Vegetation Influences on Cloud Cover in Typical Plain and Plateau Regions of Eurasia: 2001–2021
"> Figure 1
<p>Study area. (<b>a</b>) is the elevation map of the four typical regions in Eurasia, (<b>b</b>–<b>e</b>) represent the percentage of different ecosystems of EEP, WSP, MGP, and NEP, respectively, where the gray color represents other ecosystems with less area, which are not considered in this study.</p> "> Figure 2
<p>Spatial and temporal variation of TCC and LAI from 2001–2021 (JJA). Where (<b>a</b>–<b>h</b>) are the spatial distributions of the multi-year mean (JJA) of TCC and LAI, respectively, with black numbers representing the mean of the corresponding region. Columns 1–4 represent EEP, WSP, MGP, and NEP, respectively. (<b>i</b>,<b>j</b>) are ridge plots characterizing the trend distributions of TCC and LAI (JJA), respectively, where the black dashed lines and numbers represent the median of the trends and the black solid lines represent the 25% and 75% quantiles of the trend, respectively.</p> "> Figure 3
<p>The averaged relative contribution of the leaf area index (LAI), surface albedo (Albedo), surface air temperature at 2 m (T2M), relative humidity (RH), surface sensible heat flux (SSH), surface latent heat flux (SLH), soil water content (SW), and forecast surface roughness (FSR) to total cloud cover (TCC), where (<b>a</b>–<b>d</b>) represent EEP, WSP, MGP, and NEP, respectively. The numbers represent the percentage of the relative contribution. Note that when the averaged relative contribution exceeds 15%, it is highlighted with a black outline.</p> "> Figure 4
<p>The correlation coefficient between LAI and the contribution of other factors to TCC, where (<b>a</b>,<b>c</b>) represent the farm and BDF ecosystems, respectively. The black circle indicates <span class="html-italic">p</span> < 0.1, and (<b>b</b>,<b>d</b>) are the clustering results of the farmland and BDF based on the K-means clustering method. The black <b>×</b> marks centroids of the three clusters. Note the full names of these abbreviations: LAI (leaf area index), Albedo (surface albedo), T2M (surface air temperature at 2 m), RH (relative humidity), SSH (surface sensible heat flux), SLH (surface latent heat flux), SW (soil water content), and FSR (forecast surface roughness).</p> "> Figure 5
<p>The changes in heat fluxes with LAI, where (<b>a</b>,<b>b</b>) are SSH of the farm and BDF ecosystems, while (<b>c</b>,<b>d</b>) are SLH.</p> ">
Abstract
:1. Introduction
2. Materials and methods
2.1. Study Area
2.2. Datasets
2.2.1. Land Cover and Vegetation Data
2.2.2. Environmental Conditions, Heat Fluxes, and Surface Properties Data
2.2.3. Elevation Data
2.3. Methods
2.3.1. Regression Methods
2.3.2. The 10-Fold Cross-Validation
2.3.3. The Relative Contribution of Each Factor to TCC
2.3.4. K-Means Clustering
2.3.5. The Influence of LAI on the Factor Contribution
3. Results and Discussion
3.1. Temporal—Spatial Variations of TCC and LAI
3.2. The Relative Contribution of Different Factors to TCC
3.2.1. The Relative Contribution of LAI and Heat Fluxes
3.2.2. The Relative Contribution of Environmental Conditions
3.2.3. The Relative Contribution of Surface Properties
3.3. The Regulatory Role of Vegetation
3.3.1. The Regulation of Vegetation to Cenvironment
3.3.2. The Regulation of Vegetation to Csurface
3.3.3. The Regulation of Vegetation to Cheat
3.4. A New Idea for Slowing Global Warming
3.5. Limitations and Future Perspectives
4. Conclusions
- (1)
- During 2001–2021, TCC decreased in EEP (−0.0024 month−1) and WSP (−0.0026 month−1), while it increased in MGP (0.0002 month−1) and NCP (0.0024 month−1).
- (2)
- The relative contribution of different factors to TCC was closely related to the climate and vegetation characteristics. In energy-limited (moisture-limited) areas, temperature (relative humidity) was more likely to be the factor that strongly contributed to TCC variation. In terms of energy allocation, the dry MGP tended to convert more heat into SSH rather than SLH to promote cloud formation. The contribution of LAI to TCC was higher in forest ecosystems due to the high LAI.
- (3)
- The case study shows that the contribution of other factors to TCC changed significantly with the increasing LAI, i.e., vegetation significantly regulated the contribution of other factors to TCC, but this regulation varied among ecosystems.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bosman, P.J.M.; van Heerwaarden, C.C.; Teuling, A.J. Sensible Heating as a Potential Mechanism for Enhanced Cloud Formation over Temperate Forest. Q. J. R. Meteorol. Soc. 2019, 145, 450–468. [Google Scholar] [CrossRef]
- Cho, M.-H.; Yang, A.-R.; Baek, E.-H.; Kang, S.M.; Jeong, S.-J.; Kim, J.Y.; Kim, B.-M. Vegetation-Cloud Feedbacks to Future Vegetation Changes in the Arctic Regions. Clim. Dyn. 2018, 50, 3745–3755. [Google Scholar] [CrossRef]
- Xu, R.; Li, Y.; Teuling, A.J.; Zhao, L.; Spracklen, D.V.; Garcia-Carreras, L.; Meier, R.; Chen, L.; Zheng, Y.; Lin, H.; et al. Contrasting Impacts of Forests on Cloud Cover Based on Satellite Observations. Nat. Commun. 2022, 13, 670. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Zeng, Z.; Piao, S.; Li, L.Z.X.; Wang, T.; Ciais, P.; Lian, X.; Yang, Y.; Mao, J.; Shi, X.; Myneni, R.B. Impact of Earth Greening on the Terrestrial Water Cycle. J. Clim. 2018, 31, 2633–2650. [Google Scholar] [CrossRef]
- Garcia-Carreras, L.; Marsham, J.H.; Spracklen, D.V. Observations of Increased Cloud Cover over Irrigated Agriculture in an Arid Environment. J. Hydrometeorol. 2017, 18, 2161–2172. [Google Scholar] [CrossRef]
- Laguë, M.M.; Swann, A.L.S. Progressive Midlatitude Afforestation: Impacts on Clouds, Global Energy Transport, and Precipitation. J. Clim. 2016, 29, 5561–5573. [Google Scholar] [CrossRef]
- Portmann, R.; Beyerle, U.; Davin, E.; Fischer, E.M.; De Hertog, S.; Schemm, S. Global Forestation and Deforestation Affect Remote Climate via Adjusted Atmosphere and Ocean Circulation. Nat. Commun. 2022, 13, 5569. [Google Scholar] [CrossRef] [PubMed]
- Sikma, M.; de Arellano, J.V.; Pedruzo-Bagazgoitia, X.; Voskamp, T.; Heusinkveld, B.; Anten, N.; Evers, J. Impact of Future Warming and Enhanced [CO2] on the Vegetation-Cloud Interaction. J. Geophys. Res. 2019, 124, 12444–12454. [Google Scholar] [CrossRef]
- Manoli, G.; Domec, J.-C.; Novick, K.A.; Oishi, A.C.; Noormets, A.; Marani, M.; Katul, G.G. Soil–Plant–Atmosphere Conditions Regulating Convective Cloud Formation above Southeastern US Pine Plantations. Glob. Chang. Biol. 2016, 22, 2238–2254. [Google Scholar] [CrossRef]
- Sakaguchi, K.; Berg, L.K.; Chen, J.; Fast, J.; Newsom, R.; Tai, S.-L.; Yang, Z.; Gustafson, W.I.; Gaudet, B.J.; Huang, M.; et al. Determining Spatial Scales of Soil Moisture—Cloud Coupling Pathways Using Semi-Idealized Simulations. J. Geophys. Res. Atmos. 2022, 127, e2021JD035282. [Google Scholar] [CrossRef]
- Taylor, C.M.; de Jeu, R.A.M.; Guichard, F.; Harris, P.P.; Dorigo, W.A. Afternoon Rain More Likely over Drier Soils. Nature 2012, 489, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Jach, L.; Warrach-Sagi, K.; Ingwersen, J.; Kaas, E.; Wulfmeyer, V. Land Cover Impacts on Land-Atmosphere Coupling Strength in Climate Simulations with WRF Over Europe. J. Geophys. Res. Atmos. 2020, 125, e2019JD031989. [Google Scholar] [CrossRef]
- Bell, J.P.; Tompkins, A.M.; Bouka-Biona, C.; Sanda, I.S. A Process-based Investigation into the Impact of the Congo Basin Deforestation on Surface Climate. J. Geophys. Res. 2015, 120, 5721–5739. [Google Scholar] [CrossRef]
- Heinze, R.; Moseley, C.; Böske, L.N.; Muppa, S.K.; Maurer, V.; Raasch, S.; Stevens, B. Evaluation of Large-Eddy Simulations Forced with Mesoscale Model Output for a Multi-Week Period during a Measurement Campaign. Atmos. Chem. Phys. 2017, 17, 7083–7109. [Google Scholar] [CrossRef]
- Chagnon, F.J.F.; Bras, R.L.; Wang, J. Climatic Shift in Patterns of Shallow Clouds over the Amazon. Geophys. Res. Lett. 2004, 31, L24212. [Google Scholar] [CrossRef]
- Wang, J.; Chagnon, F.J.F.; Williams, E.; Betts, A.K.; Renno, N.O.; Machado, L.A.T.; Bisht, G.; Knox, R.G.; Bras, R.L. Impact of Deforestation in the Amazon Basin on Cloud Climatology. Proc. Natl. Acad. Sci. USA 2009, 106, 3670–3674. [Google Scholar] [CrossRef] [PubMed]
- Spracklen, D.V.; Bonn, B.; Carslaw, K.S. Boreal Forests, Aerosols and the Impacts on Clouds and Climate. Philos. Trans. R. Soc. A 2008, 366, 4613–4626. [Google Scholar] [CrossRef]
- Zhao, D.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, T.F. Environmental Conditions Regulate the Impact of Plants on Cloud Formation. Nat. Commun. 2017, 8, 14067. [Google Scholar] [CrossRef] [PubMed]
- Carleton, A.M.; Adegoke, J.; Allard, J.; Arnold, D.L.; Travis, D.J. Summer Season Land Cover—Convective Cloud Associations for the Midwest U.S. “Corn Belt”. Geophys. Res. Lett. 2001, 28, 1679–1682. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Bohrer, G.; Cai, Y.; Wilson, A.; Hu, T.; Wang, Z.; Zhao, K. Impacts of Forest Loss on Local Climate across the Conterminous United States: Evidence from Satellite Time-Series Observations. Sci. Total Environ. 2021, 802, 149651. [Google Scholar] [CrossRef] [PubMed]
- O’neal, M. Interactions between Land Cover and Convective Cloud Cover over Midwestern North America Detected from GOES Satellite Data. Int. J. Remote Sens. 1996, 17, 1149–1181. [Google Scholar] [CrossRef]
- da Silva, H.J.F.; Gonçalves, W.A.; Bezerra, B.G.; Santos e Silva, C.M.; Oliveira, C.P.D.; Mutti, P.R. Cláudio Moisés Santos e Silva; Cristiano Prestrelo de Oliveira; Mutti, P.R. Analysis of the Influence of Deforestation on the Microphysical Parameters of Clouds in the Amazon. Remote Sens. 2022, 14, 5353. [Google Scholar] [CrossRef]
- Heiblum, R.H.; Koren, I.; Feingold, G. On the Link between Amazonian Forest Properties and Shallow Cumulus Cloud Fields. Atmos. Chem. Phys. 2014, 14, 6063–6074. [Google Scholar] [CrossRef]
- Pinto, E.; Shin, Y.; Cowling, S.A.; Jones, C.; Jones, C.D. Past, Present and Future Vegetation-Cloud Feedbacks in the Amazon Basin. Clim. Dyn. 2009, 32, 741–751. [Google Scholar] [CrossRef]
- Pauli, E.; Cermak, J.; Teuling, R.; Teuling, A.J. Enhanced Nighttime Fog and Low Stratus Occurrence over the Landes Forest, France. Geophys. Res. Lett. 2022, 49, e2021GL097058. [Google Scholar] [CrossRef]
- Teuling, A.J.; Taylor, C.M.; Meirink, J.F.; Melsen, L.A.; Miralles, D.G.; Van Heerwaarden, C.C.; Vautard, R.; Stegehuis, A.I.; Nabuurs, G.-J.; Vila-Guerau de Arellano, J. Observational Evidence for Cloud Cover Enhancement over Western European Forests. Nat. Commun. 2017, 8, 14065. [Google Scholar] [CrossRef] [PubMed]
- Copernicus Climate Change Service. Land Cover Classification Gridded Maps from 1992 to Present Derived from Satellite Observations. 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview (accessed on 4 July 2022).
- Li, J.; Xiao, Z. Evaluation of the Version 5.0 Global Land Surface Satellite (GLASS) Leaf Area Index Product Derived from MODIS Data. Int. J. Remote Sens. 2020, 41, 9140–9160. [Google Scholar] [CrossRef]
- Xiang, Y.; Xiao, Z.Q.; Liang, S.; Wang, J.D.; Song, J.L. Validation of Global LAnd Surface Satellite (GLASS) Leaf Area Index Product. J. Remote Sens. 2014, 18, 573–596. [Google Scholar]
- Zhao, Y.; Feng, J.; Luo, L.; Bai, L.; Wan, H.; Ren, H. Monitoring Cropping Intensity Dynamics across the North China Plain from 1982 to 2018 Using GLASS LAI Products. Remote Sens. 2021, 13, 3911. [Google Scholar] [CrossRef]
- Wu, H.; Xu, X.; Luo, T.; Yang, Y.; Xiong, Z.; Wang, Y. Variation and Comparison of Cloud Cover in MODIS and Four Reanalysis Datasets of ERA-Interim, ERA5, MERRA-2 and NCEP. Atmos. Res. 2023, 281, 106477. [Google Scholar] [CrossRef]
- Yao, B.; Teng, S.; Lai, R.; Xu, X.; Yin, Y.; Shi, C.; Liu, C. Can Atmospheric Reanalyses (CRA and ERA5) Represent Cloud Spatiotemporal Characteristics? Atmos. Res. 2020, 244, 105091. [Google Scholar] [CrossRef]
- Dai, A. The Diurnal Cycle from Observations and ERA5 in Surface Pressure, Temperature, Humidity, and Winds. Clim. Dyn. 2023, 61, 2965–2990. [Google Scholar] [CrossRef]
- Martens, B.; Schumacher, D.L.; Wouters, H.; Muñoz-Sabater, J.; Verhoest, N.E.C.; Miralles, D.G. Evaluating the Land-Surface Energy Partitioning in ERA5. Geosci. Model Dev. 2020, 13, 4159–4181. [Google Scholar] [CrossRef]
- Xin, Y.; Liu, J.; Liu, X.; Liu, G.; Cheng, X.; Chen, Y. Reduction of Uncertainties in Surface Heat Flux over the Tibetan Plateau from ERA-Interim to ERA5. Int. J. Climatol. 2022, 42, 6277–6292. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Monthly Averaged Data on Single Levels from 1940 to Present. 2023. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.f17050d7?tab=overview (accessed on 4 August 2022).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Monthly Averaged Data on Pressure Levels from 1940 to Present. 2023. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.6860a573?tab=overview (accessed on 4 August 2022).
- Lu, T.; Han, Y.; Dong, L.; Zhang, Y.; Zhu, X.; Xu, D. Evapotranspiration Responses to CO2 and Its Driving Mechanisms in Four Ecosystems Based on CMIP6 Simulations: Forest, Shrub, Farm and Grass. Environ. Res. 2023, 223, 115417. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Li, K.; Dickerson, R.R.; Pinker, R.T.; Wang, J.; Liu, X.; Sun, L.; Xue, W.; Cribb, M. Full-Coverage Mapping and Spatiotemporal Variations of Ground-Level Ozone (O3) Pollution from 2013 to 2020 across China. Remote Sens. Environ. 2022, 270, 112775. [Google Scholar] [CrossRef]
- He, Q.; Zhang, M.; Huang, B. Spatio-Temporal Variation and Impact Factors Analysis of Satellite-Based Aerosol Optical Depth over China from 2002 to 2015. Atmos. Environ. 2016, 129, 79–90. [Google Scholar] [CrossRef]
- Wold, H. Soft modeling: The basic design and some extensions. In Systems under Indirect Observations: Part II; Joreskog, K.G., Wold, H., Eds.; North-Holland: Amsterdam, The Netherlands, 1982; pp. 1–54. [Google Scholar]
- Li, Q. Statistical Modeling Experiment of Land Precipitation Variations since the Start of the 20th Century with External Forcing Factors. Chin. Sci. Bull. 2020, 65, 2266–2278. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Z.; Guo, L.; He, H.S.; Ling, Y.; Wang, L.; Zong, S.; Na, R.; Du, H.; Li, M.-H. Effects of Winter Chilling vs. Spring Forcing on the Spring Phenology of Trees in a Cold Region and a Warmer Reference Region. Sci. Total Environ. 2020, 725, 138323. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Shen, M.; Zhou, J.; Chen, J. Modeling Vegetation Green-up Dates across the Tibetan Plateau by Including Both Seasonal and Daily Temperature and Precipitation. Agric. For. Meteorol. 2018, 249, 176–186. [Google Scholar] [CrossRef]
- Chao, L.; Li, Q.; Dong, W.; Yang, Y.; Guo, Z.; Huang, B.; Zhou, L.; Jiang, Z.; Zhai, P.; Jones, P. Vegetation Greening Offsets Urbanization-Induced Fast Warming in Guangdong, Hong Kong, and Macao Region (GHMR). Geophys. Res. Lett. 2021, 48, e2021GL095217. [Google Scholar] [CrossRef]
- Chen, C.; He, B.; Guo, L.; Zhang, Y.; Xie, X.; Chen, Z. Identifying Critical Climate Periods for Vegetation Growth in the Northern Hemisphere. J. Geophys. Res. Biogeosci. 2018, 123, 2541–2552. [Google Scholar] [CrossRef]
- Emerson, J.B.; Varner, R.K.; Wik, M.; Parks, D.H.; Neumann, R.B.; Johnson, J.E.; Singleton, C.M.; Woodcroft, B.J.; Tollerson, R.; Owusu-Dommey, A.; et al. Diverse Sediment Microbiota Shape Methane Emission Temperature Sensitivity in Arctic Lakes. Nat. Commun. 2021, 12, 5815. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Cribb, M.; Huang, W.; Xue, W.; Sun, L.; Guo, J.; Peng, Y.; Li, J.; Lyapustin, A.; et al. Improved 1 Km Resolution PM2.5 Estimates across China Using Enhanced Space–Time Extremely Randomized Trees. Atmos. Chem. Phys. 2020, 20, 3273–3289. [Google Scholar] [CrossRef]
- Xue, W.; Wei, J.; Zhang, J.; Sun, L.; Che, Y.; Yuan, M.; Hu, X. Inferring Near-Surface PM2.5 Concentrations from the VIIRS Deep Blue Aerosol Product in China: A Spatiotemporally Weighted Random Forest Model. Remote Sens. 2021, 13, 505. [Google Scholar] [CrossRef]
- Fu, J.; Gong, Y.; Zheng, W.; Zou, J.; Zhang, M.; Zhang, Z.; Qin, J.; Liu, J.; Quan, B. Spatial-Temporal Variations of Terrestrial Evapotranspiration across China from 2000 to 2019. Sci. Total Environ. 2022, 825, 153951. [Google Scholar] [CrossRef] [PubMed]
- Zeraatpisheh, M.; Ayoubi, S.; Brungard, C.W.; Finke, P. Disaggregating and Updating a Legacy Soil Map Using DSMART, Fuzzy c-Means and k-Means Clustering Algorithms in Central Iran. Geoderma 2019, 340, 249–258. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, J.; Liu, Q.; Song, J.; Tysklind, M.; Liu, C.; Wang, D.; Qu, Y.; Wu, Y.; Wu, F. Comparison and Application of SOFM, Fuzzy c-Means and k-Means Clustering Algorithms for Natural Soil Environment Regionalization in China. Environ. Res. 2023, 216, 114519. [Google Scholar] [CrossRef] [PubMed]
- Borge, R.; Jung, D.; Lejarraga, I.; de la Paz, D.; Cordero, J.M. Assessment of the Madrid Region Air Quality Zoning Based on Mesoscale Modelling and K-Means Clustering. Atmos. Environ. 2022, 287, 119258. [Google Scholar] [CrossRef]
- Wang, Q.; Ju, Q.; Wang, Y.; Fu, X.; Zhao, W.; Du, Y.; Jiang, P.; Hao, Z. Regional Patterns of Vegetation Dynamics and Their Sensitivity to Climate Variability in the Yangtze River Basin. Remote Sens. 2022, 14, 5623. [Google Scholar] [CrossRef]
- Yan, G.; Liu, J.; Zhu, L.; Zhai, J.; Cong, L.; Ma, W.; Wang, Y.; Wu, Y.; Zhang, Z. Effectiveness of Wetland Plants as Biofilters for Inhalable Particles in an Urban Park. J. Clean. Prod. 2018, 194, 435–443. [Google Scholar] [CrossRef]
- Lin, H.; Li, Y.; Zhao, L. Partitioning of Sensible and Latent Heat Fluxes in Different Vegetation Types and Their Spatiotemporal Variations Based on 203 FLUXNET Sites. JGR Atmos. 2022, 127, e2022JD037142. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust Responses of the Hydrological Cycle to Global Warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Stoy, P.C. Deforestation Intensifies Hot Days. Nat. Clim. Chang. 2018, 8, 366–368. [Google Scholar] [CrossRef]
- Hsu, H.; Dirmeyer, P.A. Uncertainty in Projected Critical Soil Moisture Values in CMIP6 Affects the Interpretation of a More Moisture-Limited World. Earth’s Future 2023, 11, e2023EF003511. [Google Scholar] [CrossRef]
- Hsu, H.; Dirmeyer, P.A. Soil Moisture-Evaporation Coupling Shifts into New Gears under Increasing CO2. Nat. Commun. 2023, 14, 1162. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Zhou, X.; Kellomäki, S.; Peltola, H.; Wang, K. Climate, Canopy Conductance and Leaf Area Development Controls on Evapotranspiration in a Boreal Coniferous Forest over a 10-Year Period: A United Model Assessment. Ecol. Model. 2011, 222, 1626–1638. [Google Scholar] [CrossRef]
- Yang, Y.; McVicar, T.R.; Yang, D.; Zhang, Y.; Piao, S.; Peng, S.; Beck, H.E. Low and Contrasting Impacts of Vegetation CO2 Fertilization on Global Terrestrial Runoff over 1982–2010: Accounting for Aboveground and Belowground Vegetation-CO2 Effects. Hydrol. Earth Syst. Sci. 2021, 25, 3411–3427. [Google Scholar] [CrossRef]
- Chen, J.; Dai, A.; Zhang, Y.; Rasmussen, K.L. Changes in Convective Available Potential Energy and Convective Inhibition under Global Warming. J. Clim. 2020, 33, 2025–2050. [Google Scholar] [CrossRef]
- Yin, J.; Albertson, J.D.; Rigby, J.R.; Porporato, A. Land and Atmospheric Controls on Initiation and Intensity of Moist Convection: CAPE Dynamics and LCL Crossings. Water Resour. Res. 2015, 51, 8476–8493. [Google Scholar] [CrossRef]
- Cerasoli, S.; Yin, J.; Porporato, A. Cloud Cooling Effects of Afforestation and Reforestation at Midlatitudes. Proc. Natl. Acad. Sci. USA 2021, 118, e2026241118. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Su, J.; Xu, Y.; Han, X.; Peng, N.; Ge, J. Radiative Contributions of Different Cloud Types to Regional Energy Budget over the SACOL Site. Clim. Dyn. 2023, 61, 1697–1715. [Google Scholar] [CrossRef]
- Cao, L. Climate System Response to Solar Radiation Modification. Clim. Chang. Res. 2021, 17, 671–684. [Google Scholar]
- Intergovernmental Panel on Climate Change (Ipcc). IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-915789-6. [Google Scholar]
- Chen, Y.; Haywood, J.; Wang, Y.; Malavelle, F.; Jordan, G.; Partridge, D.; Fieldsend, J.; De Leeuw, J.; Schmidt, A.; Cho, N.; et al. Machine Learning Reveals Climate Forcing from Aerosols Is Dominated by Increased Cloud Cover. Nat. Geosci. 2022, 15, 609–614. [Google Scholar] [CrossRef]
- Shrestha, N. Detecting Multicollinearity in Regression Analysis. AJAMS 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Keith, T.Z. Multiple Regression and Beyond: An Introduction to Multiple Regression and Structural Equation Modeling, 3rd ed.; Routledge: New York, NY, USA, 2019; ISBN 978-1-315-16234-8. [Google Scholar]
- Chatterjee, S.; Simonoff, J.S. Handbook of Regression Analysis, 1st ed.; Wiley: Hoboken, NJ, USA, 2012; ISBN 978-0-470-88716-5. [Google Scholar]
- O’brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Lawrence, M.G. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bull. Amer. Meteor. Soc. 2005, 86, 225–234. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.; Han, Y.; Zhou, Q.; Dong, L.; Zhang, Y.; Deng, X.; Xu, D. Vegetation Influences on Cloud Cover in Typical Plain and Plateau Regions of Eurasia: 2001–2021. Remote Sens. 2024, 16, 2048. https://doi.org/10.3390/rs16122048
Lu T, Han Y, Zhou Q, Dong L, Zhang Y, Deng X, Xu D. Vegetation Influences on Cloud Cover in Typical Plain and Plateau Regions of Eurasia: 2001–2021. Remote Sensing. 2024; 16(12):2048. https://doi.org/10.3390/rs16122048
Chicago/Turabian StyleLu, Tianwei, Yong Han, Qicheng Zhou, Li Dong, Yurong Zhang, Ximing Deng, and Danya Xu. 2024. "Vegetation Influences on Cloud Cover in Typical Plain and Plateau Regions of Eurasia: 2001–2021" Remote Sensing 16, no. 12: 2048. https://doi.org/10.3390/rs16122048
APA StyleLu, T., Han, Y., Zhou, Q., Dong, L., Zhang, Y., Deng, X., & Xu, D. (2024). Vegetation Influences on Cloud Cover in Typical Plain and Plateau Regions of Eurasia: 2001–2021. Remote Sensing, 16(12), 2048. https://doi.org/10.3390/rs16122048