazing from increased stocking rates (ewes that were lambing).</p> "> Figure 12
<p>Correlation between weekly rainfall and NDVI response, highlighting the significant relationship in the Cottage and Old Bougainville paddocks during the spring of 2019 in Okehampton, Triabunna, Australia. Each data point represents the average NDVI and cumulative rainfall for that week.</p> "> Figure 13
<p>Correlation between NDVI and pasture species (Phalaris and Cocksfoot) indicates a varying relationship influenced by grazing intensity and management practices. No statistical correlation was observed between NDVI and botanical composition. The moderate correlation between Phalaris species and NDVI indicates dominance of the said species in the Cottage paddock.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Field Data Collection
2.1.1. Vault and Bougainville Ground Sampling Protocol
2.1.2. Cottage and Old Bougainville Ground Sampling Protocol
2.2. UAS Data and Processing for Vault and Bougainville at Site 1
2.3. Calibration of UAS Pasture Height Changes into Biomass for the Vault and Bougainville Paddocks at Site 1
2.4. Sentinel-2 Data for Modelling Vault and Bougainville Biomass at Site 1 Using the Random Forest Algorithm
- Number of Trees (n estimators): 50 trees were used to balance computational efficiency and performance.
- Maximum Tree Depth (maximum depth): We restricted tree depth to avoid overfitting, ensuring a good trade-off between complexity and accuracy.
- Feature Selection: The maximum number of features considered at each split followed the default setting (square root of the total number of input features) [33].
- Out-of-Bag (OOB) Error Estimation: OOB error estimates were used to assess training accuracy and minimise overfitting risks.
2.5. Sentinel-2–Derived NDVI for Cottage and Old Bougainville at Site 2
3. Results
3.1. Biomass Calibration Using Delta Sward Height and Sentinel-2 with Random Forest Models
3.2. Sentinel-2 Derived NDVI
4. Discussion
4.1. Grassland Biomass Modelling from a Change in Grass Heights Using 3D Photogrammetry and Sentinel-2 Imagery with the Random Forest Algorithm
4.2. Modelling Grazing Intensity and Ground Cover Productivity Using Sentinel-2–Derived NDVI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luscier, J.D.; Thompson, W.L.; Wilson, J.M.; Gorham, B.E.; Dragut, L.D. Using Digital Photographs and Object-Based Image Analysis to Estimate Percent Ground Cover in Vegetation Plots. Front. Ecol. Environ. 2006, 4, 408–413. [Google Scholar] [CrossRef]
- Ogungbuyi, M.G.; Mohammed, C.; Ara, I.; Fischer, A.M.; Harrison, M.T. Advancing Skyborne Technologies and High-Resolution Satellites for Pasture Monitoring and Improved Management: A Review. Remote Sens. 2023, 15, 4866. [Google Scholar] [CrossRef]
- Harrison, M.T.; Cullen, B.R.; Mayberry, D.E.; Cowie, A.L.; Bilotto, F.; Badgery, W.B.; Liu, K.; Davison, T.; Christie, K.M.; Muleke, A.; et al. Carbon Myopia: The Urgent Need for Integrated Social, Economic and Environmental Action in the Livestock Sector. Glob. Chang. Biol. 2021, 27, 5726–5761. [Google Scholar] [CrossRef] [PubMed]
- Meier, E.A.; Thorburn, P.J.; Bell, L.W.; Harrison, M.T.; Biggs, J.S. Greenhouse Gas Emissions From Cropping and Grazed Pastures Are Similar: A Simulation Analysis in Australia. Front. Sustain. Food Syst. 2020, 3, 121. [Google Scholar] [CrossRef]
- Gillan, J.K.; Karl, J.W.; Duniway, M.; Elaksher, A. Modeling Vegetation Heights from High Resolution Stereo Aerial Photography: An Application for Broad-Scale Rangeland Monitoring. J. Environ. Manag. 2014, 144, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Cunliffe, A.M.; Brazier, R.E.; Anderson, K. Ultra-Fine Grain Landscape-Scale Quantification of Dryland Vegetation Structure with Drone-Acquired Structure-from-Motion Photogrammetry. Remote Sens. Environ. 2016, 183, 129–143. [Google Scholar] [CrossRef]
- Harrison, M.T. Climate Change Benefits Negated by Extreme Heat. Nat. Food 2021, 2, 855–856. [Google Scholar] [CrossRef] [PubMed]
- Fleming, A.; O’Grady, A.P.; Stitzlein, C.; Ogilvy, S.; Mendham, D.; Harrison, M.T. Improving Acceptance of Natural Capital Accounting in Land Use Decision Making: Barriers and Opportunities. Ecol. Econ. 2022, 200, 107510. [Google Scholar] [CrossRef]
- Chang-Fung-Martel, J.; Harrison, M.T.; Brown, J.N.; Rawnsley, R.; Smith, A.P.; Meinke, H. Negative Relationship between Dry Matter Intake and the Temperature-Humidity Index with Increasing Heat Stress in Cattle: A Global Meta-Analysis. Int. J. Biometeorol. 2021, 65, 2099–2109. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Guo, Z.Y.; Wu, J.P.; Ye, S.F. Constructing an Assessment Indices System to Analyze Integrated Regional Carrying Capacity in the Coastal Zones—A Case in Nantong. Ocean Coast. Manag. 2014, 93, 51–59. [Google Scholar] [CrossRef]
- Bell, L.W.; Harrison, M.T.; Kirkegaard, J.A. Dual-Purpose Cropping—Capitalising on Potential Grain Crop Grazing to Enhance Mixed-Farming Profitability. Crop Pasture Sci. 2015, 66, 2–4. [Google Scholar] [CrossRef]
- Ogungbuyi, M.G.; Guerschman, J.P.; Fischer, A.M.; Crabbe, R.A.; Mohammed, C.; Scarth, P.; Tickle, P.; Whitehead, J.; Harrison, M.T. Enabling Regenerative Agriculture Using Remote Sensing and Machine Learning. Land 2023, 12, 1142. [Google Scholar] [CrossRef]
- Shahpari, S.; Allison, J.; Harrison, M.T.; Stanley, R. An Integrated Economic, Environmental and Social Approach to Agricultural Land-Use Planning. Land 2021, 10, 364. [Google Scholar] [CrossRef]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Global Assessment of Land Degradation and Improvement 1. Identification by Remote Sensing; ISRIC–World Soil Information: Wageningen, The Netherlands, 2008. [Google Scholar]
- Zhang, C.; Kovacs, J.M. The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Gillan, J.K.; McClaran, M.P.; Swetnam, T.L.; Heilman, P. Estimating Forage Utilization with Drone-Based Photogrammetric Point Clouds. Rangel. Ecol. Manag. 2019, 72, 575–585. [Google Scholar] [CrossRef]
- Gillan, J.K.; Karl, J.W.; van Leeuwen, W.J.D. Integrating Drone Imagery with Existing Rangeland Monitoring Programs. Environ. Monit. Assess. 2020, 192, 269. [Google Scholar] [CrossRef]
- Liu, H.; Dahlgren, R.A.; Larsen, R.E.; Devine, S.M.; Roche, L.M.; O’ Geen, A.T.; Wong, A.J.Y.; Covello, S.; Jin, Y. Estimating Rangeland Forage Production Using Remote Sensing Data from a Small Unmanned Aerial System (SUAS) and Planetscope Satellite. Remote Sens. 2019, 11, 595. [Google Scholar] [CrossRef]
- De Rosa, D.; Basso, B.; Fasiolo, M.; Friedl, J.; Fulkerson, B.; Grace, P.R.; Rowlings, D.W. Predicting Pasture Biomass Using a Statistical Model and Machine Learning Algorithm Implemented with Remotely Sensed Imagery. Comput. Electron. Agric. 2021, 180, 105880. [Google Scholar] [CrossRef]
- Sibanda, M.; Mutanga, O.; Rouget, M. Comparing the Spectral Settings of the New Generation Broad and Narrow Band Sensors in Estimating Biomass of Native Grasses Grown under Different Management Practices. GIScience Remote Sens. 2016, 53, 614–633. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Liu, J.; Su, Y.; Guo, Q.; Qiu, P.; Wu, X. Estimating Aboveground Biomass of the Mangrove Forests on Northeast Hainan Island in China Using an Upscaling Method from Field Plots, UAV-LiDAR Data and Sentinel-2 Imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101986. [Google Scholar] [CrossRef]
- Zlinszky, A.; Schroiff, A.; Kania, A.; Deák, B.; Mücke, W.; Vári, Á.; Székely, B.; Pfeifer, N. Categorizing Grassland Vegetation with Full-Waveform Airborne Laser Scanning: A Feasibility Study for Detecting Natura 2000 Habitat Types. Remote Sens. 2014, 6, 8056–8087. [Google Scholar] [CrossRef]
- Madsen, B.; Treier, U.A.; Zlinszky, A.; Lucieer, A.; Normand, S. Detecting Shrub Encroachment in Seminatural Grasslands Using UAS LiDAR. Ecol. Evol. 2020, 10, 4876–4902. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.L.R.; Mathews, A.J. Assessment of Image-Based Point Cloud Products to Generate a Bare Earth Surface and Estimate Canopy Heights in a Woodland Ecosystem. Remote Sens. 2016, 8, 50. [Google Scholar] [CrossRef]
- Olsoy, P.J.; Shipley, L.A.; Rachlow, J.L.; Forbey, J.S.; Glenn, N.F.; Burgess, M.A.; Thornton, D.H. Unmanned Aerial Systems Measure Structural Habitat Features for Wildlife across Multiple Scales. Methods Ecol. Evol. 2018, 9, 594–604. [Google Scholar] [CrossRef]
- Swetnam, T.L.; Gillan, J.K.; Sankey, T.T.; McClaran, M.P.; Nichols, M.H.; Heilman, P.; McVay, J. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States. Front. Plant Sci. 2018, 8, 2144. [Google Scholar] [CrossRef]
- Li, F.; Zhao, Y.; Zheng, J.; Luo, J.; Zhang, X. Monitoring Grazing Intensity: An Experiment with Canopy Spectra Applied to Satellite Remote Sensing. J. Appl. Remote Sens. 2016, 10, 026032. [Google Scholar] [CrossRef]
- Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban Land Cover Classification Using Airborne LiDAR Data: A Review. Remote Sens. Environ. 2015, 158, 295–310. [Google Scholar] [CrossRef]
- Torre-Tojal, L.; Bastarrika, A.; Boyano, A.; Lopez-Guede, J.M.; Graña, M. Above-Ground Biomass Estimation from LiDAR Data Using Random Forest Algorithms. J. Comput. Sci. 2022, 58, 101517. [Google Scholar] [CrossRef]
- Štroner, M.; Urban, R.; Křemen, T.; Braun, J. UAV DTM Acquisition in a Forested Area—Comparison of Low-Cost Photogrammetry (DJI Zenmuse P1) and LiDAR Solutions (DJI Zenmuse L1). Eur. J. Remote Sens. 2023, 56, 2179942. [Google Scholar] [CrossRef]
- Bhattarai, D.; Lucieer, A. Optimising Camera and Flight Settings for Ultrafine Resolution Mapping of Artificial Night-Time Lights Using an Unoccupied Aerial System. Drone Syst. Appl. 2024, 12, 1–11. [Google Scholar] [CrossRef]
- Alvarez-Hess, P.S.; Thomson, A.L.; Karunaratne, S.B.; Douglas, M.L.; Wright, M.M.; Heard, J.W.; Jacobs, J.L.; Morse-McNabb, E.M.; Wales, W.J.; Auldist, M.J. Using Multispectral Data from an Unmanned Aerial System to Estimate Pasture Depletion during Grazing. Anim. Feed Sci. Technol. 2021, 275, 114880. [Google Scholar] [CrossRef]
- Ogungbuyi, M.G.; Guerschman, J.; Fischer, A.M.; Crabbe, R.A.; Ara, I.; Mohammed, C.; Scarth, P.; Tickle, P.; Whitehead, J.; Harrison, M.T. Improvement of Pasture Biomass Modelling Using High-Resolution Satellite Imagery and Machine Learning. J. Environ. Manag. 2024, 356, 120564. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guerschman, J.; Shendryk, Y.; Henry, D.; Harrison, M.T. Estimating Pasture Biomass Using Sentinel-2 Imagery and Machine Learning. Remote Sens. 2021, 13, 603. [Google Scholar] [CrossRef]
- Ara, I.; Harrison, M.T.; Whitehead, J.; Waldner, F.; Bridle, K.; Gilfedder, L.; Marques Da Silva, J.; Marques, F.; Rawnsley, R. Modelling Seasonal Pasture Growth and Botanical Composition at the Paddock Scale with Satellite Imagery. In Silico Plants 2021, 3, diaa013. [Google Scholar] [CrossRef]
- Franklin, M. Okehampton-Optimising Management of Production and Biodiversity Assets, Devonport TAS; University of Tasmania: Tasmania, Australia, 2019. [Google Scholar]
- Teague, R.; Barnes, M. Grazing Management That Regenerates Ecosystem Function and Grazingland Livelihoods. Afr. J. Range Forage Sci. 2017, 34, 77–86. [Google Scholar] [CrossRef]
- Teague, R.; Kreuter, U. Managing Grazing to Restore Soil Health, Ecosystem Function, and Ecosystem Services. Front. Sustain. Food Syst. 2020, 4, 534187. [Google Scholar] [CrossRef]
- Bureau of Meteorology Climate Statistics for Australian Locations. Available online: http://www.bom.gov.au/climate/averages/tables/cw_092027.shtml (accessed on 25 October 2022).
- Whalley, R.D.B.; Hardy, M.B. Measuring Botanical Composition of Grasslands. In Field and Laboratory Methods for Grassland and Animal Production Research; CABI Publishing: Wallingford, UK, 2000; pp. 67–102. [Google Scholar]
- White, D.H.; Bowman, P.J. Dry Sheep Equivalents for Comparing Different Classes of Stock. Paper 1981, 1530, 81. [Google Scholar]
- Young, J.M.; Thompson, A.N.; Curnow, M.; Oldham, C.M. Whole-Farm Profit and the Optimum Maternal Liveweight Profile of Merino Ewe Flocks Lambing in Winter and Spring Are Influenced by the Effects of Ewe Nutrition on the Progeny’s Survival and Lifetime Wool Production. Anim. Prod. Sci. 2011, 51, 821–833. [Google Scholar] [CrossRef]
- Jones, D.A.; Wang, W.; Fawcett, R. High-Quality Spatial Climate Data-Sets for Australia. Aust. Meteorol. Oceanogr. J. 2009, 58, 233–248. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV Topographic Surveys Processed with Structure-from-Motion: Ground Control Quality, Quantity and Bundle Adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef]
- Harrison, M.T.; Whitehead, J.; Ogungbuyi, M.G.; Ball, P.; Guerschman, J.P.; Tickle, P.; Leverton, C.; Turner, D. Operationalising Satellite and Drone Imagery to Improve Decision-Making: A Case Study with Regenerative Grazing; University of Tasmania: Tasmania, Australia, 2023; p. 218. [Google Scholar]
- Gillan, J.K.; Karl, J.W.; Elaksher, A.; Duniway, M.C. Fine-Resolution Repeat Topographic Surveying of Dryland Landscapes Using UAS-Based Structure-from-Motion Photogrammetry: Assessing Accuracy and Precision against Traditional Ground-Based Erosion Measurements. Remote Sens. 2017, 9, 437. [Google Scholar] [CrossRef]
- Foga, S.C.; Scaramuzza, P.; Guo, S.; Zhu, Z.; Dilley, R.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Langworthy, A.D.; Rawnsley, R.P.; Freeman, M.J.; Pembleton, K.G.; Corkrey, R.; Harrison, M.T.; Lane, P.A.; Henry, D.A. Potential of Summer-Active Temperate (C3) Perennial Forages to Mitigate the Detrimental Effects of Supraoptimal Temperatures on Summer Home-Grown Feed Production in South-Eastern Australian Dairying Regions. Crop Pasture Sci. 2018, 69, 808–820. [Google Scholar] [CrossRef]
- Harrison, M.T.; Christie, K.M.; Rawnsley, R.P.; Eckard, R.J. Modelling Pasture Management and Livestock Genotype Interventions to Improve Whole-Farm Productivity and Reduce Greenhouse Gas Emissions Intensities. Anim. Prod. Sci. 2014, 54, 2018–2028. [Google Scholar] [CrossRef]
- Díaz de Otálora, X.; Epelde, L.; Arranz, J.; Garbisu, C.; Ruiz, R.; Mandaluniz, N. Regenerative Rotational Grazing Management of Dairy Sheep Increases Springtime Grass Production and Topsoil Carbon Storage. Ecol. Indic. 2021, 125, 107484. [Google Scholar] [CrossRef]
- Punalekar, S.M.; Verhoef, A.; Quaife, T.L.; Humphries, D.; Bermingham, L.; Reynolds, C.K. Application of Sentinel-2A Data for Pasture Biomass Monitoring Using a Physically Based Radiative Transfer Model. Remote Sens. Environ. 2018, 218, 207–220. [Google Scholar] [CrossRef]
- Phelan, D.C.; Harrison, M.T.; Kemmerer, E.P.; Parsons, D. Management Opportunities for Boosting Productivity of Cool-Temperate Dairy Farms under Climate Change. Agric. Syst. 2015, 138, 46–54. [Google Scholar] [CrossRef]
- Rawnsley, R.P.; Smith, A.P.; Christie, K.M.; Harrison, M.T.; Eckard, R.J. Current and Future Direction of Nitrogen Fertiliser Use in Australian Grazing Systems. Crop Pasture Sci. 2019, 70, 1034–1043. [Google Scholar] [CrossRef]
- ter Braak, C.J.F.; Juggins, S. Weighted Averaging Partial Least Squares Regression (WA-PLS): An Improved Method for Reconstructing Environmental Variables from Species Assemblages. In Proceedings of the Twelfth International Diatom Symposium, Renesse, The Netherlands, 30 August–5 September 1992; Springer: Berlin/Heidelberg, Germany, 1993; pp. 485–502. [Google Scholar]
- Bishop, T.F.A.; McBratney, A.B. A Comparison of Prediction Methods for the Creation of Field-Extent Soil Property Maps. Geoderma 2001, 103, 149–160. [Google Scholar] [CrossRef]
- Piñeiro, G.; Perelman, S.; Guerschman, J.P.; Paruelo, J.M. How to Evaluate Models: Observed vs. Predicted or Predicted vs. Observed? Ecol. Model. 2008, 216, 316–322. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?–Arguments against Avoiding RMSE in the Literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.M.; Figueiredo, M.; Domingos, T. The Use of Machine Learning Methods to Estimate Aboveground Biomass of Grasslands: A Review. Ecol. Indic. 2021, 130, 108081. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K. Narrow Band Vegetation Indices Overcome the Saturation Problem in Biomass Estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Ibrahim, A.; Harrison, M.T.; Meinke, H.; Zhou, M. Examining the Yield Potential of Barley Near-Isogenic Lines Using a Genotype by Environment by Management Analysis. Eur. J. Agron. 2019, 105, 41–51. [Google Scholar] [CrossRef]
- Taylor, C.A.; Harrison, M.T.; Telfer, M.; Eckard, R. Modelled Greenhouse Gas Emissions from Beef Cattle Grazing Irrigated Leucaena in Northern Australia. Anim. Prod. Sci. 2016, 56, 594–604. [Google Scholar] [CrossRef]
- Henry, B.; Dalal, R.; Harrison, M.T.; Keating, B. Creating Frameworks to Foster Soil Carbon Sequestration; Burleigh Dodds Science Publishing: Cambridge, UK, 2022. [Google Scholar]
- Dorrough, J.; Ash, J.; McIntyre, S. Plant Responses to Livestock Grazing Frequency in an Australian Temperate Grassland. Ecography 2004, 27, 798–810. [Google Scholar] [CrossRef]
- Akhmadov, K.M.; Breckle, S.W.; Breckle, U. Effects of Grazing on Biodiversity, Productivity, and Soil Erosion of Alpine Pastures in Tajik Mountains. In Land Use Change and Mountain Biodiversity; CRC Press: Boca Raton, FL, USA, 2006; pp. 239–248. [Google Scholar]
- Blackburn, W.H. Impacts of Grazing Intensity and Specialized Grazing Systems on Watershed Characteristics and Responses. In Developing Strategies for Rangeland Management; CRC Press: Boca Raton, FL, USA, 2021; pp. 927–984. [Google Scholar]
- Allworth, M.B.; Wrigley, H.A.; Cowling, A. Fetal and Lamb Losses from Pregnancy Scanning to Lamb Marking in Commercial Sheep Flocks in Southern New South Wales. Anim. Prod. Sci. 2016, 57, 2060–2065. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Gilbert, K.D.; Saunders, K.L. The Performance of Short Scrotum and Wether Lambs Born in Winter or Spring and Run at Pasture in Northern Tasmania. Aust. J. Exp. Agric. 1990, 30, 165–170. [Google Scholar] [CrossRef]
- Hill, M.J.; Donald, G.E.; Hyder, M.W.; Smith, R.C.G. Estimation of Pasture Growth Rate in the South West of Western Australia from AVHRR NDVI and Climate Data. Remote Sens. Environ. 2004, 93, 528–545. [Google Scholar] [CrossRef]
- Weber, D.; Schaepman-Strub, G.; Ecker, K. Predicting Habitat Quality of Protected Dry Grasslands Using Landsat NDVI Phenology. Ecol. Indic. 2018, 91, 447–460. [Google Scholar] [CrossRef]
- Ara, I.; Turner, L.; Harrison, M.T.; Monjardino, M.; DeVoil, P.; Rodriguez, D. Application, Adoption and Opportunities for Improving Decision Support Systems in Irrigated Agriculture: A Review. Agric. Water Manag. 2021, 257, 107161. [Google Scholar] [CrossRef]
- Kumhálová, J.; Kumhála, F.; Kroulík, M.; Matějková, Š. The Impact of Topography on Soil Properties and Yield and the Effects of Weather Conditions. Precis. Agric. 2011, 12, 813–830. [Google Scholar] [CrossRef]
- An, S.; Chen, X.; Zhang, X.; Lang, W.; Ren, S.; Xu, L. Precipitation and Minimum Temperature Are Primary Climatic Controls of Alpine Grassland Autumn Phenology on the Qinghai-Tibet Plateau. Remote Sens. 2020, 12, 431. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Ibrahim, A.; Manik, S.M.N.; Johnson, P.; Tian, X.; Meinke, H.; Zhou, M. Genetic Factors Increasing Barley Grain Yields Under Soil Waterlogging. Food Energy Secur. 2020, 9, e238. [Google Scholar] [CrossRef]
- Ho, C.K.M.; Jackson, T.; Harrison, M.T.; Eckard, R.J. Increasing Ewe Genetic Fecundity Improves Whole-Farm Production and Reduces Greenhouse Gas Emissions Intensities: 2. Economic Performance. Anim. Prod. Sci. 2014, 54, 1248–1253. [Google Scholar] [CrossRef]
- Phelan, D.C.; Harrison, M.T.; McLean, G.; Cox, H.; Pembleton, K.G.; Dean, G.J.; Parsons, D.; do Amaral Richter, M.E.; Pengilley, G.; Hinton, S.J.; et al. Advancing a Farmer Decision Support Tool for Agronomic Decisions on Rainfed and Irrigated Wheat Cropping in Tasmania. Agric. Syst. 2018, 167, 113–124. [Google Scholar] [CrossRef]
- Bilotto, F.; Harrison, M.T.; Migliorati, M.D.A.; Christie, K.M.; Rowlings, D.W.; Grace, P.R.; Smith, A.P.; Rawnsley, R.P.; Thorburn, P.J.; Eckard, R.J. Can Seasonal Soil N Mineralisation Trends Be Leveraged to Enhance Pasture Growth? Sci. Total Environ. 2021, 772, 145031. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogungbuyi, M.G.; Mohammed, C.; Fischer, A.M.; Turner, D.; Whitehead, J.; Harrison, M.T. Integration of Drone and Satellite Imagery Improves Agricultural Management Agility. Remote Sens. 2024, 16, 4688. https://doi.org/10.3390/rs16244688
Ogungbuyi MG, Mohammed C, Fischer AM, Turner D, Whitehead J, Harrison MT. Integration of Drone and Satellite Imagery Improves Agricultural Management Agility. Remote Sensing. 2024; 16(24):4688. https://doi.org/10.3390/rs16244688
Chicago/Turabian StyleOgungbuyi, Michael Gbenga, Caroline Mohammed, Andrew M. Fischer, Darren Turner, Jason Whitehead, and Matthew Tom Harrison. 2024. "Integration of Drone and Satellite Imagery Improves Agricultural Management Agility" Remote Sensing 16, no. 24: 4688. https://doi.org/10.3390/rs16244688
APA StyleOgungbuyi, M. G., Mohammed, C., Fischer, A. M., Turner, D., Whitehead, J., & Harrison, M. T. (2024). Integration of Drone and Satellite Imagery Improves Agricultural Management Agility. Remote Sensing, 16(24), 4688. https://doi.org/10.3390/rs16244688