Geoclimatic Distribution of Satellite-Observed Salinity Bias Classified by Machine Learning Approach
<p>Flowchart of the data selection, assembly processing, and production of the final classification. The 15 maps are the geographical distribution of the 15 classes, and the coloured dots in the maps represent the ΔS value of the sample.</p> "> Figure 2
<p>Ensemble mean (blue line) and spread (grey shading) of the BIC score for increasing the number of GMM classes. The black bars are the standard deviation of the ensemble mean. The BIC scores are computed for 50 random sample groups, each consisting of 90% of the total profiles.</p> "> Figure 3
<p>Visualisation of the classification results. For each class, the mean value of SST, rain rate, and wind speed is plotted as a 3D coordinate. (<b>a</b>) is the mean values of each class, the size of the marker represents the sample size of the class, and the colour of the marker represents the mean ΔS of the class. To better illustrate the spread of the classes and without hiding the small classes, we subdivided the classes into 3 subplots according to different temperature ranges. (<b>b</b>) Classes with mean SST below 10 °C, corresponding to the triangle markers in (<b>a</b>); (<b>c</b>) between 10–20 °C, corresponding to the square markers in (<b>a</b>); (<b>d</b>) above 20 °C, corresponding to the round markers in (<b>a</b>). The <span class="html-italic">x</span>-axis is SST, the <span class="html-italic">y</span>-axis is wind speed, and the <span class="html-italic">z</span>-axis is rain rate. Rain rate is plotted in log scale for ease of visualisation in (<b>b</b>–<b>d</b>). The details of each class are referred to in <a href="#remotesensing-16-03084-t001" class="html-table">Table 1</a>.</p> "> Figure 4
<p>Classes with mean SST higher than 25 °C. (<b>a</b>,<b>b</b>,<b>e</b>–<b>g</b>) Scatterplot maps of ΔS (unit: PSU) in the class K11, K13, K3, K15, and K8, respectively. The dotted area in (<b>a</b>) is where the number of members exceeds 200 in a 5° × 5° grid cell and the samples exceed 12. Regions where samples are insufficient for identifying the predominant season are discarded. (<b>c</b>,<b>d</b>,<b>h</b>–<b>j</b>) Prevailing season of the observations in the same classes above. Colours represent over 50% of the observations in the area being taken in the same season: blue is December to February of next year, green is March to May, red is June to August, orange is September to November, and grey means there is no prevailing season in the area.</p> "> Figure 5
<p>Classes with mean SST between 10 °C and 25 °C. (<b>a</b>,<b>b</b>,<b>e</b>–<b>g</b>) Scatterplot maps of ΔS in classes K1, K6, K9, K14, and K7, respectively. (<b>c</b>,<b>d</b>,<b>h</b>–<b>j</b>) Prevailing season of the observations. The legend is the same as <a href="#remotesensing-16-03084-f004" class="html-fig">Figure 4</a>.</p> "> Figure 6
<p>Scatterplot of all SMAP SSS bias observations over a PSU (<span class="html-italic">x</span>-axis) and latitude (<span class="html-italic">y</span>-axis) plot. The coloured shading represents the observation count in a 0.02 PSU and 0.5° grid size. The overlaid dashed lines are the mean rain rate (black) and the mean SSS (red), respectively, along the latitude. The mean rain rate and SSS values are in the top <span class="html-italic">x</span>-axis.</p> "> Figure 7
<p>Classes with mean SST lower than 10 °C. (<b>a</b>,<b>b</b>) Scatterplot maps of ΔS in classes K2 and K10, respectively. (<b>c</b>,<b>d</b>) Prevailing season of the observations in classes K2 and K10, respectively. The legend is the same as <a href="#remotesensing-16-03084-f004" class="html-fig">Figure 4</a>.</p> "> Figure 8
<p>The distribution of members in K12 and its relationship with sea ice concentration. (<b>a</b>) Scatterplot map of K12, where the colour represents ΔS. (<b>b</b>) Prevailing season of the observations. (<b>c</b>) Scatter plot of observations with sea ice presence within 50 km, with the colour representing the percentage of ice concentration. (<b>d</b>) Observations and mean ΔS concerning sea ice concentration. (<b>e</b>) Scatterplot within the classification parameter space, with the <span class="html-italic">x</span>-, <span class="html-italic">y</span>-, and <span class="html-italic">z</span>-axes representing SST, wind speed, and rain rate, respectively, and the colour of the marker representing ΔS.</p> "> Figure 9
<p>The distribution of members in K4 and its relationship with precipitation. (<b>a</b>) Scatterplot map of K4. (<b>b</b>) Prevailing season of the observations. (<b>c</b>) Annual mean precipitation. (<b>d</b>) Relations between ΔS and rain rate, the colour is the member count in the corresponding ΔS and rain rate. (<b>e</b>) Scatterplot for classification parameters, same as in <a href="#remotesensing-16-03084-f008" class="html-fig">Figure 8</a>e. The observation count in (<b>d</b>) is calculated with the bin size of 0.1 PSU along the <span class="html-italic">x</span>-axis and 2.5 mm/day along the <span class="html-italic">y</span>-axis.</p> "> Figure 10
<p>The distribution of members in K5 and its relationship with sea surface current. (<b>a</b>) Scatter plot of K5. (<b>b</b>) Prevailing season of the observations. (<b>c</b>) Annual mean Eddy Kinetic Energy (EKE) of surface current (shading) overlaps with the mean velocity of sea surface current (contour, unit: m/s). (<b>d</b>) Snapshot of SMAP SSS and ocean surface current. The colour shading is SSS, the quiver is current, and the red pentagram marker is Argo observation.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Unsupervised Machine Learning Classification
3. Geoclimatic Distribution of the Classes
3.1. Environmental Signatures of the Classification Result
3.2. Similar Classes in the Different SST Range
3.3. Classifying the Outliers
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.-J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Lagerloef, G.; Colomb, F.R.; Le Vine, D.; Wentz, F.; Yueh, S.; Ruf, C.; Lilly, J.; Gunn, J.; Chao, Y.; deCharon, A.; et al. The Aquarius/SAC-D Mission: Designed to Meet the Salinity Remote-Sensing Challenge. Oceanography 2008, 21, 68–81. [Google Scholar] [CrossRef]
- Sirounian, V. Effect of temperature, angle of observation, salinity, and thin ice on the microwave emission of water. J. Geophys. Res. 1968, 73, 4481–4486. [Google Scholar] [CrossRef]
- Reul, N.; Grodsky, S.A.; Arias, M.; Boutin, J.; Catany, R.; Chapron, B.; D’Amico, F.; Dinnat, E.; Donlon, C.; Fore, A.; et al. Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019). Remote Sens. Environ. 2020, 242, 111769. [Google Scholar] [CrossRef]
- Boutin, J.; Vergely, J.L.; Marchand, S.; D’Amico, F.; Hasson, A.; Kolodziejczyk, N.; Reul, N.; Reverdin, G.; Vialard, J. New SMOS Sea Surface Salinity with reduced systematic errors and improved variability. Remote Sens. Environ. 2018, 214, 115–134. [Google Scholar] [CrossRef]
- Vinogradova, N.; Lee, T.; Boutin, J.; Drushka, K.; Fournier, S.; Sabia, R.; Stammer, D.; Bayler, E.; Reul, N.; Gordon, A.; et al. Satellite Salinity Observing System: Recent Discoveries and the Way Forward. Front. Mar. Sci. 2019, 6, 243. [Google Scholar] [CrossRef]
- Yin, X.B.; Wang, Z.Z.; Liu, Y.G.; Cheng, Y.C. A new algorithm for microwave radiometer remote sensing of sea surface salinity without influence of wind. Int. J. Remote Sens. 2008, 29, 6789–6800. [Google Scholar] [CrossRef]
- Yin, X.B.; Boutin, J.; Dinnat, E.; Song, Q.T.; Martin, A. Roughness and foam signature on SMOS-MIRAS brightness temperatures: A semi-theoretical approach. Remote Sens. Environ. 2016, 180, 221–233. [Google Scholar] [CrossRef]
- Bao, S.; Wang, H.; Zhang, R.; Yan, H.; Chen, J. Comparison of Satellite-Derived Sea Surface Salinity Products from SMOS, Aquarius, and SMAP. J. Geophys. Res. Ocean. 2019, 124, 1932–1944. [Google Scholar] [CrossRef]
- Ouyang, Y.; Zhang, Y.; Chi, J.; Sun, Q.; Du, Y. Deviations of satellite-measured sea surface salinity caused by environmental factors and their regional dependence. Remote Sens. Environ. 2023, 285, 113411. [Google Scholar] [CrossRef]
- Lang, R.; Zhou, Y.; Utku, C.; Le Vine, D. Accurate measurements of the dielectric constant of seawater at L band. Radio Sci. 2016, 51, 2–24. [Google Scholar] [CrossRef]
- Tang, W.; Yueh, S.; Yang, D.; Fore, A.; Hayashi, A.; Lee, T.; Fournier, S.; Holt, B. The Potential and Challenges of Using Soil Moisture Active Passive (SMAP) Sea Surface Salinity to Monitor Arctic Ocean Freshwater Changes. Remote Sens. 2018, 10, 869. [Google Scholar] [CrossRef]
- Yu, L.; Josey, S.A.; Bingham, F.M.; Lee, T. Intensification of the global water cycle and evidence from ocean salinity: A synthesis review. Ann. N. Y. Acad. Sci. 2020, 1472, 76–94. [Google Scholar] [CrossRef]
- Yueh, S.H.; West, R.; Wilson, W.J.; Li, F.K.; Njoku, E.G.; Rahmat-Samii, Y. Error sources and feasibility for microwave remote sensing of ocean surface salinity. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1049–1060. [Google Scholar] [CrossRef]
- Boutin, J.; Chao, Y.; Asher, W.E.; Delcroix, T.; Drucker, R.; Drushka, K.; Kolodziejczyk, N.; Lee, T.; Reul, N.; Reverdin, G.; et al. Satellite and In Situ Salinity: Understanding Near-Surface Stratification and Subfootprint Variability. Bull. Am. Meteorol. Soc. 2016, 97, 1391–1407. [Google Scholar] [CrossRef]
- Birchfield, G.E. A coupled ocean-atmosphere climate model: Temperature versus salinity effects on the thermohaline circulation. Clim. Dyn. 1989, 4, 57–71. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Shi, J. Relationship between sea surface salinity and ocean circulation and climate change. Sci. China Earth Sci. 2019, 62, 771–782. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Pacanowski, R.C.; Philander, S.G.; Boccaletti, G. The Effect of Salinity on the Wind-Driven Circulation and the Thermal Structure of the Upper Ocean. J. Phys. Oceanogr. 2004, 34, 1949–1966. [Google Scholar] [CrossRef]
- Wong, A.P.S.; Wijffels, S.E.; Riser, S.C.; Pouliquen, S.; Hosoda, S.; Roemmich, D.; Gilson, J.; Johnson, G.C.; Martini, K.; Murphy, D.J.; et al. Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations from a Global Array of Profiling Floats. Front. Mar. Sci. 2020, 7, 700. [Google Scholar] [CrossRef]
- Delcroix, T.; Hénin, C. Seasonal and interannual variations of sea surface salinity in the tropical Pacific Ocean. J. Geophys. Res. 1991, 96, 22135–122150. [Google Scholar] [CrossRef]
- Delcroix, T.; Henin, C.; Porte, V.; Arkin, P. Precipitation and sea-surface salinity in the tropical Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 1996, 43, 1123–1141. [Google Scholar] [CrossRef]
- Cronin, M.F.; McPhaden, M.J. Upper ocean salinity balance in the western equatorial Pacific. J. Geophys. Res. Ocean. 1998, 103, 27567–27587. [Google Scholar] [CrossRef]
- Medina-Lopez, E.; Ureña-Fuentes, L. High-Resolution Sea Surface Temperature and Salinity in the Global Ocean from Raw Satellite Data. Remote Sens. 2019, 11, 2191. [Google Scholar] [CrossRef]
- Akhil, V.P.; Vialard, J.; Lengaigne, M.; Keerthi, M.G.; Boutin, J.; Vergely, J.L.; Papa, F. Bay of Bengal Sea surface salinity variability using a decade of improved SMOS re-processing. Remote Sens. Environ. 2020, 248, 111964. [Google Scholar] [CrossRef]
- Jang, E.; Kim, Y.J.; Im, J.; Park, Y.-G.; Sung, T. Global sea surface salinity via the synergistic use of SMAP satellite and HYCOM data based on machine learning. Remote Sens. Environ. 2022, 273, 112980. [Google Scholar] [CrossRef]
- Jones, D.C.; Holt, H.J.; Meijers, A.J.S.; Shuckburgh, E. Unsupervised Clustering of Southern Ocean Argo Float Temperature Profiles. J. Geophys. Res. Ocean. 2019, 124, 390–402. [Google Scholar] [CrossRef]
- Maze, G.; Mercier, H.; Fablet, R.; Tandeo, P.; Lopez Radcenco, M.; Lenca, P.; Feucher, C.; Le Goff, C. Coherent heat patterns revealed by unsupervised classification of Argo temperature profiles in the North Atlantic Ocean. Prog. Oceanogr. 2017, 151, 275–292. [Google Scholar] [CrossRef]
- Xia, X.; Hong, Y.; Du, Y.; Xiu, P. Three Types of Antarctic Intermediate Water Revealed by a Machine Learning Approach. Geophys. Res. Lett. 2022, 49, e2022GL099445. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.J.T.J.O.M.L.R. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Cummings, J.A.; Smedstad, O.M. Ocean Data Impacts in Global HYCOM*. J. Atmos. Ocean. Technol. 2014, 31, 1771–1791. [Google Scholar] [CrossRef]
- Fore, A.G.; Yueh, S.H.; Tang, W.; Stiles, B.W.; Hayashi, A.K. Combined Active/Passive Retrievals of Ocean Vector Wind and Sea Surface Salinity With SMAP. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7396–7404. [Google Scholar] [CrossRef]
- Boutin, J.; Martin, N.; Reverdin, G.; Yin, X.; Gaillard, F. Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain. Ocean. Sci. 2013, 9, 183–192. [Google Scholar] [CrossRef]
- Xie, S.-P. The shape of continents, air-sea interaction, and the rising branch of the Hadley circulation. In The Hadley Circulation: Present, Past and Future; Springer: Cham, Switzerland, 2004; pp. 121–152. [Google Scholar]
- Asher, W.E.; Jessup, A.T.; Branch, R.; Clark, D. Observations of rain-induced near-surface salinity anomalies. J. Geophys. Res. Ocean. 2014, 119, 5483–5500. [Google Scholar] [CrossRef]
- Tang, W.; Yueh, S.H.; Hayashi, A.; Fore, A.G.; Jones, W.L.; Santos-Garcia, A.; Jacob, M.M. Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5474–5484. [Google Scholar] [CrossRef]
- ten Doeschate, A.; Sutherland, G.; Bellenger, H.; Landwehr, S.; Esters, L.; Ward, B. Upper Ocean Response to Rain Observed From a Vertical Profiler. J. Geophys. Res. Ocean. 2019, 124, 3664–3681. [Google Scholar] [CrossRef]
- Reverdin, G.; Supply, A.; Drushka, K.; Thompson, E.J.; Asher, W.E.; Lourenço, A. Intense and Small Freshwater Pools from Rainfall Investigated During Spurs-2 on 9 November 2017 in the Eastern Tropical Pacific. J. Geophys. Res. Ocean. 2020, 125, e2019JC015558. [Google Scholar] [CrossRef]
- Reul, N.; Chapron, B.; Grodsky, S.A.; Guimbard, S.; Kudryavtsev, V.; Foltz, G.R.; Balaguru, K. Satellite Observations of the Sea Surface Salinity Response to Tropical Cyclones. Geophys. Res. Lett. 2021, 48, e2020GL091478. [Google Scholar] [CrossRef]
- Chen, G.; Wang, D.; Hou, Y. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Cont. Shelf Res. 2012, 47, 178–185. [Google Scholar] [CrossRef]
- Pujol, M.I.; Larnicol, G. Mediterranean sea eddy kinetic energy variability from 11 years of altimetric data. J. Mar. Syst. 2005, 58, 121–142. [Google Scholar] [CrossRef]
Number of Class | ΔS (PSU) | SST (°C) | RAIN (mm/Day) | WIND (m/s) | ΔS SD (PSU) | Percentage of Total Data Volume |
---|---|---|---|---|---|---|
1 | 0.09 | 12.58 | 0.00 | 6.96 | 0.56 | 19.17% |
2 | 0.24 | 7.53 | 2.43 | 9.82 | 0.55 | 4.63% |
3 | 0.10 | 28.13 | 0.04 | 6.23 | 0.23 | 4.97% |
4 | −0.04 | 22.19 | 24.82 | 7.88 | 0.42 | 0.84% |
5 | −0.37 | 13.19 | 1.11 | 10.12 | 1.50 | 0.67% |
6 | 0.09 | 11.61 | 7.99 | 9.38 | 0.58 | 2.71% |
7 | −0.07 | 21.93 | 2.71 | 7.57 | 0.24 | 2.36% |
8 | 0.02 | 29.10 | 5.96 | 5.66 | 0.30 | 3.20% |
9 | 0.00 | 15.38 | 0.58 | 8.66 | 0.33 | 5.85% |
10 | 0.05 | 4.05 | 0.31 | 10.05 | 1.03 | 2.74% |
11 | 0.07 | 25.26 | 0.00 | 6.25 | 0.22 | 35.04% |
12 | −2.43 | 1.14 | 3.92 | 10.54 | 5.64 | 0.23% |
13 | 0.07 | 26.58 | 0.16 | 6.80 | 0.19 | 5.81% |
14 | 0.05 | 13.61 | 0.07 | 8.53 | 0.43 | 6.43% |
15 | 0.06 | 28.66 | 0.84 | 5.99 | 0.25 | 5.35% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Y.; Zhang, Y.; Feng, M.; Boschetti, F.; Du, Y. Geoclimatic Distribution of Satellite-Observed Salinity Bias Classified by Machine Learning Approach. Remote Sens. 2024, 16, 3084. https://doi.org/10.3390/rs16163084
Ouyang Y, Zhang Y, Feng M, Boschetti F, Du Y. Geoclimatic Distribution of Satellite-Observed Salinity Bias Classified by Machine Learning Approach. Remote Sensing. 2024; 16(16):3084. https://doi.org/10.3390/rs16163084
Chicago/Turabian StyleOuyang, Yating, Yuhong Zhang, Ming Feng, Fabio Boschetti, and Yan Du. 2024. "Geoclimatic Distribution of Satellite-Observed Salinity Bias Classified by Machine Learning Approach" Remote Sensing 16, no. 16: 3084. https://doi.org/10.3390/rs16163084