The Ocean Surface Current in the East China Sea Computed by the Geostationary Ocean Color Imager Satellite
<p>(<b>a</b>) Spatial distribution of GOCI climatological TSS in the East China Sea; (<b>b</b>) the schematic diagram of ocean circulation (the background color in (<b>b</b>) is the water depth). <b>KC</b>: Kuroshio Current; <b>TWC</b>: Taiwan Warm Current; <b>CDW</b>: Changjiang Diluted Water; <b>ZJCC</b>: Zhejiang Coastal Current.</p> "> Figure 2
<p>Two consecutive remote-sensing image images <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold-italic">T</mi> <mn mathvariant="bold">0</mn> </msub> </mrow> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold-italic">T</mi> <mn mathvariant="bold">1</mn> </msub> </mrow> </semantics></math> (<b>b</b>), used for calculating the cross-correlation coefficient of the source window (red square) and the target window in the search window (blue square) to search for the position of the highest cross-correlation value and to obtain the velocity vector.</p> "> Figure 3
<p>The RMSE of semimajor (solid blue line), semiminor (blue dotted line) axis, and inclination (solid red line) under different source window radius <math display="inline"><semantics> <mi>r</mi> </semantics></math>.</p> "> Figure 4
<p>(<b>a</b>) M<sub>2</sub> tidal ellipse of MCC−derived current (blue) and the model flow (red), with a red star indicating the location of the local tide gauge station; (<b>b</b>) spectrum analysis of one month’s worth of tidal hourly elevation data; and (<b>c</b>) tidal elevation variation and spatially averaged flow velocity on 14 February 2017.</p> "> Figure 5
<p>(<b>a</b>) GOCI−derived climatic current field; (<b>b</b>) spatial distribution of the number of velocity vectors in the flow field. <b>KC</b>: Kuroshio Current; <b>TWC</b>: Taiwan Warm Current; <b>CDW</b>: Changjiang Diluted Water. The red arrows in 5(<b>a</b>) show the trajectory of the currents.</p> "> Figure 6
<p>Seasonal surface mean flow in the East China Sea (red arrows indicate the main circulation). (<b>a</b>) Spring. (<b>b</b>) Summer. (<b>c</b>) Autumn. (<b>d</b>) Winter. <b>KC</b>: Kuroshio Current; <b>TWC</b>: Taiwan Warm Current; <b>CDW</b>: Changjiang Diluted Water; <b>ZJCC</b>: Zhejiang Coastal Current.</p> "> Figure 7
<p>Seasonal distribution of the number of derived current vectors in the East China Sea. (<b>a</b>) Spring. (<b>b</b>) Summer. (<b>c</b>) Autumn. (<b>d</b>) Winter.</p> "> Figure 8
<p>(<b>a</b>–<b>g</b>) Surface current field (red line represents the 70 m isobath); (<b>h</b>) tidal elevation observed from local tide gauge station (blue line) and spatially averaged TSS variation within 70 m isobath (red line); and (<b>i</b>) regional mean current velocity within 70 m isobath and tidal elevation from 8:00 to 14:00 on 3 August 2013.</p> "> Figure 9
<p>The hourly variation in TSS, advection term, horizontal diffusion term, and vertical term from 08:00 to 13:00 on 3 August 2013.</p> "> Figure 10
<p>Spatial distribution of hourly variation in TSS, advection term, horizontal diffusion term, and vertical term at 10:00–11:00 (<b>a</b>–<b>d</b>) and 11:00–12:00 (<b>e</b>–<b>h</b>) on 3 August 2013.</p> "> Figure 11
<p>The evolution of Simpson−Hunter index k versus hourly variations in TSS from 8:00 to 14:00.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. GOCI TSS Data
2.1.2. Tide Data
2.2. Method
2.2.1. Maximum Cross-Correlation (MCC) Algorithm
2.2.2. Selection of the Radius r for the Source Window
3. Results and Discussion
3.1. Verification of Inversion Results Based on Numerical Modeling and In Situ Measurements
3.2. Pattern and Seasonal Variations of the Surface Residual Currents in the East China Sea
3.3. Diurnal Variability and Mechanisms of TSS in the Zhejiang Coastal Front
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stabeno, P.; Reed, R. Circulation in the Bering Sea basin observed by satellite-tracked drifters: 1986–1993. J. Phys. Oceanogr. 1994, 24, 848–854. [Google Scholar] [CrossRef]
- Barrick, D.E.; Evans, M.; Weber, B. Ocean Surface Currents Mapped by Radar: Mobile coastal units can map variable surface currents in real time to 70 kilometers, using ocean wave scatter. Science 1977, 198, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Durand, F.; Shankar, D.; Birol, F.; Shenoi, S. Spatiotemporal structure of the East India Coastal Current from satellite altimetry. J. Geophys. Res. Oceans 2009, 114. [Google Scholar] [CrossRef]
- Emery, W.J.; Thomas, A.; Collins, M.; Crawford, W.R.; Mackas, D. An objective method for computing advective surface velocities from sequential infrared satellite images. J. Geophys. Res. Oceans 1986, 91, 12865–12878. [Google Scholar] [CrossRef]
- Tokmakian, R.; Strub, P.T.; McClean-Padman, J. Evaluation of the maximum cross-correlation method of estimating sea surface velocities from sequential satellite images. J. Atmos. Ocean. Technol. 1990, 7, 852–865. [Google Scholar] [CrossRef]
- Bowen, M.M.; Emery, W.J.; Wilkin, J.L.; Tildesley, P.C.; Barton, I.J.; Knewtson, R. Extracting multiyear surface currents from sequential thermal imagery using the maximum cross-correlation technique. J. Atmos. Ocean. Technol. 2002, 19, 1665–1676. [Google Scholar] [CrossRef]
- Crocker, R.I.; Matthews, D.K.; Emery, W.J.; Baldwin, D.G. Computing Coastal Ocean Surface Currents From Infrared and Ocean Color Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2007, 45, 435–447. [Google Scholar] [CrossRef]
- Yang, H.; Choi, J.-K.; Park, Y.-J.; Han, H.-J.; Ryu, J.-H. Application of the Geostationary Ocean Color Imager (GOCI) to estimates of ocean surface currents. J. Geophys. Res. Oceans 2014, 119, 3988–4000. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, D.P.; Pan, D.; He, X.; Miyazawa, Y.; Bai, Y.; Wang, D.; Gong, F. Mapping surface tidal currents and Changjiang plume in the East China Sea from Geostationary Ocean Color Imager. J. Geophys. Res. Oceans 2016, 121, 1563–1572. [Google Scholar] [CrossRef]
- Taniguchi, N.; Kida, S.; Sakuno, Y.; Mutsuda, H.; Syamsudin, F. Short-Term Variation of the Surface Flow Pattern South of Lombok Strait Observed from the Himawari-8 Sea Surface Temperature. Remote Sens. 2019, 11, 1491. [Google Scholar] [CrossRef]
- Zhu, Z.; Geng, X.; Li, S.; Xie, T.; Yan, X.-H. Ocean surface current retrieval at Hangzhou Bay from Himawari-8 sequential satellite images. Sci. China Earth Sci. 2020, 63, 1026–1038. [Google Scholar] [CrossRef]
- Yin, W.; Huang, D. Evolution of submesoscale coastal frontal waves in the East China Sea based on geostationary ocean color imager observational data. Geophys. Res. Lett. 2016, 43, 9801–9809. [Google Scholar] [CrossRef]
- He, S.; Huang, D.; Zeng, D. Double SST fronts observed from MODIS data in the East China Sea off the Zhejiang–Fujian coast, China. J. Mar. Syst. 2016, 154, 93–102. [Google Scholar] [CrossRef]
- Choi, J.-K.; Park, Y.J.; Ahn, J.H.; Lim, H.-S.; Eom, J.; Ryu, J.-H. GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, D.-P.; He, X.; Li, M.; Wei, J.; Pan, D.; Bai, Y. Episodic surface intrusions in the Yellow Sea during relaxation of northerly winds. J. Geophys. Res. Oceans 2017, 122, 6533–6546. [Google Scholar] [CrossRef]
- Xuan, J.; Yang, Z.; Huang, D.; Wang, T.; Zhou, F. Tidal residual current and its role in the mean flow on the Changjiang Bank. J. Mar. Syst. 2016, 154, 66–81. [Google Scholar] [CrossRef]
- Stammer, D.; Ray, R.; Andersen, O.B.; Arbic, B.; Bosch, W.; Carrère, L.; Cheng, Y.; Chinn, D.; Dushaw, B.; Egbert, G. Accuracy assessment of global barotropic ocean tide models. Rev. Geophys. 2014, 52, 243–282. [Google Scholar] [CrossRef]
- Liu, J.; Emery, W.J.; Wu, X.; Li, M.; Li, C.; Zhang, L. Computing Ocean Surface Currents From GOCI Ocean Color Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7113–7125. [Google Scholar] [CrossRef]
- Barton, I.J. Ocean currents from successive satellite images: The reciprocal filtering technique. J. Atmos. Ocean. Technol. 2002, 19, 1677–1689. [Google Scholar] [CrossRef]
- Du, Y.; Xu, Q.; Cheng, Y.; Zhang, S.; Wang, C. Estimating Sea Surface Currents Based on Himawari-8 Sea Surface Temperature Data. In Proceedings of the 2021 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 21–25 November 2021; pp. 2034–2038. [Google Scholar]
- Kagimoto, T.; Yamagata, T. Seasonal transport variations of the Kuroshio: An OGCM simulation. J. Phys. Oceanogr. 1997, 27, 403–418. [Google Scholar] [CrossRef]
- Guan, B.X. A sketch of the current structures and eddy characteristics in the East China Sea. Stud. Mar. Sin. 1986, 27, 1–22. [Google Scholar]
- Yu, H.; Zheng, D.; Jiang, J. Basic hydrographic characteristics of the studied area. In Proceedings of the International Symposium on Sedimentation on the Continental Shelf with Special Reference to the East China Sea, Hangzhou, China, 12–16 April 1983; pp. 295–305. [Google Scholar]
- Warren, M.A.; Quartly, G.D.; Shutler, J.D.; Miller, P.I.; Yoshikawa, Y. Estimation of ocean surface currents from maximum cross correlation applied to GOCI geostationary satellite remote sensing data over the Tsushima (Korea) Straits. J. Geophys. Res. Oceans 2016, 121, 6993–7009. [Google Scholar] [CrossRef]
- Zhou, Y.; Xuan, J.; Huang, D. Tidal variation of total suspended solids over the Yangtze Bank based on the geostationary ocean color imager. Sci. China Earth Sci. 2020, 63, 1381–1389. [Google Scholar] [CrossRef]
- Hu, Z.; Pan, D.; He, X.; Bai, Y. Diurnal Variability of Turbidity Fronts Observed by Geostationary Satellite Ocean Color Remote Sensing. Remote Sens. 2016, 8, 147. [Google Scholar] [CrossRef]
- Hu, Z.; Pan, D.; He, X.; Song, D.; Huang, N.; Bai, Y.; Xu, Y.; Wang, X.; Zhang, L.; Gong, F. Assessment of the MCC method to estimate sea surface currents in highly turbid coastal waters from GOCI. Int. J. Remote Sens. 2016, 38, 572–597. [Google Scholar] [CrossRef]
- Simpson, J.; Hunter, J. Fronts in the Irish sea. Nature 1974, 250, 404–406. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Yin, W.; Guo, Z.; Xuan, J. The Ocean Surface Current in the East China Sea Computed by the Geostationary Ocean Color Imager Satellite. Remote Sens. 2023, 15, 2210. https://doi.org/10.3390/rs15082210
Ma Y, Yin W, Guo Z, Xuan J. The Ocean Surface Current in the East China Sea Computed by the Geostationary Ocean Color Imager Satellite. Remote Sensing. 2023; 15(8):2210. https://doi.org/10.3390/rs15082210
Chicago/Turabian StyleMa, Youzhi, Wenbin Yin, Zheng Guo, and Jiliang Xuan. 2023. "The Ocean Surface Current in the East China Sea Computed by the Geostationary Ocean Color Imager Satellite" Remote Sensing 15, no. 8: 2210. https://doi.org/10.3390/rs15082210
APA StyleMa, Y., Yin, W., Guo, Z., & Xuan, J. (2023). The Ocean Surface Current in the East China Sea Computed by the Geostationary Ocean Color Imager Satellite. Remote Sensing, 15(8), 2210. https://doi.org/10.3390/rs15082210