A Bayesian Source Model for the 2022 Mw6.6 Luding Earthquake, Sichuan Province, China, Constrained by GPS and InSAR Observations
<p>Tectonic setting of the 2022 Luding earthquake. (<b>a</b>) Cyan-white beach balls represent focal mechanisms of the historical earthquake since 1990 from GCMT [<a href="#B9-remotesensing-16-00103" class="html-bibr">9</a>]. The red beach ball denotes the focal mechanism of the 2022 Luding earthquake from GCMT. The dashed blue rectangle shows the area plotted in (<b>b</b>). The purple arrows represent GPS velocities [<a href="#B10-remotesensing-16-00103" class="html-bibr">10</a>]. The thin black lines show the active faults. The bold black line denotes the Xianshuihe fault and the red line represents the Moxi section of XSH fault [<a href="#B11-remotesensing-16-00103" class="html-bibr">11</a>]. The light blue polygons are the outlines of areas covered by ascending and descending Sentinel-1 InSAR observations. (<b>b</b>) The black beach balls denote focal mechanisms of Mw ≥ 3.8 earthquakes in Luding earthquake sequence [<a href="#B12-remotesensing-16-00103" class="html-bibr">12</a>]. The red beach ball denotes the focal mechanism of the 2022 Luding earthquake from USGS. The colored dots represent relocated aftershocks [<a href="#B13-remotesensing-16-00103" class="html-bibr">13</a>].</p> "> Figure 2
<p>Coseismic InSAR data of the 2022 Luding earthquake. (<b>a</b>,<b>b</b>) Interferogram of ascending 26 and descending 135, unwrapped and then re-wrapped such that adjacent fringes differ by 3 cm LOS displacement.; (<b>c</b>,<b>d</b>) LOS displacement of ascending 26 and descending 135; (<b>e</b>,<b>f</b>) LOS displacements along the two profiles (AA’ and BB’) shown in (<b>c</b>,<b>d</b>).</p> "> Figure 3
<p>Comparison between InSAR LOS data at the locations of the GPS sites and GPS data projected to LOS from horizontal components. (<b>a</b>) Ascending track InSAR LOS versus GPS LOS. (<b>b</b>) Descending track InSAR LOS versus GPS LOS. The red dashed line represents perfect agreement and the black dashed lines show a deviation of 2 mm. (<b>c</b>) Ascending InSAR LOS map. (<b>d</b>) Descending InSAR LOS map. The black triangles denote GPS sites.</p> "> Figure 4
<p>Three-dimension coseismic surface deformation. (<b>a</b>–<b>c</b>) East, north, and vertical components of the surface displacement field, respectively.</p> "> Figure 5
<p>The precisely relocated aftershock distribution. The four different colors of scatter points correspond to the aftershocks in the four mentioned regions A, B, C, and D representing the distribution of aftershocks. (<b>a</b>) Aftershocks in four major regions A, B, C and D. The black dotted lines represent derived fault trace using least squares method. (<b>b</b>–<b>e</b>) Separate aftershock distribution in four areas. The black rectangles denote profiles (AA’, BB’, CC’, DD’, EE’, FF’, GG’ and HH’). (<b>f</b>–<b>m</b>) Aftershock profiles in depth. The black dotted lines represent fault cross-section derived using least squares method.</p> "> Figure 6
<p>GPS-fitting results of uniform slip model inverted with joint GPS and InSAR data. (<b>a</b>) The black arrows show horizontal displacements. (<b>b</b>) The black arrows show static horizontal displacements of three strong motion sites. The red arrows denote model predictions. The blue line represents surface projection of uniform slip model. The thin black lines show the active faults. The bold black line denotes the Xianshuihe fault and the red line represents the Moxi section of XSHF [<a href="#B11-remotesensing-16-00103" class="html-bibr">11</a>]. The dashed blue lines outline the areas zoomed in (<b>c</b>–<b>f</b>).</p> "> Figure 7
<p>Inversion result of uniform slip model with joint GPS and InSAR data. (<b>a</b>,<b>d</b>) InSAR observations of ascending track 026 and descending track 135. (<b>b</b>,<b>e</b>) Model prediction for ascending track 026 and descending track 135. (<b>c</b>,<b>f</b>) Residuals for ascending track 026 and descending track 135. The black line in (<b>a</b>–<b>f</b>) represents surface projection of uniform slip model. (<b>g</b>,<b>h</b>) Fitting result of profile AA’ and BB’.</p> "> Figure 8
<p>GPS fitting results of optimal distributed slip model inverted with joint GPS and InSAR data. (<b>a</b>) The black arrows show horizontal displacements. (<b>b</b>) The black arrows show static horizontal displacements of three strong motion sites. The red arrows denote model predictions. The blue line represents surface projection of uniform slip model. The thin black lines show the active faults. The bold black line denotes the Xianshuihe fault and the red line represents the Moxi section of XSHF [<a href="#B11-remotesensing-16-00103" class="html-bibr">11</a>]. The dashed blue lines outline the areas zoomed in (<b>c</b>–<b>f</b>).</p> "> Figure 9
<p>Inversion result of optimal distributed slip model with joint GPS and InSAR data. (<b>a</b>,<b>d</b>) InSAR observations of ascending track 026 and descending track 135. (<b>b</b>,<b>e</b>) Model prediction for ascending track 026 and descending track 135. (<b>c</b>,<b>f</b>) Residuals for ascending track 026 and descending track 135. The black line in (<b>a</b>–<b>f</b>) represents surface projection of distributed slip model. (<b>g</b>,<b>h</b>) Fitting result of profile AA’ and BB’.</p> "> Figure 10
<p>Perspective view on the fault-rupture plane with coseismic slip distribution. Active faults are shown in black and the red line represents the Moxi section of XSHF [<a href="#B11-remotesensing-16-00103" class="html-bibr">11</a>]. The black arrows on the fault plane represent slip vectors with a value larger than 0.8 m.</p> "> Figure 11
<p>Landslides triggered by 2022 Luding earthquake from Gaofen-6 true color image of the epicentral region. The yellow polygons denote landslide area. The blue line represents surface projection of distributed slip model. The red lines represent active faults [<a href="#B11-remotesensing-16-00103" class="html-bibr">11</a>]. (<b>a</b>–<b>c</b>) Selected area in purple rectangle boxes in the main figure.</p> "> Figure 12
<p>Coseismic Coulomb stress changes induced by the 2022 Luding earthquake at different depth levels. The black dots denote relocated aftershocks between 1 and 3 km depth in (<b>a</b>), between 3 and 5 km depth in (<b>b</b>), between 5 and 7 km depth in (<b>c</b>), and between 7 and 9 km depth in (<b>d</b>). The black line in (<b>a</b>–<b>d</b>) represents surface projection of distributed slip model.</p> ">
Abstract
:1. Introduction
2. Observations and Coseismic Surface Deformation Field
2.1. InSAR Data
2.2. The Coseismic Displacement of GPS and Strong Motion Data
2.3. The Comparison between Coseismic InSAR and GPS Offsets
2.4. The Three-Dimension Coseismic Deformation of the 2022 Luding Earthquake
2.5. Aftershock Seismicity
3. Modelling
3.1. The Nonlinear Inversion for Model Parameters
3.2. The Linear Inversion for Slip Distribution
3.3. Accounting for Epistemic Uncertainties
4. Results
5. Discussion
5.1. The Comparison of Published Coseismic Slip Models
5.2. Some Thoughts on the 2022 Luding Coseismic Rupture
5.3. The Relationship between Coseismic Deformation and Landslides Triggered by the Earthquake
5.4. Coulomb Stress Change
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, Q.; Zhang, P.; Ran, Y.; Yang, X.; Min, W.; Chu, Q. Basic characteristics of active tectonics of China. Sci. China Ser. D Earth Sci. 2023, 46, 356–372. [Google Scholar] [CrossRef]
- Allen, C.R.; Zhuoli, L.; Hong, Q.; Xueze, W.; Huawei, Z.; Weishi, H. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China. Geol. Soc. Am. Bull. 1991, 103, 1178–1199. [Google Scholar] [CrossRef]
- Bai, M.; Chevalier, M.; Leloup, P.H.; Li, H.; Pan, J.; Replumaz, A.; Wang, S.; Li, K.; Wu, Q.; Liu, F.; et al. Spatial slip rate distribution along the SE Xianshuihe fault, eastern Tibet, and earthquake hazard assessment. Tectonics 2021, 40, e2021TC006985. [Google Scholar] [CrossRef]
- Wang, H.; Wright, T.J.; Biggs, J. Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data. Geophys. Res. Lett. 2009, 36, L03302. [Google Scholar] [CrossRef]
- Jiang, G.; Wen, Y.; Liu, Y.; Xu, X.; Fang, L.; Chen, G.; Gong, M.; Xu, C. Joint analysis of the 2014 Kangding, southwest China, earthquake sequence with seismicity relocation and InSAR inversion. Geophys. Res. Lett. 2015, 42, 3273–3281. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, D.; Shan, X.; Gao, Z.; Huang, X.; Gong, W. Coseismic Slip Model of the 2022 Mw 6.7 Luding (Tibet) Earthquake: Pre-and Post-Earthquake Interactions with Surrounding Major Faults. Geophys. Res. Lett. 2022, 49, e2022GL102043. [Google Scholar] [CrossRef]
- Han, B.; Liu, Z.; Chen, B.; Li, Z.; Yu, C.; Zhang, Y.; Peng, J. Coseismic deformation and slip distribution of the 2022 Luding Mw 6.6 earthquake revealed by InSAR observations. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 36–46, (In Chinese with English abstract). [Google Scholar]
- Guo, R.; Li, L.; Zhang, W.; Zhang, Y.; Tang, X.; Dai, K.; Li, Y.; Zhang, L.; Wang, J. Kinematic slip evolution during the 2022 Ms 6.8 Luding, China, earthquake: Compatible with the preseismic locked patch. Geophys. Res. Lett. 2023, 50, e2023GL103164. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Chou, T.; Woodhouse, J.H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. Solid Earth 1981, 86, 2825–2852. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.-K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Xu, X.W.; Han, Z.J.; Yang, X.P.; Zhang, S.; Yu, G.; Zhou, B.; Li, F.; Ma, B.; Chen, G.; Ran, Y. Seismotectonic Map in China and its Adjacent Regions; Seismological Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Yi, G.; Long, F.; Liang, M.; Zhao, M.; Zhang, H.; Zhou, R.; Li, Y.; Liu, H.; Wu, P.; Wang, S.; et al. Seismogenic structure of the 5 September 2022 Sichuan Luding MS6.8 earthquake sequence. Chin. J. Geophys. 2023, 66, 1363–1384, (In Chinese with English abstract). [Google Scholar]
- Zhang, L.; Zhou, Y.; Zhang, X.; Zhu, A.; Li, B.; Wang, S.; Liang, S.; Jiang, C.; Wu, J.; Li, Y.; et al. 2022 Mw 6.6 Luding, China, Earthquake: A Strong Continental Event Illuminating the Moxi Seismic Gap. Seismol. Res. Lett. 2023, 94, 2129–2142. [Google Scholar] [CrossRef]
- Wegnüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 Support in the GAMMA Software. Procedia Comput. Sci. 2016, 100, 1305–1312. [Google Scholar] [CrossRef]
- Scheiber, R.; Moreira, A. Coregistration of interferometric SAR images using spectral diversity. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2179–2191. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms. J. Opt. Soc. Am. A 2000, 17, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Xu, C.; Liu, Y.; Jiang, G. Deformation and source parameters of the 2015 Mw 6.5 earthquake in Pishan, western China, from Sentinel-1A and ALOS-2 data. Remote Sens. 2016, 8, 134. [Google Scholar] [CrossRef]
- Feng, W.; Samsonov, S.; Almeida, R.; Yassaghi, A.; Li, J.; Qiu, Q.; Li, P.; Zheng, W. Geodetic Constraints of the 2017 Mw7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros Thrust-Fold Belt. Geophys. Res. Lett. 2018, 45, 6853–6861. [Google Scholar] [CrossRef]
- Rosen, P.A.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR scientific computing environment. In Proceedings of the EUSAR 2012, 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012; pp. 730–733. [Google Scholar]
- Fialko, Y.; Simons, M.; Agnew, D. The complete (3-D) surface displacement field in the epicentral area of the 1999MW7.1 Hector Mine Earthquake, California, from space geodetic observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef]
- Wright, T.J.; Lu, Z.; Wicks, C. Source model for the Mw 6.7, 23 October 2002, Nenana mountain earthquake (Alaska) from InSAR. Geophys. Res. Lett. 2003, 30, 1974. [Google Scholar] [CrossRef]
- Atzori, S.; Hunstad, I.; Chini, M.; Salvi, S.; Tolomei, C.; Bignami, C.; Stramondo, S.; Trasatti, E.; Antonioli, A.; Boschi, E. Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy). Geophys. Res. Lett. 2009, 36, L15305. [Google Scholar] [CrossRef]
- Lohman, R.B.; Simons, M. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling. Geochem. Geophys. Geosystems 2005, 6, Q01007. [Google Scholar] [CrossRef]
- Bagnardi, M.; Hooper, A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A Bayesian approach. Geochem. Geophys. Geosystems 2018, 19, 2194–2211. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Parsons, B.; Wright, T.; Rowe, P.; Andrews, J.; Jackson, J.; Walker, R.; Khatib, M.; Talebian, M.; Bergman, E.; Engdahl, E.R. The 1994 Sefidabeh (eastern Iran) earthquakes revisited: New evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault. Geophys. J. Int. 2006, 164, 202–217. [Google Scholar] [CrossRef]
- Sun, L.; Wang, L.; Xu, G.; Wu, Q. A new method of variational Bayesian slip distribution inversion. J. Geod. 2023, 97, 10. [Google Scholar] [CrossRef]
- Ragon, T.; Sladen, A.; Simons, M. Accounting for uncertain fault geometry in earthquake source inversions–I: Theory and simplified application. Geophys. J. Int. 2018, 214, 1174–1190. [Google Scholar] [CrossRef]
- Liang, H.; Wu, Y.; Shao, Z.; Li, J.; Li, Y.; Yi, S.; Yang, F.; Zhuang, W.; Wang, H.; Zhan, W.; et al. Coseismic slip and deformation mode of the 2022 Mw 6.5 Luding earthquake determined by GPS observation. Tectonophysics 2023, 865, 230042. [Google Scholar] [CrossRef]
- Peng, W.; Huang, X.; Wang, Z. Focal Mechanism and Regional Fault Activity Analysis of 2022 Luding Strong Earthquake Constraint by InSAR and Its Inversion. Remote Sens. 2023, 15, 3753. [Google Scholar] [CrossRef]
- Wu, W.; Meng, G.; Liu, T.; Wei, C.; Wei, W. Coseismic displacement field and slip distribution of the 2022 Luding M6. 8 earthquake derived from GNSS observations. Chin. J. Geophys. 2023, 66, 2306–2321, (In Chinese with English abstract). [Google Scholar]
- Zhao, X.; Xiao, Z.; Wang, W.; Li, J.; Zhao, M.; Chen, S.; Tang, L. Fine seismogenic fault structures and complex rupture characteristics of the 2022 M6.8 Luding, Sichuan earthquake sequence revealed by deep learning and waveform modeling. Geophys. Res. Lett. 2023, 50, e2023GL102976. [Google Scholar] [CrossRef]
- Shan, X.; Li, Y.; Gao, Z.; Hua, J.; Huang, X.; Gong, W.; Qu, C.; Zhao, D.; Chen, J.; Huang, C.; et al. Coseismic deformation of the 2022 Luding MS6.8 earthquake and seismic potential along adjacent major faults. Chin. Sci. Bull. 2022, 68, 944–953, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wang, K.; Dreger, D.S.; Tinti, E.; Bürgmann, R.; Taira, T. Rupture process of the 2019 Ridgecrest, California Mw6.4 foreshock and Mw7.1 earthquake constrained by seismic and geodetic data. Bull. Seismol. Soc. Am. 2020, 110, 1603–1626. [Google Scholar] [CrossRef]
- Hauksson, E.; Jones, L.M.; Hutton, K. The 1999 M w 7.1 Hector Mine, California, earthquake sequence: Complex conjugate strike-slip faulting. Bull. Seismol. Soc. Am. 2002, 92, 1154–1170. [Google Scholar] [CrossRef]
- Karakostas, V.G.; Papadimitriou, E.E.; Karakaisis, G.F.; Papazachos, C.B.; Scordilis, E.M.; Vargemezis, G.; Aidona, E. The 2001 Skyros, Northern Aegean, Greece, earthquake sequence: Off-fault aftershocks, tectonic implications, and seismicity triggering. Geophys. Res. Lett. 2003, 30, 1012. [Google Scholar] [CrossRef]
- Woessner, J.; Jónsson, S.; Sudhaus, H.; Baumann, C. Reliability of Coulomb stress changes inferred from correlated uncertainties of finite-fault source models. J. Geophys. Res. Solid Earth 2012, 117, B07303. [Google Scholar] [CrossRef]
- Toda, S.; Stein, R.S.; Sevilgen, V.; Lin, J. Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—User guide. US Geol. Surv. Open-File Rep. 2011, 1060, 63. [Google Scholar]
- Wessel, P.; Smith, W.H. New, improved version of Generic Mapping Tools released. Eos Trans. Am. Geophys. Union 1998, 79, 579. [Google Scholar] [CrossRef]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.; Tian, D. The generic mapping tools version 6. Geochemistry 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
Satellite | Reference | Secondary | Direction | Track | Perpendicular Baseline (m) | Incident | Azimuth |
---|---|---|---|---|---|---|---|
Sentinel-1 | 26 August 2022 | 19 September 2022 | Ascending | 26 | 34 | 42 | −10 |
Sentinel-1 | 2 September 2022 | 14 September 2022 | Descending | 135 | 50 | 35 | −169 |
Source | Lon (°) | Lat (°) | Depth (km) | Strike (°) | Dip (°) | Rake (°) | Length (km) | Width (km) | Slip (m) | M0 (1019) | Mw | Data |
---|---|---|---|---|---|---|---|---|---|---|---|---|
USGS | 102.236 | 29.679 | 12 | 254/345 | 73/88 | 178/17 | - | - | - | 1.158 | 6.6 | seismic data |
GCMT | 102.24 | 29.50 | 18.0 | 164/73 | 78/83 | 7/167 | - | - | - | 1.2 | 6.7 | seismic data |
[7] | 102.104 | 29.533 | 6.10 | 167.37 | 73.66 | 3.3 | 21.78 | 10.98 | - | 6.56 | InSAR(Ascending + Descending) | |
[6] | - | - | - | 162,- | 80,79 | - | 70,- | 20,- | - | - | 6.67, 6.30 | GPS + InSAR(Descending) |
[8] | 102.086 | 29.589 | 9.5 | 163 | 80 | - | 50 | 25 | 1.5 | 1.12 | 6.63 | GPS + InSAR(Descending) + seismic data |
[13] | 102.086 | 29.589 | 9.3 | 166 | 86 | - | 39 | 21 | - | - | - | seismic data |
[31] | - | - | 6.0 | 161 | 86 | - | - | - | - | - | 6.5 | GPS |
Uniform slip model 1 | 102.133 [−0.68/0.75km] | 29.548 [−0.39/0.48km] | 2.89 [−2.47/1.48] | 163.22 [−2.16/1.95] | 71.87 [−13.10/16.59] | 7.00 | 27.88 [−7.17/3.43] | 2.21 [−0.96/5.44] | 4.59 | 0.85 | 6.59 | GPS |
Uniform slip model 2 | 102.153 [−1.04/0.43km] | 29.510 [−0.52/0.79km] | 1.97 [−1.90/1.47] | 173.94 [−5.40/2.49] | 57.27 [−8.11/3.55] | 14.83 | 17.01 [−0.88/0.89] | 6.55 [−4.06/2.90] | 1.97 | 0.66 | 6.51 | InSAR (Ascending + Descending) |
Uniform slip model 3 | 102.147 [−1.05/0.43km] | 29.53 [−0.52/0.79] | 0.09 [−0.08/0.38] | 164.33 [−0.72/0.76] | 73.62 [−2.53/2.61] | −0.13 | 18.74 [−0.84/1.42] | 13.92 [−1.80/0.95] | 1.09 | 0.85 | 6.59 | GPS + InSAR (Ascending + Descending) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; Xu, X.; Yi, Y.; Wen, Y.; Sun, L.; Wang, Q.; Lei, X. A Bayesian Source Model for the 2022 Mw6.6 Luding Earthquake, Sichuan Province, China, Constrained by GPS and InSAR Observations. Remote Sens. 2024, 16, 103. https://doi.org/10.3390/rs16010103
Xu G, Xu X, Yi Y, Wen Y, Sun L, Wang Q, Lei X. A Bayesian Source Model for the 2022 Mw6.6 Luding Earthquake, Sichuan Province, China, Constrained by GPS and InSAR Observations. Remote Sensing. 2024; 16(1):103. https://doi.org/10.3390/rs16010103
Chicago/Turabian StyleXu, Guangyu, Xiwei Xu, Yaning Yi, Yangmao Wen, Longxiang Sun, Qixin Wang, and Xiaoqiong Lei. 2024. "A Bayesian Source Model for the 2022 Mw6.6 Luding Earthquake, Sichuan Province, China, Constrained by GPS and InSAR Observations" Remote Sensing 16, no. 1: 103. https://doi.org/10.3390/rs16010103
APA StyleXu, G., Xu, X., Yi, Y., Wen, Y., Sun, L., Wang, Q., & Lei, X. (2024). A Bayesian Source Model for the 2022 Mw6.6 Luding Earthquake, Sichuan Province, China, Constrained by GPS and InSAR Observations. Remote Sensing, 16(1), 103. https://doi.org/10.3390/rs16010103