Co-Frequency Interference Suppression of Integrated Detection and Jamming System Based on 2D Sparse Recovery
<p>The working scene of the detection and jamming integrated system.</p> "> Figure 2
<p>Schematic diagram of the integrated signal echo model (<a href="#FD7-remotesensing-16-02325" class="html-disp-formula">7</a>). (<span class="html-italic">M</span> = 6, <math display="inline"><semantics> <msub> <mi>L</mi> <mi>p</mi> </msub> </semantics></math> = 8, <math display="inline"><semantics> <msub> <mi>L</mi> <mi>r</mi> </msub> </semantics></math> = 4, and one target exists in the schematic with the delay and Doppler frequency of <math display="inline"><semantics> <mrow> <mo>[</mo> <msub> <mo>Δ</mo> <mi>r</mi> </msub> <mo>,</mo> <mn>2</mn> <msub> <mo>Δ</mo> <mi>d</mi> </msub> <mo>]</mo> </mrow> </semantics></math>).</p> "> Figure 3
<p>Schematic diagram of <span class="html-italic">m</span>th PRI echo model (3). (<math display="inline"><semantics> <msub> <mi>L</mi> <mi>p</mi> </msub> </semantics></math> = 8, <math display="inline"><semantics> <msub> <mi>L</mi> <mi>r</mi> </msub> </semantics></math> = 4).</p> "> Figure 4
<p>Schematic diagram of the traditional DSFF-SLO method. (<span class="html-italic">M</span> = 6, <math display="inline"><semantics> <msub> <mi>L</mi> <mi>p</mi> </msub> </semantics></math> = 8, <math display="inline"><semantics> <msub> <mi>L</mi> <mi>r</mi> </msub> </semantics></math> = 4, and one target exists in the schematic with the delay and Doppler frequency of <math display="inline"><semantics> <mrow> <mo>[</mo> <msub> <mo>Δ</mo> <mi>r</mi> </msub> <mo>,</mo> <mn>2</mn> <msub> <mo>Δ</mo> <mi>d</mi> </msub> <mo>]</mo> </mrow> </semantics></math>).</p> "> Figure 5
<p>Schematic diagram of the joint dictionary integrated signal echo model (<a href="#FD24-remotesensing-16-02325" class="html-disp-formula">24</a>). (<span class="html-italic">M</span> = 6, <math display="inline"><semantics> <msub> <mi>L</mi> <mi>p</mi> </msub> </semantics></math> = 8, <math display="inline"><semantics> <msub> <mi>L</mi> <mi>r</mi> </msub> </semantics></math> = 4, and one target exists in the schematic with the delay and Doppler frequency of <math display="inline"><semantics> <mrow> <mo>[</mo> <msub> <mo>Δ</mo> <mi>r</mi> </msub> <mo>,</mo> <mn>2</mn> <msub> <mo>Δ</mo> <mi>d</mi> </msub> <mo>]</mo> </mrow> </semantics></math>).</p> "> Figure 6
<p>The range-Doppler maps before and after interference for our system and adversary radar. (<b>a</b>) Our range-Doppler map without interference. (<b>b</b>) Our range-Doppler map after interference. (<b>c</b>) adversary range-Doppler map without interference. (<b>d</b>) adversary range-Doppler map after interference.</p> "> Figure 7
<p>The range-Doppler maps corresponding to different methods. (No noise, no co-frequency interference).</p> "> Figure 8
<p>The range-Doppler maps corresponding to different methods. (SNR = −15 dB, ISR = 20 dB).</p> "> Figure 9
<p>The range-Doppler maps corresponding to different methods. (SNR = −15 dB, ISR = 40 dB).</p> "> Figure 10
<p>The range-Doppler maps corresponding to different methods. (SNR = −15 dB, ISR = 60 dB).</p> "> Figure 11
<p>The main-to-sidelobe ratios (MSRs) curves of different methods as ISRs vary from 0 dB to 60 dB. (<b>a</b>) The range-dimensional main-to-sidelobe ratios (RMSRs) curves. (<b>b</b>) The Doppler-dimensional main-to-sidelobe ratios (DMSRs) curves.</p> "> Figure 12
<p>The root mean square errors (RMSEs) curves of different methods as ISRs vary from 0 dB to 60 dB.</p> "> Figure 13
<p>The schematic diagram of the experimental scene.</p> "> Figure 14
<p>The adversary range-Doppler maps after interference.</p> "> Figure 15
<p>The experimental data results corresponding to different methods. (<b>a</b>–<b>c</b>) The range-Doppler maps corresponding to different methods. (<b>d</b>–<b>f</b>) The range-dimension results corresponding to different methods. (<b>g</b>–<b>i</b>) The velocity-dimension results corresponding to different methods.</p> ">
Abstract
:1. Introduction
2. Problem Formulation
2.1. Scene Description
2.2. Signal Model
3. Traditional Methodology
4. Co-Frequency Interference Suppression Based on Joint Dictionary and 2D Sparse Recovery
4.1. Jiont Dictionary Signal Model
4.2. Sparse Recovery Based on 2D Generalized Smoothed- (2DGSL0) Algorithm
Algorithm 1 Joint Dictionary and 2D Generalized Smoothed- Algorithm (JD-2DGSL0) |
|
4.3. Discussion on the Selection of Regularization Parameter
4.4. Complexity Analysis
5. Simulation Results
5.1. Detection and Interference Performance Demonstration of Integrated Signal
5.2. Performance Demonstration under Varied Co-Frequency Interference Intensities
5.2.1. Qualitative Analysis
5.2.2. Quantitative Analysis
6. Experimental Results
7. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Wang, L.; Jiang, R.; Hu, J.; Xu, S. Radar jamming decision-making in cognitive electronic warfare: A review. IEEE Sens. J. 2023, 23, 11383–11403. [Google Scholar] [CrossRef]
- Park, S.R.; Nam, I.; Noh, S. Modeling and simulation for the investigation of radar responses to electronic attacks in electronic warfare environments. Secur. Commun. Netw. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Xiong, G.; Li, Y.; Li, P.; Chen, C. Design and performance analysis of an integrated detection-jamming shared waveform based on PNFM-LFM composite modulation. Acta Aeronaut. Astronaut. Sin. 2021, 42, 525821. [Google Scholar]
- Wang, Y.; Cao, Y.; Yeo, T.S.; Cheng, Y.; Zhang, Y. Sparse reconstruction-based joint signal processing for MIMO-OFDM-IM integrated radar and communication systems. Remote Sens. 2024, 16, 1773. [Google Scholar] [CrossRef]
- Orlando, D. A novel noise jamming detection algorithm for radar applications. IEEE Signal Process. Lett. 2017, 24, 206–210. [Google Scholar] [CrossRef]
- Li, X.; Sun, Z.; Yi, W.; Cui, G.; Kong, L. Radar detection and parameter estimation of high-speed target based on MART-LVT. IEEE Sens. J. 2018, 19, 1478–1486. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, H.; Zhang, Z.; Dou, G.; Wang, Y. A cognitive beamforming method via range-doppler map features for skywave radar. Remote Sens. 2022, 14, 2879. [Google Scholar] [CrossRef]
- Liu, G.; Huang, Z.; Zhang, Q.; Mu, B.; Guo, H. Joint radar jamming and communication system design based on universal filtered multicarrier chirp waveform. Remote Sens. 2024, 16, 1383. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, L.; Li, J.; Chen, Z.; Yang, X. Reweighted tensor factorization method for SAR narrowband and wideband interference mitigation using smoothing multiview tensor model. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3298–3313. [Google Scholar] [CrossRef]
- Tao, M.; Su, J.; Huang, Y.; Wang, L. Mitigation of radio frequency interference in synthetic aperture radar data: Current status and future trends. Remote Sens. 2019, 11, 2438. [Google Scholar] [CrossRef]
- Tao, M.; Li, J.; Su, J.; Wang, L. Characterization and removal of RFI artifacts in radar data via model-constrained deep learning approach. Remote Sens. 2022, 14, 1578. [Google Scholar] [CrossRef]
- Kim, E.; Sohn, S.; Moon, H.; Choi, J.H.; Lee, K. Linear frequency modulation and orthogonal code modulation for co-located multiple-input multiple-output high-frequency surface wave radar. Remote Sens. 2024, 16, 104. [Google Scholar] [CrossRef]
- Li, C.; Wu, G.; Li, G.; Xue, H. Shared waveform design for integrated detection and jamming signal based on smart noise jamming of convolution modulation. In Proceedings of the 2023 8th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 8–10 July 2023; pp. 564–569. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H. The design of integrated waveform based on MSK-LFM signal. In Proceedings of the 2020 15th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 6–9 December 2020; Volume 1, pp. 565–569. [Google Scholar] [CrossRef]
- Pralon, L.; Pompeo, B.; Fortes, J.M. Stochastic analysis of random frequency modulated waveforms for noise radar systems. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1447–1461. [Google Scholar] [CrossRef]
- Huan, S.; Chen, W.; Peng, Y.; Yang, C. Orthogonal chirp division multiplexing waveform for mmWave joint radar and communication. In Proceedings of the IET Conference Proceedings, Online, 4–6 November 2020; pp. 1222–1226. [Google Scholar] [CrossRef]
- Wang, S.; He, F.; Dong, Z. A novel intrapulse beamsteering sar imaging mode based on ofdm-chirp signals. Remote Sens. 2024, 16, 126. [Google Scholar] [CrossRef]
- Chu, J.; Tang, Y.; Zhou, Y. Digital domain self-interference cancellation based on modified variable step-size LMS algorithm. In Proceedings of the 2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE), Guangzhou, China, 14–16 April 2023; pp. 9–14. [Google Scholar] [CrossRef]
- Lu, Y.; Qiao, G.; Yang, C.; Zhao, Y.; Yang, G.; Li, H. A real-time digital self interference cancellation method for in-band full-duplex underwater acoustic communication based on improved VSS-LMS algorithm. Remote Sens. 2022, 14, 2924. [Google Scholar] [CrossRef]
- Sack, M.; Ito, M.; Cumming, I. Application of efficient linear FM matched filtering algorithms to synthetic aperture radar processing. Proc. Inst. Elect. Eng. 1985, 132, 45–57. [Google Scholar] [CrossRef]
- Li, C.; Wu, G. A shared waveform design and processing method for integrated radar detection and coherent jamming signal. In Proceedings of the 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 17–19 June 2022; Volume 10, pp. 373–380. [Google Scholar] [CrossRef]
- Sejdić, E.; Djurović, I.; Stanković, L. Fractional fourier transform as a signal processing tool: An overview of recent developments. Signal Process. 2011, 91, 1351–1369. [Google Scholar] [CrossRef]
- Li, X.; Sun, Z.; Yi, W.; Cui, G.; Kong, L. Detection of maneuvering target with complex motions based on ACCF and FRFT. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 0017–0020. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, J. Wideband LFM interference suppression based on fractional Fourier transform and projection techniques. Circuits Syst. Signal Process. 2014, 33, 613–627. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, X.; Yu, W.; Wu, Y.; Yan, H.; Wu, M.; Gu, H. Direct wave suppression technology based on de-slope filtering and sparse recovery of integrated detection and jamming system. J. Signal Process. 2023, 39, 221–234. [Google Scholar] [CrossRef]
- Lu, X.; Yang, J.; Yu, W.; Su, W.; Gu, H.; Yeo, T.S. Enhanced LRR-based RFI suppression for SAR imaging using the common sparsity of range profiles for accurate signal recovery. IEEE Geosci. Remote Sens. Lett. 2020, 59, 1302–1318. [Google Scholar] [CrossRef]
- Mohimani, H.; Babaie-Zadeh, M.; Jutten, C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm. IEEE Trans. Signal Process. 2009, 57, 289–301. [Google Scholar] [CrossRef]
- Lu, X.; Yang, J.; Ma, C.; Gu, H.; Su, W. Wide-band interference mitigation algorithm for SAR based on time-varying filtering and sparse recovery. Electron. Lett. 2018, 54, 165–167. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, X.; Yang, J.; Su, W.; Gu, H. Enhanced signal processing method for integrated detection and jamming system considering the complex environment. In Proceedings of the 2021 CIE International Conference on Radar (Radar), Haikou, China, 15–19 December 2021; pp. 2233–2237. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, L.; Yang, X.; Chen, Z.; Liu, J.; Li, J.; Hong, W. An efficient graph-based algorithm for time-varying narrowband interference suppression on SAR system. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8418–8432. [Google Scholar] [CrossRef]
- Lu, X.; Xu, B.; Yeo, T.S.; Su, W.; Gu, H. Co-located MIMO radar target detection in cluttered and noisy environment based on 2D block sparse recovery. IEEE Trans. Signal Process. 2021, 69, 3431–3445. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, B. Hyperspectral anomaly detection based on low-rank representation and learned dictionary. Remote Sens. 2016, 8, 289. [Google Scholar] [CrossRef]
- Lu, X.; Gu, H.; Su, W. Noise radar range doppler imaging via 2D generalized smoothed-l0. Electron. Lett. 2021, 57, 448–450. [Google Scholar] [CrossRef]
- Zhang, K.D.; Zhou, Q.S.; Wang, J.; Zhang, J.Y.; Li, Z.H. A method for jamming waveform design in precision electronic warfare scenarios. IET Signal Process. 2022, 16, 562–574. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, H.; Wei, G.; Ji, F.; Chen, F. Parameter estimation of wideband underwater acoustic multipath channels based on fractional Fourier transform. IEEE Trans. Signal Process. 2016, 64, 5396–5408. [Google Scholar] [CrossRef]
- Deng, B.; Luan, J.B.; Cui, S.Q. Analysis of parameter estimation using the sampling-type algorithm of discrete fractional Fourier transform. Def. Technol. 2014, 10, 321–327. [Google Scholar] [CrossRef]
- Zhou, B. Distributed coherent radar LFM wideband stretch parameter estimation method. J. Electron. Inf. Technol. 2020, 42, 1566–1572. [Google Scholar]
- Ma, C.; Yeo, T.S.; Ng, B.P. Multiple input multiple output radar imaging based on multidimensional linear equations and sparse signal recovery. IET Radar Sonar Navig. 2018, 12, 3–10. [Google Scholar] [CrossRef]
- Hu, X.; Tong, N.; Zhang, Y.; Huang, D. MIMO radar imaging with nonorthogonal waveforms based on joint-block sparse recovery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5985–5996. [Google Scholar] [CrossRef]
- Cai, T.T.; Wang, L. Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inf. Theory 2011, 57, 4680–4688. [Google Scholar] [CrossRef]
- Wang, J.; Kwon, S.; Shim, B. Generalized orthogonal matching pursuit. IEEE Trans. Signal Process. 2012, 60, 6202–6216. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Y.; Jin, L.; Li, J.; Zhu, Y. An adaptive regularized smoothed l0 norm algorithm for sparse signal recovery in noisy environments. Signal Process. 2017, 135, 153–157. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
NFM bandwidth | 10 MHz |
NFM pusle duration | 10 μs |
LFM bandwidth | 10 MHz |
LFM pusle duration | 10 μs |
Carrier frequency | 10 GHz |
Pulse repetition interval | 30 μs |
Sampling rate | 20 MHz |
Target range | 40 m |
Target speed | 5 m/s |
Target amplitude | 0 dB |
Parameters | Values |
---|---|
Signal bandwidth | 10 MHz |
Signal pulse width | 10 μs |
Carrier frequency | 5 GHz |
Pulse repetition interval | 50 μs |
Sampling rate | 40 MHz |
Transmit power | 10 dBW |
Target category | Electric bicycle |
Target distance | 5–50 m |
Target speed | 5–7 m/s |
Methods | RMSRs | DMSRs |
---|---|---|
MF | 10.32 dB | 8.78 dB |
DSFF-SL0 | 17.18 dB | 17.41 dB |
JD-2DGSL0 | 31.76 dB | 29.29 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Lu, X.; Tan, K.; Yan, H.; Yang, J.; Dai, Z.; Gu, H. Co-Frequency Interference Suppression of Integrated Detection and Jamming System Based on 2D Sparse Recovery. Remote Sens. 2024, 16, 2325. https://doi.org/10.3390/rs16132325
Zhang S, Lu X, Tan K, Yan H, Yang J, Dai Z, Gu H. Co-Frequency Interference Suppression of Integrated Detection and Jamming System Based on 2D Sparse Recovery. Remote Sensing. 2024; 16(13):2325. https://doi.org/10.3390/rs16132325
Chicago/Turabian StyleZhang, Shiyuan, Xingyu Lu, Ke Tan, Huabin Yan, Jianchao Yang, Zheng Dai, and Hong Gu. 2024. "Co-Frequency Interference Suppression of Integrated Detection and Jamming System Based on 2D Sparse Recovery" Remote Sensing 16, no. 13: 2325. https://doi.org/10.3390/rs16132325