Morphological Characteristics and Development Rate of Gullies in Three Main Agro-Geomorphological Regions of Northeast China
"> Figure 1
<p>Location of study area. Note: Subfigure (<b>a</b>) is the HL study area, subfigure (<b>b</b>) is the ML study area and subfigure (<b>c</b>) is the YKS study area.</p> "> Figure 2
<p>Changes in gully morphology in two periods and construction of S = a·A<sup>−b</sup> model. Note: The orange line represents the gully in 2013.</p> "> Figure 3
<p>Flow chart of this study.</p> "> Figure 4
<p>The distribution of gully morphological parameters. Note: Red curves represent the cumulative percentage of gullies. Note: Subfigure (<b>a</b>,<b>f</b>,<b>k</b>) show the gully length in HL, ML and YKS, Subfigure (<b>b</b>,<b>g</b>,<b>l</b>) show the gully width in HL, ML and YKS, Subfigure (<b>c</b>,<b>h</b>,<b>m</b>) show the gully perimeter in HL, ML and YKS, Subfigure (<b>d</b>,<b>i</b>,<b>n</b>) show the gully area in HL, ML and YKS, Subfigure (<b>e</b>,<b>j</b>,<b>o</b>) show the SI in HL, ML and YKS.</p> "> Figure 5
<p>S-A model for the three study areas.</p> "> Figure 6
<p>Differential rates of gully erosion in the three study areas: rate of headcut retreat (<b>a</b>), rate of gully area erosion (<b>b</b>), and rate of gully bank expansion (<b>c</b>). Different lowercase letters represent significant (<span class="html-italic">p</span> < 0.05) differences in gully erosion rates between regions.</p> "> Figure 7
<p>Land use change in HL, ML, and YKS study area from 2013 to 2023. Note: Subfigure (<b>a</b>–<b>c</b>) show the 2013 HL land use, 2023 HL land use and land use change in HL, Subfigure (<b>d</b>–<b>f</b>) show the 2013 ML land use, 2023 ML land use and land use change in ML, Subfigure (<b>g</b>–<b>i</b>) show the 2013 YKS land use, 2023 YKS land use and land use change in YKS.</p> "> Figure 8
<p>Differences in gully head retreat rate (<b>a</b>), gully expansion rate (<b>b</b>), and areal gully erosion rate (<b>c</b>) among different land uses and study areas. Note: Different capital letters represent significant differences (<span class="html-italic">p</span> < 0.05) in gully erosion rate among different study areas for same land use. Different small letters represent significant differences (<span class="html-italic">p</span> < 0.05) among different land uses in a given study area. DFL is dry farmland, GL is grassland, WL is woodland.</p> "> Figure 9
<p>Differences in gully head retreat rate (<b>a</b>), gully expansion rate (<b>b</b>) and areal gully erosion rate (<b>c</b>) among different slope classes and study areas. Note: Different capital letters represent significant differences (<span class="html-italic">p</span> < 0.05) in gully erosion rate among different study areas for same slope class, and different small letters represent significant differences (<span class="html-italic">p</span> < 0.05) among different slope classes in a given study area.</p> "> Figure 10
<p>Differences in gully head retreat rate (<b>a</b>), gully expansion rate (<b>b</b>) and areal gully erosion rate (<b>c</b>) among different slope aspects and study areas. Note: Different capital letters represent significant differences (<span class="html-italic">p</span> < 0.05) in gully erosion rate among different study areas for the same slope aspect, and different small letters represent significant differences (<span class="html-italic">p</span> < 0.05) among different slope aspects in a given study area.</p> "> Figure 11
<p>Modeling of gully criticality in different study areas.</p> "> Figure A1
<p>Ten years (2013–2023) annual average temperature of three study areas (HL, ML, and YKS).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Image Data and Interpretation of Gully and Land Use
2.3. Calculation of Gully Erosion Rates
2.4. Topography Threshold of Gully Erosion (S-A Model)
2.5. Soil, Climate, and Terrain Data Acquisition
2.6. Statistical Analysis
3. Results
3.1. Gully Morphology Characteristics
3.2. Topography Threshold for Gully Erosion
3.3. Gully Development Rate
3.4. Factors Influencing Gully Evolution
3.4.1. Land Use
3.4.2. Slope Gradient
3.4.3. Slope Aspect
4. Discussion
4.1. Gully Morphology
4.2. Gully Erosion Rate and Factors
4.3. Topography Threshold of Gully Erosion
4.4. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Castillo, C.; Gómez, J.A. A century of gully erosion research: Urgency, complexity and study approaches. Earth-Sci. Rev. 2016, 160, 300–319. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Zhang, S.; Cruse, R.M.; Zhang, X. Gully Erosion Control Practices in Northeast China: A Review. Sustainability 2019, 11, 5065. [Google Scholar] [CrossRef]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. CATENA 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Van Mele, B.; Demuzere, M.; Bruynseels, A.; Golosov, V.; Bezerra, J.F.R.; Bolysov, S.; Dvinskih, A.; Frankl, A.; et al. How fast do gully headcuts retreat? Earth-Sci. Rev. 2016, 154, 336–355. [Google Scholar] [CrossRef]
- Zhu, B.; Zhou, Z.; Li, Z. Soil Erosion and Controls in the Slope-Gully System of the Loess Plateau of China: A Review. Front. Environ. Sci. 2021, 9, 657030. [Google Scholar] [CrossRef]
- Avni, Y. Gully incision as a key factor in desertification in an and environment, the Negev highlands, Israel. Catena 2005, 63, 185–220. [Google Scholar] [CrossRef]
- Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. CATENA 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Tufekcioglu, M.; Schultz, R.C. Riparian Land-Use Impacts on Stream Bank and Gully Erosion in Agricultural Watersheds: What We Have Learned. Water 2019, 11, 1343. [Google Scholar] [CrossRef]
- Amare, S.; Keesstra, S.; van der Ploeg, M.; Langendoen, E.; Steenhuis, T.; Tilahun, S. Causes and Controlling Factors of Valley Bottom Gullies. Land 2019, 8, 141. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Tsunekawa, A.; Nyssen, J.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Schuett, B.; Adgo, E.; Tegegne, F. Soil erosion and conservation in Ethiopia: A review. Prog. Phys. Geogr. -Earth Environ. 2015, 39, 750–774. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus actual soil erosion rates in Europe. Earth-Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef]
- Anderson, R.L.; Rowntree, K.M.; Le Roux, J.J. An interrogation of research on the influence of rainfall on gully erosion. Catena 2021, 206, 105482. [Google Scholar] [CrossRef]
- Frankl, A.; Poesen, J.; Scholiers, N.; Jacob, M.; Haile, M.; Deckers, J.; Nyssen, J. Factors controlling the morphology and volume (V)–length (L) relations of permanent gullies in the northern Ethiopian Highlands. Earth Surf. Process. Landf. 2013, 38, 1672–1684. [Google Scholar] [CrossRef]
- Parkner, T.; Page, M.; Marden, M.; Marutani, T. Gully systems under undisturbed indigenous forest, East Coast Region, New Zealand. Geomorphology 2007, 84, 241–253. [Google Scholar] [CrossRef]
- Zucca, C.; Canu, A.; Della Peruta, R. Effects of land use and landscape on spatial distribution and morphological features of gullies in an agropastoral area in Sardinia (Italy). CATENA 2006, 68, 87–95. [Google Scholar] [CrossRef]
- Fiener, P.; Auerswald, K.; Van Oost, K. Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments-A review. Earth-Sci. Rev. 2011, 106, 92–104. [Google Scholar] [CrossRef]
- Foulds, S.A.; Macklin, M.G. Holocene land-use change and its impact on river basin dynamics in Great Britain and Ireland. Prog. Phys. Geogr. -Earth Environ. 2006, 30, 589–604. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A meta-analysis of soil erosion rates across the world. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef]
- Guo, Y.R.; Peng, C.H.; Zhu, Q.A.; Wang, M.; Wang, H.; Peng, S.S.; He, H.L. Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations and future challenges. J. Environ. Manag. 2019, 250, 109403. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Vanwalleghem, T.; Gomez, J.A.; Amate, J.I.; de Molina, M.G.; Vanderlinden, K.; Guzman, G.; Laguna, A.; Giraldez, J.V. Impact of historical land use and soil management change on soil erosion and agricultural sustainability during the Anthropocene. Anthropocene 2017, 17, 13–29. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Knapen, A.; Galindo, P. Impact of root architecture on the erosion-reducing potential of roots during concentrated flow. Earth Surf. Process. Landf. 2007, 32, 1323–1345. [Google Scholar] [CrossRef]
- De Baets, S.; Torri, D.; Poesen, J.; Salvador, M.P.; Meersmans, J. Modelling increased soil cohesion due to roots with EUROSEM. Earth Surf. Process. Landf. 2008, 33, 1948–1963. [Google Scholar] [CrossRef]
- Torri, D.; Santi, E.; Marignani, M.; Rossi, M.; Borselli, L.; Maccherini, S. The recurring cycles of biancana badlands: Erosion, vegetation and human impact. Catena 2013, 106, 22–30. [Google Scholar] [CrossRef]
- Wang, Z.G.; Zhang, G.H.; Wang, C.S.; Xing, S.K. Gully Morphological Characteristics and Topographic Threshold Determined by UAV in a Small Watershed on the Loess Plateau. Remote Sens. 2022, 14, 3529. [Google Scholar] [CrossRef]
- Wang, D.C.; Fan, H.M.; Fan, X.G. Distributions of recent gullies on hillslopes with different slopes and aspects in the Black Soil Region of Northeast China. Environ. Monit. Assess. 2017, 189, 508. [Google Scholar] [CrossRef] [PubMed]
- Capra, A.; Di Stefano, C.; Ferro, V.; Scicolone, B. Similarity between morphological characteristics of rills and ephemeral gullies in Sicily, Italy. Hydrol. Process. 2009, 23, 3334–3341. [Google Scholar] [CrossRef]
- Patton, P.C.; Schumm, S.A. Gully Erosion, Northwestern Colorado: A Threshold Phenomenon. Geology 1975, 3, 88–90. [Google Scholar] [CrossRef]
- Begin, Z.; Schumm, S. Instability of alluvial valley floors: A method for its assessment. Trans. ASAE 1979, 22, 347–350. [Google Scholar] [CrossRef]
- Torri, D.; Poesen, J. A review of topographic threshold conditions for gully head development in different environments. Earth-Sci. Rev. 2014, 130, 73–85. [Google Scholar] [CrossRef]
- Wang, R.H.; Wang, N.; Fan, Y.C.; Sun, H.; Fu, H.P.; Yang, J.C. Quantitative Attribution Analysis of the Spatial Differentiation of Gully Erosion in the Black Soil Region of Northeast China. Geofluids 2022, 2022, 3831652. [Google Scholar] [CrossRef]
- Hu, G.; Wu, Y.Q.; Liu, B.Y.; Zhang, Y.G.; You, Z.M.; Yu, Z.T. The characteristics of gully erosion over rolling hilly black soil areas of Northeast China. J. Geogr. Sci. 2009, 19, 309–320. [Google Scholar] [CrossRef]
- Wang, R.; Sun, H.; Yang, J.; Zhang, S.; Fu, H.; Wang, N.; Liu, Q. Quantitative Evaluation of Gully Erosion Using Multitemporal UAV Data in the Southern Black Soil Region of Northeast China: A Case Study. Remote Sens. 2022, 14, 1479. [Google Scholar] [CrossRef]
- Wen, Y.; Kasielke, T.; Li, H.; Zepp, H.; Zhang, B. A case-study on history and rates of gully erosion in Northeast China. Land Degrad. Dev. 2021, 32, 4254–4266. [Google Scholar] [CrossRef]
- Wen, Y.; Kasielke, T.; Li, H.; Zhang, B.; Zepp, H. May agricultural terraces induce gully erosion? A case study from the Black Soil Region of Northeast China. Sci. Total Environ. 2021, 750, 141715. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Yang, X.; Na, J.; Li, J.; Brus, D.; Xiong, L.; Tang, G.; Huang, X. Effects of DEM resolution on the accuracy of gully maps in loess hilly areas. Catena 2019, 177, 114–125. [Google Scholar] [CrossRef]
- Wang, R.H.; Zhang, S.W.; Pu, L.M.; Yang, J.C.; Yang, C.B.; Chen, J.; Guan, C.; Wang, Q.; Chen, D.; Fu, B.L.; et al. Gully Erosion Mapping and Monitoring at Multiple Scales Based on Multi-Source Remote Sensing Data of the Sancha River Catchment, Northeast China. Isprs Int. J. Geo-Inf. 2016, 5, 200. [Google Scholar] [CrossRef]
- Wang, R.H.; Zhang, S.W.; Yang, J.C.; Pu, L.M.; Yang, C.B.; Yu, L.X.; Chang, L.P.; Bu, K. Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China. Sustainability 2016, 8, 317. [Google Scholar] [CrossRef]
- Zhang, S.W.; Li, F.; Li, T.Q.; Yang, J.C.; Bu, K.; Chang, L.P.; Wang, W.J.; Yan, Y.C. Remote sensing monitoring of gullies on a regional scale: A case study of Kebai region in Heilongjiang Province, China. Chin. Geogr. Sci. 2015, 25, 602–611. [Google Scholar] [CrossRef]
- Zhang, S.M.; Han, X.; Cruse, R.M.; Zhang, X.Y.; Hu, W.; Yan, Y.; Guo, M.M. Morphological characteristics and influencing factors of permanent gully and its contribution to regional soil loss based on a field investigation of 393 km2 in Mollisols region of northeast China. Catena 2022, 217, 106467. [Google Scholar] [CrossRef]
- Liu, X.; Guo, M.; Zhang, X.; Zhang, S.; Zhou, P.; Chen, Z.; Qi, J.; Shen, Q. Morphological characteristics and volume estimation model of permanent gullies and topographic threshold of gullying in the rolling hilly Mollisols region of northeast China. Catena 2023, 231, 107323. [Google Scholar] [CrossRef]
- Chen, Y.; Jiao, J.; Yan, X.; Li, J.; Vanmaercke, M.; Wang, N. Response of gully morphology and density to the spatial and rainy-season monthly variation of rainfall at the regional scale of the Chinese Loess Plateau. Catena 2024, 236, 107773. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, M.; Liu, X.; Chen, Z.; Zhang, X.; Xu, J.; Han, X. Historical evolution of gully erosion and its response to land use change during 1968–2018 in the Mollisol region of Northeast China. Int. Soil Water Conserv. Res. 2023, 12, 388–402. [Google Scholar] [CrossRef]
- Li, M.; Li, T.; Zhu, L.; Meadows, M.E.; Zhu, W.; Zhang, S. Effect of Land Use Change on Gully Erosion Density in the Black Soil Region of Northeast China From 1965 to 2015: A Case Study of the Kedong County. Front. Environ. Sci. 2021, 9, 652933. [Google Scholar] [CrossRef]
- Samani, A.N.; Rad, F.T.; Azarakhshi, M.; Rahdari, M.R.; Rodrigo-Comino, J. Assessment of the Sustainability of the Territories Affected by Gully Head Advancements through Aerial Photography and Modeling Estimations: A Case Study on Samal Watershed, Iran. Sustainability 2018, 10, 2909. [Google Scholar] [CrossRef]
- Vandekerckhove, L.; Poesen, J.; Oostwoud Wijdenes, D.; de Figueiredo, T. Topographical thresholds for ephemeral gully initiation in intensively cultivated areas of the Mediterranean. Catena 1998, 33, 271–292. [Google Scholar] [CrossRef]
- Vanwalleghem, T.; Poesen, J.; Nachtergaele, J.; Verstraeten, G. Characteristics, controlling factors and importance of deep gullies under cropland on loess-derived soils. Geomorphology 2005, 69, 76–91. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Guo, M.; Zhang, S.; Zhang, X.; Zhou, P.; Xu, J.; Liu, X.; Qi, J.; Wan, Z. Spatial heterogeneity of soil organic carbon and soil nutrients and their controlling factors in a small watershed in Northeast China. Soil Use Manag. 2024, 40, e12956. [Google Scholar] [CrossRef]
- Wang, L.; Guo, M.; Chen, Z.; Zhang, X.; Zhou, P.; Liu, X.; Qi, J.; Wan, Z.; Xu, J.; Zhang, S. Quantifying the contributions of factors influencing the spatial heterogeneity of soil aggregate stability and erodibility in a Mollisol watershed. Catena 2024, 239, 107941. [Google Scholar] [CrossRef]
- Saha, A.; Pal, S.C.; Chowdhuri, I.; Chakrabortty, R.; Roy, P. Understanding the scale effects of topographical variables on landslide susceptibility mapping in Sikkim Himalaya using deep learning approaches. Geocarto Int. 2022, 37, 17826–17852. [Google Scholar] [CrossRef]
- van den Elsen, E.; Xie, Y.; Liu, B.Y.; Stolte, J.; Wu, Y.Q.; Trouwborst, K.; Ritsema, C.J. Intensive water content and discharge measurement system in a hillslope gully in China. Catena 2003, 54, 93–115. [Google Scholar] [CrossRef]
- Liu, W.; Cui, Y.; Ouyang, G.; Lyu, Z. An experimental study on influence of grain-size composition on collapsing erosion of granite residual soil. Catena 2023, 223, 106949. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Liu, B.; Zheng, Q.; Yin, J. Characteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast China. Soil Tillage Res. 2007, 96, 28–41. [Google Scholar] [CrossRef]
- Tang, B.; Jiao, J.; Zhang, Y.; Chen, Y.; Wang, N.; Bai, L. The magnitude of soil erosion on hillslopes with different land use patterns under an extreme rainstorm on the Northern Loess Plateau, China. Soil Tillage Res. 2020, 204, 104716. [Google Scholar] [CrossRef]
- Galang, M.A.; Morris, L.A.; Markewitz, D.; Jackson, C.R.; Carter, E.A. Prescribed burning effects on the hydrologic behavior of gullies in the South Carolina Piedmont. For. Ecol. Manag. 2010, 259, 1959–1970. [Google Scholar] [CrossRef]
- Wu, H.Y.; Xu, X.M.; Zheng, F.L.; Qin, C.; He, X. Gully morphological characteristics in the loess hilly-gully region based on 3D laser scanning technique. Earth Surf. Process. Landf. 2018, 43, 1701–1710. [Google Scholar] [CrossRef]
- Billi, P.; Dramis, F. Geomorphological investigation on gully erosion in the Rift Valley and the northern highlands of Ethiopia. Catena 2003, 50, 353–368. [Google Scholar] [CrossRef]
- Hayas, A.; Vanwalleghem, T.; Laguna, A.; Peña, A.; Giráldez, J.V. Reconstructing long-term gully dynamics in Mediterranean agricultural areas. Hydrol. Earth Syst. Sci. 2017, 21, 235–249. [Google Scholar] [CrossRef]
- Dong, Y.F.; Xiong, D.H.; Su, Z.A.; Li, J.J.; Yang, D.; Zhai, J.; Lu, X.N.; Liu, G.C.; Shi, L.T. Critical topographic threshold of gully erosion in Yuanmou Dry-hot Valley in Southwestern China. Phys. Geogr. 2013, 34, 50–59. [Google Scholar] [CrossRef]
- Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Masunaga, T.; Tsubo, M.; Billi, P.; Ebabu, K.; Fenta, A.A.; et al. Morphological characteristics and topographic thresholds of gullies in different agro-ecological environments. Geomorphology 2019, 341, 15–27. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, W.; Yan, T.; Qin, W.; Miao, X. Estimation of Gully Growth Rate and Erosion Amount Using UAV and Worldview-3 Images in Yimeng Mountain Area, China. Remote. Sens. 2023, 15, 233. [Google Scholar] [CrossRef]
- El Maaoui, M.A.; Sfar Felfoul, M.; Boussema, M.R.; Snane, M.H. Sediment yield from irregularly shaped gullies located on the Fortuna lithologic formation in semi-arid area of Tunisia. Catena 2012, 93, 97–104. [Google Scholar] [CrossRef]
- Rieke-Zapp, D.H.; Nichols, M.H. Headcut retreat in a semiarid watershed in the southwestern United States since 1935. Catena 2011, 87, 1–10. [Google Scholar] [CrossRef]
- Vandekerckhove, L.; Poesen, J.; Oostwoud Wijdenes, D.; Gyssels, G. Short-term bank gully retreat rates in Mediterranean environments. Catena 2001, 44, 133–161. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, X.; Liu, S.; Li, M.-H. A non-linear technique based on fractal method for describing gully-head changes associated with land-use in an arid environment in China. Catena 2008, 72, 106–112. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Cheng, H. Monitoring of gully erosion on the Loess Plateau of China using a global positioning system. Catena 2005, 63, 154–166. [Google Scholar] [CrossRef]
- Frankl, A.; Poesen, J.; Deckers, J.; Haile, M.; Nyssen, J. Gully head retreat rates in the semi-arid highlands of Northern Ethiopia. Geomorphology 2012, 173, 185–195. [Google Scholar] [CrossRef]
- Qi, J.R.; Guo, M.M.; Zhou, P.C.; Zhang, X.Y.; Xu, J.Z.; Chen, Z.X.; Liu, X.; Wang, L.X.; Wan, Z.K. Soil erosion resistance factors in different types of gully heads developed in four main land-uses in the Mollisols region of Northeast China. Soil Tillage Res. 2023, 230, 105697. [Google Scholar] [CrossRef]
- Ionita, I.; Niacsu, L.; Poesen, J.; Fullen, M.A. Controls on the development of continuous gullies: A 60 year monitoring study in the Moldavian Plateau of Romania. Earth Surf. Process. Landf. 2021, 46, 2746–2763. [Google Scholar] [CrossRef]
- Marzolff, I.; Ries, J.B.; Poesen, J. Short-term versus medium-term monitoring for detecting gully-erosion variability in a Mediterranean environment. Earth Surf. Process. Landf. 2011, 36, 1604–1623. [Google Scholar] [CrossRef]
- Rodzik, J.; Furtak, T.; Zglobicki, W. The impact of snowmelt and heavy rainfall runoff on erosion rates in a gully system, Lublin Upland, Poland. Earth Surf. Process. Landf. 2009, 34, 1938–1950. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, J.; Xu, J.; Zhou, P.; Chen, Z.; Wang, L.; Guo, M. Root Distribution and Soil Properties of Gully Heads and Their Effects on Headcut Migration in the Mollisols Region of Northeast China. Land 2022, 11, 184. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, B.; He, Y.; Luo, J.; Wang, L.; Deng, Q.; Liu, H.; Yang, D. Influence of geological conditions on gully distribution in the Dry-hot Valley, SW China. Catena 2022, 214, 106274. [Google Scholar] [CrossRef]
- Domazetovic, F.; Siljeg, A.; Maric, I.; Cukrov, N.; Loncar, N.; Panda, L.; Quesada-Roman, A. Assessing the impacts of lithology on short-term gully evolution within the karst Mediterranean area. Catena 2024, 244, 108238. [Google Scholar] [CrossRef]
- Wen, Y.; Kasielke, T.; Jiang, H.; Zepp, H.; Zhang, B. Effects of lithology and soil horizons on gully morphology in the Mollisol region of China. Geoderma 2024, 446, 116907. [Google Scholar] [CrossRef]
- Zhou, P.; Guo, M.; Zhang, X.; Zhang, S.; Qi, J.; Chen, Z.; Wang, L.; Xu, J. Quantifying the effect of freeze–thaw on the soil erodibility of gully heads of typical gullies in the Mollisols region of Northeast China. Catena 2023, 228, 107180. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, M.; Zhou, P.; Wang, L.; Liu, X.; Wan, Z.; Zhang, X. Gully regulates snowmelt runoff, sediment and nutrient loss processes in Mollisols region of Northeast China. Sci. Total Environ. 2024, 940, 173614. [Google Scholar] [CrossRef] [PubMed]
- Ferrick, M.G.; Gatto, L.W. Quantifying the effect of a freeze-thaw cycle on soil erosion: Laboratory experiments. Earth Surf. Process. Landf. 2005, 30, 1305–1326. [Google Scholar] [CrossRef]
- Pengchong, Z.; Mingming, G.; Zhuoxin, C.; Xingyi, Z.; Shaoliang, Z.; Jiarui, Q.; Xin, L.; Lixin, W.; Zhaokai, W. Seasonal change of tensile crack morphology and its spatial distribution along gully bank and gully slope in the Mollisols region of Northeast China. Geoderma 2024, 441, 116748. [Google Scholar] [CrossRef]
- Brice, J.C. Erosion and Deposition in the Loess-Mantled Great Plains, Medicine Creek Drainage Basin, Nebraska; US Government Printing Office: Washington, DC, USA, 1966. [Google Scholar]
- Patton, P.C. Gully Erosion in the Semiarid West; Colorado State University: Fort Collins, CO, USA, 1973. [Google Scholar]
- Prosser, I.P.; Abernethy, B. Increased erosion hazard resulting from log-row construction during conversion to plantation forest. For. Ecol. Manag. 1999, 123, 145–155. [Google Scholar] [CrossRef]
- Nachtergaele, J.; Poesen, J.; Steegen, A.; Takken, I.; Beuselinck, L.; Vandekerckhove, L.; Govers, G. The value of a physically based model versus an empirical approach in the prediction of ephemeral gully erosion for loess-derived soils. Geomorphology 2001, 40, 237–252. [Google Scholar] [CrossRef]
- Vandekerckhove, L.; Poesen, J.; Oostwoud Wijdenes, D.; Nachtergaele, J.; Kosmas, C.; Roxo, M.J.; de Figueiredo, T. Thresholds for gully initiation and sedimentation in Mediterranean Europe. Earth Surf. Process. Landf. 2000, 25, 1201–1220. [Google Scholar] [CrossRef]
- Vandaele, K.; Poesen, J.; Govers, G.; van Wesemael, B. Geomorphic threshold conditions for ephemeral gully incision. Geomorphology 1996, 16, 161–173. [Google Scholar] [CrossRef]
- Araujo, T.P.d. Estudo do Desencadeamento das Erosões Lineares Concentradas em uma área do Município de São Pedro/SP. Universidade de São Paulo: São Paulo, Brazil, 2011. [Google Scholar]
- Muñoz-Robles, C.; Reid, N.; Frazier, P.; Tighe, M.; Briggs, S.V.; Wilson, B. Factors related to gully erosion in woody encroachment in south-eastern Australia. Catena 2010, 83, 148–157. [Google Scholar] [CrossRef]
- Vandaele, K.; Poesen, J. Spatial and temporal patterns of soil erosion rates in an agricultural catchment, central Belgium. Catena 1995, 25, 213–226. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, Y.; Zou, X.; Si, H.; Zhao, Y.; Liu, D.; Yue, X. Study of ephemeral gully erosion in a small upland catchment on the Inner-Mongolian Plateau. Soil Tillage Res. 2006, 90, 184–193. [Google Scholar] [CrossRef]
- Zhu, T.X. Tunnel development over a 12 year period in a semi-arid catchment of the Loess Plateau, China. Earth Surf. Process. Landf. 2003, 28, 507–525. [Google Scholar] [CrossRef]
- Hessel, R.; van Asch, T. Modelling gully erosion for a small catchment on the Chinese Loess Plateau. Catena 2003, 54, 131–146. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, Q.; Zhang, Y.; Liu, B.; Cheng, H.; Wang, Y. Development of gullies and sediment production in the black soil region of northeastern China. Geomorphology 2008, 101, 683–691. [Google Scholar] [CrossRef]
- Hamels, K. Thresholds and Impacts of Gully Erosion in South Western Uganda. Unpubl. MSc. Thesis, Division of Geography, KU Leuven, Leuven, Belgium, 2011; p. 95. [Google Scholar]
Index | Hailun | Muling | Yakeshi |
---|---|---|---|
Altitude (m asl) | 205–261 | 307–658 | 685–947 |
Total area (km2) | 30.88 | 31.53 | 21.98 |
Annual rainfall (mm) * | 649.63 | 719.71 | 553.46 |
Average slope (°) | 2.29 | 9.93 | 6.70 |
Soil bulk density (g cm−3) | 1.30 | 1.55 | 1.26 |
Annual average temperature (°C) * | 3.67 | 4.24 | −0.83 |
Clay (%) | 33.38 | 7.33 | 15.29 |
Silt (%) | 57.83 | 68.76 | 67.84 |
Sand (%) | 8.79 | 23.91 | 16.87 |
Total porosity (%) | 50.83 | 41.83 | 52.44 |
Gravel concentration/% | 0.96 | 64.26 | 5.93 |
Site | Index | Mean | Median | Min | Max | SD | CV | Kurtosis | Skewness | GLD (km/km2) | GAD (km2/km2) |
---|---|---|---|---|---|---|---|---|---|---|---|
HL | L (m) | 526.22 (a) | 292.42 | 51.56 | 4342.79 | 666.65 | 1.27 | 13.81 | 3.37 | 1.65 | 0.03 |
B (m) | 13.28 (a) | 12.91 | 3.03 | 38.74 | 6.15 | 0.46 | 3.17 | 1.38 | |||
Ag (m2) | 7984.44 (a) | 3871.67 | 340.59 | 80,904.78 | 11,920.06 | 1.49 | 16.61 | 3.60 | |||
P (m) | 1092.73 (a) | 689.49 | 122.96 | 8823.98 | 1353.58 | 1.24 | 13.75 | 3.36 | |||
SI | 3.02 (b) | 2.72 | 1.27 | 7.76 | 1.31 | 0.43 | 3.78 | 1.76 | |||
ML | L (m) | 208.64 (b) | 141.02 | 13.13 | 1790.63 | 213.80 | 1.02 | 10.71 | 2.80 | 5.25 | 0.05 |
B (m) | 8.45 (b) | 8.07 | 3.01 | 22.64 | 2.60 | 0.31 | 1.71 | 1.01 | |||
Ag (m2) | 1969.32 (b) | 1110.43 | 73.08 | 22,779.15 | 2562.52 | 1.30 | 14.93 | 3.37 | |||
P (m) | 439.47 (b) | 299.56 | 36.94 | 3585.38 | 433.09 | 0.99 | 10.35 | 2.77 | |||
SI | 2.44 (c) | 2.31 | 1.08 | 6.02 | 0.86 | 0.35 | 1.48 | 1.10 | |||
YKS | L (m) | 614.20 (a) | 323.07 | 28.65 | 3385.17 | 903.66 | 1.47 | 5.78 | 2.51 | 0.50 | 0.01 |
B (m) | 9.32 (b) | 8.28 | 4.88 | 18.90 | 3.65 | 0.39 | 1.29 | 1.07 | |||
Ag (m2) | 6058.78 (a) | 2603.51 | 192.55 | 36,458.16 | 8978.69 | 1.48 | 7.81 | 2.67 | |||
P (m) | 1251.74 (a) | 653.62 | 75.20 | 6855.52 | 1841.08 | 1.47 | 5.70 | 2.51 | |||
SI | 3.56 (a) | 2.89 | 1.35 | 9.80 | 2.30 | 0.65 | 3.62 | 2.00 |
Location of Study Area | Method | Gully Length (m) | Gully Width (m) | Gully Area (m2) | |
---|---|---|---|---|---|
This study | Hailun, China | Satellite images (2.0–2.1 m) | 526.22 | 13.28 | 7984.44 |
Muling, China | Satellite images (2.0–2.1 m) | 208.64 | 8.45 | 1969.32 | |
Yakeshi, China | Satellite images (2.0–2.1 m) | 614.2 | 9.32 | 6058.78 | |
Other study | Upper Blue Nile Basin, Ethiopia [62] | Satellite images (0.50–1.50 m) | 5.20–237 | 2.63–13.45 | 20.39–962.24 |
(67.54) | (5.43) | (263.29) | |||
Loess Plateau, China [58] | 3D laser scanning (1 cm) | 33.60–88.90 | 7.8–33.7 | 384.10–2090.30 | |
(58.4) | (17.30) | (910.3) | |||
Northern Ethiopian Highlands [59] | Field measurements (not mentioned) | 53.19 | 2.5 | NA | |
Yuanmou Dry-hot Valley, China [61] | RTK GPS (<2 cm) | NA | 14.08 | NA | |
Yimeng Mountain Area, China [63] | UAV, satellite images (0.03 m and 0.5 m) | 151.34 | 23.81 | 4089.02 | |
southwestern Spain [60] | Aerial photographs (1:5000) | NA | 13.1 | NA | |
South Carolina, USA [57] | Field measurements (not mentioned) | 36–90 (57.25) | 2.4–9.5 (6.21) | NA |
Location of Study Area | Method | Linear Rates (m yr−1) | Areal Rates (m2 yr−1) | Annual Precipitation (mm) | Annual Evaporation (mm) | Soil Property | |
---|---|---|---|---|---|---|---|
this study | Hailun, China | Satellite images | 12.21 | 277.79 | 649.63 | 553.46 | silts and clays |
Muling, China | Satellite images | 7.11 | 105.26 | 719.71 | 584.84 | silts and sands | |
Yakeshi, China | Satellite images | 17.5 | 243.36 | 553.46 | 450.82 | silts and clays | |
other study | Northern Ethiopia [69] | Field measurements | 3.8 | 31.5 | 500–900 | NA | sandstone, limestone, and shale |
Tunisia [64] | Field measurements | 0.38 | 10.54 | <450 | NA | sandstone | |
Yuanmou Basin, China [67] | Field measurements | 0.045–1.17 | NA | 615 | 3569 | alluvial soil | |
Loess Plateau [68] | Field measurements | 0.63 | NA | 300–500 | NA | loess | |
southeast Spain [66] | Field measurements | 0.1 | NA | 276–379 | NA | Quaternary clays | |
southeastern Arizona, USA [65] | Aerial photographs, Theodolite, LIDAR DEM, Differential GPS | 0.35–1.50 | NA | 311–324 | NA | silts and clays | |
Negev highlands, Israel [6] | Field measurements | 22.7 | 790 | 80–120 | 2000–2500 | sandy loess | |
the Upper Blue Nile basin, Ethiopia [62] | Satellite images | 0.76~3.42 | 9.72~12.26 | 850–3424 | NA | clay |
No. | Location | Source | a | b |
---|---|---|---|---|
1 | Hailun, China | This study | 0.052 | 0.52 |
2 | Muling, China | This study | 0.044 | 0.27 |
3 | Yakeshi, China | This study | 0.12 | 0.36 |
4 | Upper-Rwizi catchment, Uganda | Hamels (2011) [95] | 0.19 | 0.14 |
5 | Guadalentin, Spain | Nachtergaele et al. (2001) [85] | 0.15 | 0.13 |
6 | Cerro Tonosa, Spain | Vandekerckhove et al. (2000) [86] | 0.23 | 0.10 |
7 | Loess Plateau, China | Wu and Cheng. (2005) [68] | 0.18 | 0.24 |
8 | Yuanmou Dry-hot Valley, China | Dong et al. (2013) [61] | 0.52 | 0.09 |
9 | Central-Eastern Sardinia, Italy | Zucca et al. (2006) [16] | 0.18 | 0.20 |
10 | Alentejo, Portugal | Vandaele et al. (1996) [87] | 0.02 | 0.35 |
11 | New South Wales, Australia | Muñoz-Robles et al. (2010) [89] | 0.018 | 0.36 |
12 | Brussels and Leuven, Belgian | Vandaele and Poesen (1995) [90] | 0.025 | 0.40 |
13 | Sao Paulo State, Sao Pedro, Brazil | Araujo (2011) [88] | 0.020 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Shi, M.; Guo, M.; Zhang, X.; Liu, X.; Chen, Z. Morphological Characteristics and Development Rate of Gullies in Three Main Agro-Geomorphological Regions of Northeast China. Remote Sens. 2024, 16, 2905. https://doi.org/10.3390/rs16162905
Wang Z, Shi M, Guo M, Zhang X, Liu X, Chen Z. Morphological Characteristics and Development Rate of Gullies in Three Main Agro-Geomorphological Regions of Northeast China. Remote Sensing. 2024; 16(16):2905. https://doi.org/10.3390/rs16162905
Chicago/Turabian StyleWang, Zhengyu, Mingchang Shi, Mingming Guo, Xingyi Zhang, Xin Liu, and Zhuoxin Chen. 2024. "Morphological Characteristics and Development Rate of Gullies in Three Main Agro-Geomorphological Regions of Northeast China" Remote Sensing 16, no. 16: 2905. https://doi.org/10.3390/rs16162905
APA StyleWang, Z., Shi, M., Guo, M., Zhang, X., Liu, X., & Chen, Z. (2024). Morphological Characteristics and Development Rate of Gullies in Three Main Agro-Geomorphological Regions of Northeast China. Remote Sensing, 16(16), 2905. https://doi.org/10.3390/rs16162905