A Space-Time Variational Method for Retrieving Upper-Level Vortex Winds from GOES-16 Rapid Scans over Hurricanes
<p>(<b>a</b>) Correlation function constructed using <span class="html-italic">G</span><sub>0</sub>(<span class="html-italic">r<sub>i</sub></span>, <span class="html-italic">r<sub>j</sub></span>)<span class="html-italic">C</span>(<span class="html-italic">β<sub>i</sub></span>, <span class="html-italic">β<sub>j</sub></span>) for the radial-component velocity <span class="html-italic">v<sub>r</sub></span> plotted as functions of (<span class="html-italic">x<sub>i</sub></span>, <span class="html-italic">y<sub>i</sub></span>), with green, orange, blue, and purple contours corresponding to four different locations where (<span class="html-italic">x<sub>j</sub></span>, <span class="html-italic">y<sub>j</sub></span>) is fixed at radial distances of <span class="html-italic">R</span> = 14.1, 113.1, 212.1, and 339.4 km, respectively, along the diagonal line northeastward away from the vortex center marked by red + sign. (<b>b</b>) As in (<b>a</b>) but for correlation function constructed for the tangential-component velocity <span class="html-italic">v<sub>t</sub></span>. Here, (<span class="html-italic">x<sub>i</sub></span>, <span class="html-italic">y<sub>i</sub></span>) and (<span class="html-italic">x<sub>j</sub></span>, <span class="html-italic">y<sub>j</sub></span>) are the same two paired correlation points as (<span class="html-italic">r<sub>i</sub></span>, <span class="html-italic">β<sub>i</sub></span>) and (<span class="html-italic">r<sub>j</sub></span>, <span class="html-italic">β<sub>j</sub></span>), respectively, but transformed and expressed in the original physical space. In each panel, the correlation function is plotted as a function of (<span class="html-italic">x<sub>i</sub></span>, <span class="html-italic">y<sub>i</sub></span>) for each fixed (<span class="html-italic">x<sub>j</sub></span>, <span class="html-italic">y<sub>j</sub></span>) using nine contours of the same color, with the contour values labeled every 0.1 from 0.1 to 0.9.</p> "> Figure 2
<p>(<b>a</b>) Retrieved (ground-relative) vortex winds (plotted using black arrows atop the color shades of GOES-16 band-13 brightness temperature image for <span class="html-italic">T<sub>b</sub><sup>ob</sup></span> < 280 °K) obtained by applying the new method to GOES-16 band-13 brightness temperature images scanned (every minute) over Hurricane Laura around 06:00 UTC on 27 August 2020. (<b>b</b>) Operational products of AMVs derived from GOES-16 band-14 (10.3 µm) brightness temperature image displacements around 06:00 UTC on 27 August 2020 (with the AMVs shown using wind bars and the assigned pressure levels shown in mb). (<b>c</b>) As in (<b>a</b>) but atop the color shades of cloud top height. (<b>d</b>) Super-high-resolution AMVs (plotted by black arrows) derived by applying the optical flow technique to GOES-16 band-13 brightness temperature images scanned at 05:59 and 06:00 UTC. In each panel, the coastline and state lines are plotted in thin solid black. The hurricane vortex center is shown by the red dot in (<b>b</b>,<b>d</b>).</p> "> Figure 3
<p>(<b>a</b>) Depths (shown by color shades) of available radar velocity observations (from the operational KHGX radar in narrow arc-shape areas) within 3 km from the cloud top (with the cloud top height plotted using black contours) over Hurricane Laura. (<b>b</b>) Values of available radar velocity observations (shown with color shades in narrow arc-shape areas within 3 km below the cloud top) within the magnified area enclosed by cyan boundary lines in (<b>a</b>). (<b>c</b>) As in (<b>b</b>) but for projected components (along the radar beams) of the new-method retrieved vortex winds (shown using the black arrows from <a href="#remotesensing-16-00032-f002" class="html-fig">Figure 2</a>a). (<b>d</b>) As in (<b>b</b>) but for projected components of the optical-flow technique derived super-high-resolution AMVs (shown using the black arrows from <a href="#remotesensing-16-00032-f002" class="html-fig">Figure 2</a>d). (<b>e</b>) As in (<b>c</b>) but the color shades show the differences of projected component velocities in (<b>c</b>) from the radar observed in (<b>b</b>). (<b>f</b>) As in (<b>d</b>) but the color shades show the differences of projected component velocities in (<b>d</b>) from the radar observed in (<b>b</b>). In each panel, the red lines show the cardinal and intercardinal directions from the radar, and the red dot marks the hurricane vortex center. The color scale for radar observed velocities shown on the right side of panel (<b>b</b>) also applies to the color shades in panels (<b>c</b>–<b>f</b>).</p> "> Figure 4
<p>As in <a href="#remotesensing-16-00032-f002" class="html-fig">Figure 2</a> but around 03:00 UTC on 27 August 2020.</p> "> Figure 5
<p>As in <a href="#remotesensing-16-00032-f003" class="html-fig">Figure 3</a> but around 03:00 UTC on 27 August 2020.</p> "> Figure 6
<p>As in <a href="#remotesensing-16-00032-f002" class="html-fig">Figure 2</a> but for Hurricane Ida around 16:00 UTC on 29 August 2021.</p> "> Figure 7
<p>As in <a href="#remotesensing-16-00032-f003" class="html-fig">Figure 3</a> but for Hurricane Ida around 16:00 UTC on 29 August 2021 with available radial-velocity observations (within 3 km below the cloud top) from the operational KLIX radar.</p> "> Figure 8
<p>As in <a href="#remotesensing-16-00032-f006" class="html-fig">Figure 6</a> but around 15:00 UTC on 29 August 2021.</p> "> Figure 9
<p>As in <a href="#remotesensing-16-00032-f007" class="html-fig">Figure 7</a> but around 15:00 UTC on 29 August 2021.</p> ">
Abstract
:1. Introduction
2. Space-Time Variational Method
2.1. VF-Dependent Covariance Functions
2.2. Cost Function
3. Applications to Hurricane Laura on 27 August 2020
3.1. Retrieved Vortex Winds at 06:00 UTC
3.2. Retrieved Vortex Winds at 03:00 UTC
4. Applications to Hurricane Ida on 29 August 2021
4.1. Retrieved Vortex Winds at 16:00 UTC
4.2. Retrieved Vortex Winds at 15:00 UTC
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velden, C.S.; Hayden, C.; Nieman, S.; Menzel, W.; Wanzong, S.; Goerss, J. Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations. Bull. Am. Meteorol. Soc. 1997, 78, 173–195. [Google Scholar] [CrossRef]
- Velden, C.; Daniels, J.; Stettner, D.; Santek, D.; Key, J.; Dunion, J.; Holmlund, K.; Dengel, G.; Bresky, W.; Menzel, P. Recent Innovations in Deriving Tropospheric Winds from Meteorological Satellites. Bull. Am. Meteorol. Soc. 2005, 86, 205–223. [Google Scholar] [CrossRef]
- Velden, C.S.; Olander, T.; Wanzong, S. The Impact of Multispectral GOES-8 Wind Information on Atlantic Tropical Cyclone Track Forecasts in 1995. Part 1: Dataset Methodology, Description and Case Analysis. Mon. Weather Rev. 1998, 126, 1202–1218. [Google Scholar] [CrossRef]
- Goerss, J.S.; Velden, C.S.; Hawkins, J.D. The Impact of Multispectral GOES-8 Wind Information on Atlantic Tropical Cyclone Track Forecasts in 1995. Part II: NOGAPS Forecasts. Mon. Weather Rev. 1998, 126, 1219–1227. [Google Scholar] [CrossRef]
- Goerss, J.S. Impact of satellite observations on the tropical cyclone track forecasts of the Navy Operational Global Atmospheric Prediction System. Mon. Weather Rev. 2009, 137, 41–50. [Google Scholar] [CrossRef]
- Pu, Z.; Li, X.; Velden, C.; Aberson, S.; Liu, W. The Impact of Aircraft Dropsonde and Satellite Wind Data on Numerical Simulations of Two Landfalling Tropical Storms during the Tropical Cloud Systems and Processes Experiment. Weather Forecast. 2008, 23, 62–79. [Google Scholar] [CrossRef]
- Wu, T.; Liu, H.; Majumdar, S.; Velden, C.; Anderson, J. Influence of Assimilating Satellite-Derived Atmospheric Motion Vector Observations on Numerical Analyses and Forecasts of Tropical Cyclone Track and Intensity. Mon. Weather Rev. 2014, 142, 49–71. [Google Scholar] [CrossRef]
- Wu, T.; Velden, C.; Majumdar, S.; Liu, H.; Anderson, J. Understanding the Influence of Assimilating Subsets of Enhanced Atmospheric Motion Vectors on Numerical Analyses and Forecasts of Tropical Cyclone Track and Intensity with an Ensemble Kalman Filter. Mon. Weather Rev. 2015, 143, 2506–2531. [Google Scholar] [CrossRef]
- Velden, C.; Lewis, W.; Bresky, W.; Stettner, D.; Daniels, J.; Wanzong, S. Assimilation of High-Resolution Satellite-Derived Atmospheric Motion Vectors: Impact on HWRF Forecasts of Tropical Cyclone Track and Intensity. Mon. Weather Rev. 2017, 145, 1107–1125. [Google Scholar] [CrossRef]
- Stettner, D.; Velden, C.; Rabin, R.; Wanzong, S.; Daniels, J.; Bresky, W. Development of enhanced vortex-scale atmospheric motion vectors for hurricane applications. Remote Sens. 2019, 11, 1981. [Google Scholar] [CrossRef]
- Brox, T.; Bruhn, A.; Papenberg, N.; Weickert, J. High accuracy optical flow estimation based on a theory for warping. In Proceedings of the European Conference on Computer Vision (ECCV), Prague, Czech Republic, 11–14 May 2004; Pajdla, T., Matas, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3024, pp. 25–36. [Google Scholar]
- Mendes, L.P.N.; Ricardo, A.M.C.; Bernardino, A.J.M.; Rui, L. A Comparative Study of Optical Flow Methods for Fluid Mechanics. Exp. Fluids 2022, 63, 7. [Google Scholar] [CrossRef]
- Qiu, C.; Xu, Q. A Simple Adjoint Method of Wind Analysis for Single-Doppler Data. J. Atmos. Ocean. Technol. 1992, 9, 588–598. [Google Scholar] [CrossRef]
- Xu, Q.; Qiu, C.; Yu, J. Adjoint-Method Retrievals of Low-Altitude Wind Fields from Single-Doppler Reflectivity Measured during Phoenix II. J. Atmos. Ocean. Technol. 1994, 11, 275–288. [Google Scholar] [CrossRef]
- Xu, Q.; Qiu, C.; Gu, H.; Yu, J. Simple Adjoint Retrievals of Microburst Winds from Single-Doppler Radar Data. Mon. Weather Rev. 1995, 123, 1822–1833. [Google Scholar] [CrossRef]
- Laroche, S.; Zawadzki, I. A Variational Analysis Method for Retrieval of Three-Dimensional Wind Field from Single-Doppler Radar Data. J. Atmos. Sci. 1994, 51, 2664–2682. [Google Scholar] [CrossRef]
- Shapiro, A.; Ellis, S.; Shaw, J. Single-Doppler Velocity Retrievals with Phoenix II Data: Clear Air and Microburst Wind Retrievals in the Planetary Boundary Layer. J. Atmos. Sci. 1994, 52, 1265–1287. [Google Scholar] [CrossRef]
- Qiu, C.; Xu, Q. Least Squares Retrieval of Microburst Winds from Single-Doppler Radar Data. Mon. Weather Rev. 1996, 124, 1132–1144. [Google Scholar] [CrossRef]
- Daley, R. Atmospheric Data Analysis; Cambridge University Press: New York, NY, USA, 1991; pp. 1–457. [Google Scholar]
- Gaspari, G.; Cohn, S.E. Construction of Correlation Functions in Two and Three Dimensions. Q. J. R. Meteorol. Soc. 1999, 125, 723–757. [Google Scholar] [CrossRef]
- Purser, R.J.; Wu, W.S.; Parrish, D.F.; Roberts, N.M. Numerical Aspects of the Application of Recursive Filters to Variational Statistical Analysis. Part I: Spatially Homogeneous and Isotropic Gaussian Covariances. Mon. Weather Rev. 2003, 131, 1524–1535. [Google Scholar] [CrossRef]
- Wu, W.-S.; Purser, R.J.; Parrish, D.F. Three-Dimensional Variational Analysis with Spatially Inhomogeneous Covariances. Mon. Weather Rev. 2002, 130, 2905–2916. [Google Scholar] [CrossRef]
- Gao, J.; Xue, M.; Brewster, K.; Droegemeier, K.K. A Three-Dimensional Variational Data Assimilation Method with Recursive Filter for Doppler Radars. J. Atmos. Ocean. Technol. 2004, 21, 457–469. [Google Scholar] [CrossRef]
- Xu, Q. Representations of Inverse Covariances by Differential Operators. Adv. Atmos. Sci. 2005, 22, 181–198. [Google Scholar] [CrossRef]
- Xu, Q. On the Choice of Momentum Control Variables and Covariance Modeling for Mesoscale Data Assimilation. J. Atmos. Sci. 2019, 76, 89–111. [Google Scholar] [CrossRef]
- Xu, Q.; Wei, L.; Nai, K. Analyzing Vortex Winds in Radar Observed Tornadic Mesocyclones for Nowcast Applications. Weather Forecast. 2015, 30, 1140–1157. [Google Scholar] [CrossRef]
- Xu, Q. A Variational Method for Analyzing Vortex Flows in Radar-Scanned Tornadic Mesocyclones. Part I: Formulations and Theoretical Considerations. J. Atmos. Sci. 2021, 78, 825–841. [Google Scholar] [CrossRef]
- Gal-Chen, T. Errors in Fixed and Moving Frame of References: Applications for Conventional and Doppler Radar Analysis. J. Atmos. Sci. 1982, 39, 2279–2300. [Google Scholar] [CrossRef]
- Chong, M.; Testud, J.; Roux, F. Three-Dimensional Wind Field Analysis from Dual-Doppler Radar Data. Part II: Minimizing the Error due to Temporal Variation. J. Clim. Appl. Meteorol. 1983, 22, 1216–1226. [Google Scholar] [CrossRef]
- Zhang, J.; Gal-Chen, T. Single-Doppler Wind Retrieval in the Moving Frame of Reference. J. Atmos. Sci. 1996, 53, 2609–2623. [Google Scholar] [CrossRef]
- Yang, S.; Xu, Q. Statistical Errors in Variational Data Assimilation—A Theoretical One-Dimensional Analysis Applied to Doppler Wind Retrieval. J. Atmos. Sci. 1996, 53, 2563–2577. [Google Scholar] [CrossRef]
- Liou, Y. Single Radar Recovery of Cross-Beam Wind Components Using a Modified Moving Frame of Reference Technique. J. Atmos. Ocean. Technol. 1999, 16, 1003–1016. [Google Scholar] [CrossRef]
- Liou, Y. An Explanation of the Wind Speed Underestimation Obtained from a Least Squares Type of Single-Doppler Radar Velocity Retrieval Method. J. Appl. Meteorol. 2002, 41, 1216–1226. [Google Scholar] [CrossRef]
- Liou, Y. Single-Doppler Retrieval of the Three-Dimensional Wind in a Deep Convective System Based on an Optimal Moving Frame of Reference. J. Meteorol. Soc. Jpn. 2007, 85, 559–582. [Google Scholar] [CrossRef]
- Xu, Q.; Wei, L. A Variational Method for Analyzing Vortex Flows in Radar-Scanned Tornadic Mesocyclones. Part III: Sensitivities to Vortex Center Location Errors. J. Atmos. Sci. 2022, 79, 1515–1530. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Wei, L.; Nai, K.; Zhang, H.; Rabin, R. A Space-Time Variational Method for Retrieving Upper-Level Vortex Winds from GOES-16 Rapid Scans over Hurricanes. Remote Sens. 2024, 16, 32. https://doi.org/10.3390/rs16010032
Xu Q, Wei L, Nai K, Zhang H, Rabin R. A Space-Time Variational Method for Retrieving Upper-Level Vortex Winds from GOES-16 Rapid Scans over Hurricanes. Remote Sensing. 2024; 16(1):32. https://doi.org/10.3390/rs16010032
Chicago/Turabian StyleXu, Qin, Li Wei, Kang Nai, Huanhuan Zhang, and Robert Rabin. 2024. "A Space-Time Variational Method for Retrieving Upper-Level Vortex Winds from GOES-16 Rapid Scans over Hurricanes" Remote Sensing 16, no. 1: 32. https://doi.org/10.3390/rs16010032