Mine Pit Wall Geological Mapping Using UAV-Based RGB Imaging and Unsupervised Learning
<p>Location of Kinross Gold’s Bald Mountain mine (39°56′N, 115°36′W, WGS 84) and McEwen Mining’s Gold Bar mine (39°47′N, 116°20′W, WGS 84) shown by the red and blue diamond symbols, respectively.</p> "> Figure 2
<p>(<b>a</b>) The northern area of Kinross Gold Bald Mountain Mine’s Top Pit. (<b>b</b>) The southeastern area of McEwen Mining Gold Bar Mine’s Pick Pit. The highlighted regions roughly indicate the pit wall sections that were covered.</p> "> Figure 3
<p>(<b>a</b>) Dense point clouds created from pit wall images of Top Pit. (<b>b</b>) Dense point clouds created from pit wall images of Pick Pit. Point cloud generation was done via Agisoft Metashape on high-quality, mild-filtering setting. The regions in the red boxes are the study areas for dataset creation and analysis.</p> "> Figure 4
<p>(<b>a</b>) The orthomosaic of the selected pit wall section for Top Pit (simple case). (<b>b</b>) The corresponding “novice-labelled” ground truth map.</p> "> Figure 4 Cont.
<p>(<b>a</b>) The orthomosaic of the selected pit wall section for Top Pit (simple case). (<b>b</b>) The corresponding “novice-labelled” ground truth map.</p> "> Figure 5
<p>(<b>a</b>) The orthomosaic of the selected pit wall section for Pick Pit (complex case). (<b>b</b>) The corresponding “novice-labelled” ground truth map.</p> "> Figure 5 Cont.
<p>(<b>a</b>) The orthomosaic of the selected pit wall section for Pick Pit (complex case). (<b>b</b>) The corresponding “novice-labelled” ground truth map.</p> "> Figure 6
<p>An illustration of the cluster map generation process using K-Means clustering only.</p> "> Figure 7
<p>An illustration of the cluster map generation process using Autoencoder-first K-Means clustering.</p> "> Figure 8
<p>Coloured cluster maps of the Top Pit pit wall orthomosaic. Colour assignment of the cluster groups was based on visual comparison to the ground truth in terms of spatial correspondence. (<b>a</b>) The K-Means clustering map; (<b>b</b>) the autoencoder-first (Model MT) K-Means clustering map; (<b>c</b>) the autoencoder-first (Model PY) K-Means clustering map.</p> "> Figure 9
<p>Coloured cluster map of the Top Pit orthomosaic using ISO Cluster Classification Tool for four classes.</p> "> Figure 10
<p>Coloured cluster maps of the Pick Pit pit wall orthomosaic. Colour assignment of the cluster groups was based on visual comparison to the ground truth in terms of spatial correspondence. (<b>a</b>) The K-Means clustering-only map; (<b>b</b>) the autoencoder-first (Model MT) K-Means clustering map; (<b>c</b>) the autoencoder-first (Model PY) K-Means clustering map.</p> "> Figure 11
<p>Coloured cluster map of the Pick Pit orthomosaic using ISO Cluster Classification Tool for three classes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. UAV Equipment
2.3. Data Acquisition
2.3.1. First Phase: Coarse Topographic Mapping
2.3.2. Second Phase: Detailed Pit Wall Mapping
2.4. Photogrammetry
2.5. Dataset Creation for Unsupervised Learning
2.6. Unsupervised Learning Algorithms and Cluster Map Generation
2.6.1. K-Means Clustering
2.6.2. Autoencoder-First K-Means Clustering
2.6.3. Segmentation
3. Results
3.1. Top Pit
3.2. Pick Pit
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blom, M.; Pearce, A.R.; Stuckey, P.J. Short-Term Planning for Open Pit Mines: A Review. Int. J. Min. Reclam. Environ. 2019, 33, 318–339. [Google Scholar] [CrossRef]
- Medinac, F.; Esmaeili, K. Integrating Unmanned Aerial Vehicle Photogrammetry in Design Compliance Audits and Structural Modelling of Pit Walls. In Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering; Australian Centre for Geomechanics: Perth, Australia, 2020; pp. 1439–1454. [Google Scholar]
- McHugh, E.L.; Girard, J.M.; Denes, L.J. Simplified Hyperspectral Imaging for Improved Geologic Mapping of Mine Slopes. In Proceedings of the Third International Conference on Intelligent Processing and Manufacturing of Materials, Vancouver, BC, Canada, 20–23 August 2001; pp. 1–10. [Google Scholar]
- Van der Meer, F.D.; Van der Werff, H.M.; Van Ruitenbeek, F.J.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; Woldai, T. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinfo. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Murphy, R.; Schneider, S.; Monteiro, S. Mapping Layers of Clay in a Vertical Geological Surface Using Hyperspectral Imagery: Variability in Parameters of SWIR Absorption Features under Different Conditions of Illumination. Remote Sens. 2014, 6, 9104–9129. [Google Scholar] [CrossRef] [Green Version]
- Boubanga-Tombet, S.; Huot, A.; Vitins, I.; Heuberger, S.; Veuve, C.; Eisele, A.; Hewson, R.; Guyot, E.; Marcotte, F.; Chamberland, M. Thermal Infrared Hyperspectral Imaging for Mineralogy Mapping of a Mine Face. Remote Sens. 2018, 10, 1518. [Google Scholar] [CrossRef] [Green Version]
- James Fraser, S.; Whitbourn, L.B.; Yang, K.; Ramanaidou, E.; Connor, P.; Poropat, G.; Soole, P.; Mason, P.; Coward, D.; Philips, R. Mineralogical Face-Mapping Using Hyperspectral Scanning for Mine Mapping and Control. In Proceedings of the Sixth International Mining Geology Conference, Darwin, Australia, 23 August 2006; pp. 227–232. [Google Scholar]
- Buckley, S.; Kurz, T.; Schneider, D. The Benefits of Terrestrial Laser Scanning and Hyperspectral Data Fusion Products. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 25 August–1 September 2012; pp. 541–546. [Google Scholar]
- Murphy, R.J.; Taylor, Z.; Schneider, S.; Nieto, J. Mapping Clay Minerals in an Open-Pit Mine Using Hyperspectral and LiDAR Data. Eur. J. Remote Sens. 2015, 48, 511–526. [Google Scholar] [CrossRef]
- Murphy, R.J.; Monteiro, S.T. Mapping the Distribution of Ferric Iron Minerals on a Vertical Mine Face Using Derivative Analysis of Hyperspectral Imagery (430–970 nm). ISPRS J. Photogramm. Remote Sens. 2013, 75, 29–39. [Google Scholar] [CrossRef]
- Lorenz, S.; Salehi, S.; Kirsch, M.; Zimmermann, R.; Unger, G.; Vest Sørensen, E.; Gloaguen, R. Radiometric Correction and 3D Integration of Long-Range Ground-Based Hyperspectral Imagery for Mineral Exploration of Vertical Outcrops. Remote Sens. 2018, 10, 176. [Google Scholar] [CrossRef] [Green Version]
- Kirsch, M.; Lorenz, S.; Zimmermann, R.; Tusa, L.; Möckel, R.; Hödl, P.; Booysen, R.; Khodadadzadeh, M.; Gloaguen, R. Integration of Terrestrial and Drone-Borne Hyperspectral and Photogrammetric Sensing Methods for Exploration Mapping and Mining Monitoring. Remote Sens. 2018, 10, 1366. [Google Scholar] [CrossRef] [Green Version]
- Barton, I.F.; Gabriel, M.J.; Lyons-Baral, J.; Barton, M.D.; Duplessis, L.; Roberts, C. Extending Geometallurgy to the Mine Scale with Hyperspectral Imaging: A Pilot Study Using Drone- and Ground-Based Scanning. Min. Metall. Explor. 2021, 38, 799–818. [Google Scholar] [CrossRef]
- Thiele, S.T.; Lorenz, S.; Kirsch, M.; Cecilia Contreras Acosta, I.; Tusa, L.; Herrmann, E.; Möckel, R.; Gloaguen, R. Multi-Scale, Multi-Sensor Data Integration for Automated 3-D Geological Mapping. Ore Geol. Rev. 2021, 136, 104252. [Google Scholar] [CrossRef]
- Thiele, S.T.; Bnoulkacem, Z.; Lorenz, S.; Bordenave, A.; Menegoni, N.; Madriz, Y.; Dujoncquoy, E.; Gloaguen, R.; Kenter, J. Mineralogical Mapping with Accurately Corrected Shortwave Infrared Hyperspectral Data Acquired Obliquely from UAVs. Remote Sens. 2021, 14, 5. [Google Scholar] [CrossRef]
- Chesley, J.T.; Leier, A.L.; White, S.; Torres, R. Using Unmanned Aerial Vehicles and Structure-from-Motion Photogrammetry to Characterize Sedimentary Outcrops: An Example from the Morrison Formation, Utah, USA. Sediment. Geol. 2017, 354, 1–8. [Google Scholar] [CrossRef]
- Madjid, M.Y.A.; Vandeginste, V.; Hampson, G.; Jordan, C.J.; Booth, A.D. Drones in Carbonate Geology: Opportunities and Challenges, and Application in Diagenetic Dolomite Geobody Mapping. Mar. Pet. Geol. 2018, 91, 723–734. [Google Scholar] [CrossRef] [Green Version]
- Nesbit, P.R.; Durkin, P.R.; Hugenholtz, C.H.; Hubbard, S.M.; Kucharczyk, M. 3-D Stratigraphic Mapping Using a Digital Outcrop Model Derived from UAV Images and Structure-from-Motion Photogrammetry. Geosphere 2018, 14, 2469–2486. [Google Scholar] [CrossRef] [Green Version]
- Beretta, F.; Rodrigues, A.L.; Peroni, R.L.; Costa, J.F.C.L. Automated Lithological Classification Using UAV and Machine Learning on an Open Cast Mine. Appl. Earth Sci. 2019, 128, 79–88. [Google Scholar] [CrossRef]
- Fu, Y.; Aldrich, C. Deep Learning in Mining and Mineral Processing Operations: A Review. IFAC Pap. 2020, 53, 11920–11925. [Google Scholar] [CrossRef]
- Bamford, T.; Esmaeili, K.; Schoellig, A.P. A Deep Learning Approach for Rock Fragmentation Analysis. Int. J. Rock Mech. Min. Sci. 2021, 145, 104839. [Google Scholar] [CrossRef]
- Tang, M.; Esmaeili, K. Heap Leach Pad Surface Moisture Monitoring Using Drone-Based Aerial Images and Convolutional Neural Networks: A Case Study at the El Gallo Mine, Mexico. Remote Sens. 2021, 13, 1420. [Google Scholar] [CrossRef]
- Houshmand, N.; GoodFellow, S.; Esmaeili, K.; Ordóñez Calderón, J.C. Rock Type Classification Based on Petrophysical, Geochemical, and Core Imaging Data Using Machine and Deep Learning Techniques. Appl. Comput. Geosci. 2022, 16, 100104. [Google Scholar] [CrossRef]
- Abdolmaleki, M.; Consens, M.; Esmaeili, K. Ore-Waste Discrimination Using Supervised and Unsupervised Classification of Hyperspectral Images. Remote Sens. 2022, 14, 6386. [Google Scholar] [CrossRef]
- Lloyd, S. Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef] [Green Version]
- MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 1 January 1967; pp. 281–297. [Google Scholar]
- Li, Y.; Luo, X.; Chen, M.; Zhu, Y.; Gao, Y. An Autoencoder-Based Dimensionality Reduction Algorithm for Intelligent Clustering of Mineral Deposit Data; Springer: Singapore, 2020; pp. 408–415. [Google Scholar]
- Song, C.; Liu, F.; Huang, Y.; Wang, L.; Tan, T. Auto-Encoder Based Data Clustering. In Proceedings of the Iberoamerican Congress on Pattern Recognition, Havana, Cuba, 20–23 November 2013; pp. 117–124. [Google Scholar]
- Xie, J.; Girshick, R.; Farhadi, A. Unsupervised Deep Embedding for Clustering Analysis. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 478–487. [Google Scholar]
- Yang, B.; Xiao, F.; Sidiropoulos, N.; Hong, M. Towards K-Means-Friendly Spaces: Simultaneous Deep Learning and Clustering. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 July 2017; pp. 3861–3870. [Google Scholar]
- Langford, M.; Fox, A.; Sawdon Smith, R. Light. In Langford’s Basic Photography; Elsevier: Amsterdam, The Netherlands, 2010; pp. 31–46. [Google Scholar]
- Langford, M.; Fox, A.; Sawdon Smith, R. Using Different Focal Length Lenses, Camera Kits. In Langford’s Basic Photography; Elsevier: Amsterdam, The Netherlands, 2010; pp. 92–113. [Google Scholar]
- Bamford, T.; Medinac, F.; Esmaeili, K. Continuous Monitoring and Improvement of the Blasting Process in Open Pit Mines Using Unmanned Aerial Vehicle Techniques. Remote Sens. 2020, 12, 2801. [Google Scholar] [CrossRef]
- Medinac, F.; Bamford, T.; Hart, M.; Kowalczyk, M.; Esmaeili, K. Haul Road Monitoring in Open Pit Mines Using Unmanned Aerial Vehicles: A Case Study at Bald Mountain Mine Site. Min. Metall. Explor. 2020, 37, 1877–1883. [Google Scholar] [CrossRef]
- Tziavou, O.; Pytharouli, S.; Souter, J. Unmanned Aerial Vehicle (UAV) Based Mapping in Engineering Geological Surveys: Considerations for Optimum Results. Eng. Geol. 2018, 232, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Medinac, F.; Esmaeili, K. Advances in Pit Wall Mapping and Slope Assessment Using Unmanned Aerial Vehicle Technology; University of Toronto: Toronto, ON, Canada, 2019. [Google Scholar]
- Pix4D Inc. Denver. Pix4Dmapper V4.1. User Manual. Available online: https://support.pix4d.com/hc/en-us/articles/204272989-Offline-Getting-Started-and-Manual-pdf (accessed on 19 January 2023).
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016; ISBN 0262035618. [Google Scholar]
- Ji, S.; Ye, K.; Xu, C.-Z. A Network Intrusion Detection Approach Based on Asymmetric Convolutional Autoencoder; Springer: Berlin/Heidelberg, Germany, 2020; pp. 126–140. [Google Scholar]
- Kim, J.-H.; Choi, J.-H.; Chang, J.; Lee, J.-S. Efficient Deep Learning-Based Lossy Image Compression Via Asymmetric Autoencoder and Pruning. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 2063–2067. [Google Scholar]
- Majumdar, A.; Tripathi, A. Asymmetric Stacked Autoencoder. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 911–918. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the IEEE International Conference on Computer Vsion, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
Flight Plan Parameters | Top Pit | Pick Pit |
---|---|---|
Flight Speed | 9 km/h | 9 km/h |
Camera Tilt | −10.00° | −10.00° |
Shutter Interval | 3 s | 3 s |
Offset distance | 96.2 m | 96.2 m |
Front Overlap | 80% | 80% |
Side Overlap | 80% | 80% |
Front Spacing | 5.5 m | 5.5 m |
Side Spacing | 7.4 m | 7.4 m |
Number of Images | 973 | 407 |
Flight Length | ~9300 m | ~2200 m |
Flight Lines | 18 | 9 |
Area Covered (flat) | ~4.1 ha | ~2.0 ha |
Ground Sampling Distance | 0.626 cm/pixel | 0.574 cm/pixel |
Tile Size (pixel) | Actual Size (cm) | Number of Tiles |
---|---|---|
64 × 64 | ~40 × 40 | 10,736 |
96 × 96 | ~60 × 60 | 4680 |
128 × 128 | ~80 × 80 | 2729 |
192 × 192 | ~120 × 120 | 1160 (2610 *) |
256 × 256 | ~160 × 160 | 660 (2400 *) |
Tile Size (pixel) | Actual Size (cm) | Number of Tiles |
---|---|---|
64 × 64 | ~37 × 37 | 9828 |
96 × 96 | ~55 × 55 | 4410 |
128 × 128 | ~74 × 74 | 2444 |
192 × 192 | ~110 × 110 | 1071 (2559 *) |
256 × 256 | ~147 × 147 | 611 (2347 *) |
Layer * | Output Dimension | Convolutional Kernel |
---|---|---|
Encoder | ||
Input | H × W × 3 | - |
1 × 1 Conv | H × W × 16 | Size 3 × 3, stride 1, padding 1 |
Same Conv | H × W × 16 | Size 3 × 3, stride 1, padding 1 |
Down Conv1 | H/2 × W/2 × 32 | Size 3 × 3, stride 2, padding 1 |
Same Conv × 2 | H/2 × W/2 × 32 | Size 3 × 3, stride 1, padding 1 |
Down Conv2 | H/4 × W/4 × 64 | Size 3 × 3, stride 2, padding 1 |
Same Conv × 2 | H/4 × W/4 × 64 | Size 3 × 3, stride 1, padding 1 |
Down Conv3 | H/8 × W/8 × 128 | Size 3 × 3, stride 2, padding 1 |
Same Conv × 2 | H/8 × W/8 × 128 | Size 3 × 3, stride 1, padding 1 |
Global Average Pooling | 1 × 1 × 128 | - |
Flatten | 1 × 128 | - |
Fully Connected | 1 × 128 | - |
Decoder | ||
Input (embedding) | 1 × 128 | - |
Fully Connected + ReLU | 1 × (H/8 × W/8 × 128) | - |
Unflatten | H/8 × W/8 × 128 | - |
Up Conv1 | H/4 × W/4 × 64 | Size 3 × 3, stride 2, padding 1, output padding 1 |
Up Conv2 | H/2 × W/2 × 32 | Size 3 × 3, stride 2, padding 1, output padding 1 |
Up Conv3 | H × W × 16 | Size 3 × 3, stride 2, padding 1, output padding 1 |
1 × 1 Conv | H × W × 3 | Size 1 × 1, stride 1 |
Layer * | Output Dimension | Convolutional Kernel |
---|---|---|
Encoder | ||
Input | H × W × 3 | - |
1 × 1 Conv | H × W × 16 | Size 3 × 3, stride 1, padding 1 |
Same Conv | H × W × 16 | Size 3 × 3, stride 1, padding 1 |
Down Conv1 | H/2 × W/2 × 32 | Size 3 × 3, stride 2, padding 1 |
Same Conv × 2 | H/2 × W/2 × 32 | Size 3 × 3, stride 1, padding 1 |
Down Conv2 | H/4 × W/4 × 64 | Size 3 × 3, stride 2, padding 1 |
Same Conv × 2 | H/4 × W/4 × 64 | Size 3 × 3, stride 1, padding 1 |
Down Conv3 | H/8 × W/8 × 128 | Size 3 × 3, stride 2, padding 1 |
Same Conv × 2 | H/8 × W/8 × 128 | Size 3 × 3, stride 1, padding 1 |
Global Average Pooling | 1 × 1 × 128 | - |
Flatten | 1 × 128 | - |
Fully Connected | 1 × 128 | - |
Decoder | ||
Input (embedding) | 1 × 128 | - |
Fully Connected + ReLU | 1 × (H/8 × W/8 × 128) | - |
Unflatten | H/8 × W/8 × 128 | - |
Same Conv × 2 | H/8 × W/8 × 128 | Size 3 × 3, stride 1, padding 1 |
Up Conv1 | H/4 × W/4 × 64 | Size 3 × 3, stride 2, padding 1, output padding 1 |
Same Conv × 2 | H/4 × W/4 × 64 | Size 3 × 3, stride 1, padding 1 |
Up Conv2 | H/2 × W/2 × 32 | Size 3 × 3, stride 2, padding 1, output padding 1 |
Same Conv × 2 | H/2 × W/2 × 32 | Size 3 × 3, stride 1, padding 1 |
Up Conv3 | H × W × 16 | Size 3 × 3, stride 2, padding 1, output padding 1 |
Same Conv | H × W × 16 | Size 3 × 3, stride 1, padding 1 |
1 × 1 Conv | H × W × 3 | Size 3 × 3, stride 1, padding 1 |
Data Set | Tile Size | Model MT | Model PY | ||
---|---|---|---|---|---|
Batch Size | Epoch | Batch Size | Epoch | ||
Top Pit | 64 × 64 | 256 | 100 | 256 | 100 |
96 × 96 | 128 | 125 | 128 | 150 | |
128 × 128 | 64 | 150 | 64 | 100 | |
192 × 192 | 32 | 225 | 32 | 150 | |
256 × 256 | 16 | 350 | 16 | 250 | |
Pick Pit | 64 × 64 | 256 | 150 | 256 | 150 |
96 × 96 | 128 | 225 | 128 | 150 | |
128 × 128 | 64 | 250 | 64 | 150 | |
192 × 192 | 32 | 400 | 32 | 200 | |
256 × 256 | 16 | 475 | 16 | 250 |
Tile Size | K-Means Accuracy | Model MT + K-Means Accuracy | Model PY + K-Means Accuracy |
---|---|---|---|
64 × 64 | 53.9% | 72.7% | 70.3% |
96 × 96 | 54.4% | 79.7% | 73.9% |
128 × 128 | 55.1% | 79.9% | 63.3% |
192 × 192 | 54.4% | 67.8% | 75.8% |
256 × 256 | 54.1% | 68.0% | 75.3% |
Tile Size | K-Means F1 | Model MT + K-Means F1 | Model PY + K-Means F1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CW * | WO | MO | OP | CW | WO | MO | OP | CW | WO | MO | OP | |
64 × 64 | 0.44 | 0.69 | 0.63 | 0.38 | 0.75 | 0.78 | 0.74 | 0.61 | 0.71 | 0.78 | 0.70 | 0.57 |
96 × 96 | 0.43 | 0.69 | 0.66 | 0.38 | 0.79 | 0.82 | 0.81 | 0.75 | 0.71 | 0.79 | 0.76 | 0.67 |
128 × 128 | 0.42 | 0.70 | 0.68 | 0.38 | 0.79 | 0.81 | 0.80 | 0.79 | 0.53 | 0.76 | 0.69 | 0.46 |
192 × 192 | 0.40 | 0.68 | 0.70 | 0.38 | 0.72 | 0.74 | 0.73 | 0.47 | 0.70 | 0.82 | 0.77 | 0.70 |
256 × 256 | 0.38 | 0.69 | 0.71 | 0.36 | 0.77 | 0.70 | 0.75 | 0.51 | 0.70 | 0.81 | 0.76 | 0.71 |
Tile Size | K-Means Accuracy | Model MT + K-Means Accuracy | Model PY + K-Means Accuracy |
---|---|---|---|
64 × 64 | 41.8% | 44.5% | 48.3% |
96 × 96 | 42.3% | 45.7% | 47.9% |
128 × 128 | 41.9% | 43.6% | 45.5% |
192 × 192 | 45.3% | 47.7% | 55.0% |
256 × 256 | 45.7% | 55.3% | 40.9% |
Tile Size | K-Means F1 | Model MT + K-Means F1 | Model PY + K-Means F1 | ||||||
---|---|---|---|---|---|---|---|---|---|
CA * | RC | TC | CA | RC | TC | CA | RC | TC | |
64 × 64 | 0.41 | 0.24 | 0.53 | 0.38 | 0.23 | 0.58 | 0.37 | 0.24 | 0.64 |
96 × 96 | 0.44 | 0.23 | 0.53 | 0.50 | 0.14 | 0.56 | 0.42 | 0.24 | 0.62 |
128 × 128 | 0.45 | 0.21 | 0.52 | 0.35 | 0.21 | 0.57 | 0.39 | 0.19 | 0.60 |
192 × 192 | 0.47 | 0.23 | 0.56 | 0.50 | 0.17 | 0.57 | 0.47 | 0.29 | 0.69 |
256 × 256 | 0.49 | 0.22 | 0.56 | 0.21 | 0.26 | 0.68 | 0.44 | 0.19 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Esmaeili, K.; Goodfellow, S.; Ordóñez Calderón, J.C. Mine Pit Wall Geological Mapping Using UAV-Based RGB Imaging and Unsupervised Learning. Remote Sens. 2023, 15, 1641. https://doi.org/10.3390/rs15061641
Yang P, Esmaeili K, Goodfellow S, Ordóñez Calderón JC. Mine Pit Wall Geological Mapping Using UAV-Based RGB Imaging and Unsupervised Learning. Remote Sensing. 2023; 15(6):1641. https://doi.org/10.3390/rs15061641
Chicago/Turabian StyleYang, Peng, Kamran Esmaeili, Sebastian Goodfellow, and Juan Carlos Ordóñez Calderón. 2023. "Mine Pit Wall Geological Mapping Using UAV-Based RGB Imaging and Unsupervised Learning" Remote Sensing 15, no. 6: 1641. https://doi.org/10.3390/rs15061641