Approach for Preservation and Reconstruction of Two-Dimensional Wave Spectra and Its Application to Boundary Conditions in Nested Wave Modeling
<p>Steps (from 1 to 7) for preserving and reconstructing a 2D wave spectrum.</p> "> Figure 2
<p>Child computational domain for the Wanning offshore area, and locations of boundary points (black circles), check points B1–B4 (red circles), and check points O1–O3 (yellow “+” symbols).</p> "> Figure 3
<p>Scatter plots for KPs obtained from the original and the reconstructed partitions at check point B2: (<b>a</b>) Partition 1, (<b>b</b>) Partition 2, (<b>c</b>) Partition 3, and (<b>d</b>) Partition 4. The partitions from the same spectrum are ordered from large to small based on their <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mrow> <mi>m</mi> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> values.</p> "> Figure 4
<p>Scatter plots for KPs obtained from the original and the reconstructed spectra (with the four largest partitions) at check point B2.</p> "> Figure 5
<p>Spatial distributions of correlation coefficient R of the KPs derived from the SWAN BLOCK outputs. In each panel, the values of R are indicated by the colors, the title identifies the corresponding KP, and the x and y axes denote the longitude (°E) and latitude (°N), respectively.</p> "> Figure 6
<p>Spatial distributions of MAE of the KPs derived from the SWAN BLOCK outputs. In each panel, the values of MAE are indicated by the colors, the title identifies the corresponding KP, and the x and y axes denote the longitude (°E) and latitude (°N), respectively.</p> "> Figure 7
<p>Groups identified at check point O1: (<b>a</b>) partition groups identified from the simulation with original boundaries, and (<b>b</b>) partition groups identified from the simulation with reconstructed boundaries. The <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>–</mo> <mi>θ</mi> </mrow> </semantics></math> spectral space is presented in polar coordinates, the number of occurrences of partition peaks in each <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>–</mo> <mi>θ</mi> </mrow> </semantics></math> cell is indicated by the colors, groups labeled 1–7 are ordered from large to small based on the peak-occurrence number, and the boundaries of the groups are depicted by the white lines.</p> "> Figure 8
<p>Probability distribution of partition KPs in Grp-1 at check point O1. Probability densities derived from spectra simulated with the original and the reconstructed boundaries are indicated by solid lines and circles, respectively. Each panel is titled according to the corresponding KP, and the <span class="html-italic">x</span> axis in each panel denotes the value range of the KP.</p> "> Figure 9
<p>Probability distribution of partition KPs in Grp-2 at check point O1. Probability densities derived from spectra simulated with the original and the reconstructed boundaries are indicated by solid lines and circles, respectively. Each panel is titled according to the corresponding KP, and the <span class="html-italic">x</span> axis in each panel denotes the value range of the KP.</p> "> Figure 10
<p>Scatter plots for KPs obtained from the original and the TMA–Mitsuyasu reconstructed spectra at check point B2.</p> "> Figure 11
<p>Spatial distributions of R of the KPs derived from the SWAN BLOCK outputs simulated with the original and the TMA–Mitsuyasu reconstructed boundaries. In each panel, the values of R are indicated by the colors, the title identifies the corresponding KP, and the x and y axes denote the longitude (°E) and latitude (°N), respectively.</p> "> Figure 12
<p>Spatial distributions of MAE of the KPs derived from the SWAN BLOCK outputs simulated with the original and the TMA–Mitsuyasu reconstructed boundaries. In each panel, the values of MAE are indicated by the colors, the title identifies the corresponding KP, and the x and y axes denote the longitude (°E) and latitude (°N), respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Approach for Preservation and Reconstruction of 2D Wave Spectra
2.2. Application of Reconstructed Spectra to Boundary Conditions in Nested Wave Modeling
3. Results
3.1. Comparison between Original and Reconstructed Spectra/Partitions at Boundary Points
3.2. Comparison of SWAN Field Outputs
3.3. Comparion of Spectral Statistics
4. Discussion
- : , , and are fixed, and the RPs to be fitted are , , and ;
- : and are fixed, and the RPs to be fitted are , , , and ;
- : the RPs to be fitted are , , , , , and .
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- In, K.; Waseda, T.; Kiyomatsu, K.; Tamura, H.; Miyazawa, Y.; Iyama, K. Analysis of a Marine Accident and Freak Wave Prediction with an Operational Wave Model. In Proceedings of the International Offshore and Polar Engineering Conference, Osaka, Japan, 21–26 June 2009; Volume 1, pp. 877–883. [Google Scholar]
- Waseda, T.; In, K.; Kiyomatsu, K.; Tamura, H.; Miyazawa, Y.; Iyama, K. Predicting Freakish Sea State with an Operational Third-Generation Wave Model. Nat. Hazards Earth Syst. Sci. 2014, 14, 945–957. [Google Scholar] [CrossRef] [Green Version]
- Trulsen, K.; Nieto Borge, J.C.; Gramstad, O.; Aouf, L.; Lefèvre, J.-M. Crossing Sea State and Rogue Wave Probability during the Prestige Accident. J. Geophys. Res. Oceans 2015, 120, 7113–7136. [Google Scholar] [CrossRef] [Green Version]
- Fedele, F.; Waseda, T.; Tamura, H.; Kinoshita, T. On Oceanic Rogue Waves. J. Mar. Sci. Technol. 2015, 17, 1–13. [Google Scholar] [CrossRef]
- Tamura, H.; Waseda, T.; Miyazawa, Y. Freakish Sea State and Swell-Windsea Coupling: Numerical Study of the Suwa-Maru Incident. Geophys. Res. Lett. 2009, 36, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Cavaleri, L.; Barbariol, F.; Benetazzo, A.; Bertotti, L.; Bidlot, J.R.; Janssen, P.; Wedi, N. The Draupner Wave: A Fresh Look and the Emerging View. J. Geophys. Res. Oceans 2016, 121, 6061–6075. [Google Scholar] [CrossRef]
- Guedes Soares, C.; Cherneva, Z.; Antao, E.M. Characteristics of Abnormal Waves in North Sea Storm Sea States. Appl. Ocean Res. 2003, 25, 337–344. [Google Scholar] [CrossRef]
- Karin Magnusson, A.; Donelan, M.A. The Andrea Wave Characteristics of a Measured North Sea Rogue Wave. J. Offshore Mech. Arct. Eng. 2013, 135, 031108. [Google Scholar] [CrossRef]
- Young, I.R.; Ribal, A. Multiplatform Evaluation of Global Trends in Wind Speed and Wave Height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef]
- Hemer, M.A.; Wang, X.L.; Weisse, R.; Swail, V.R. Advancing Wind-Waves Climate Science: The COWCLIP Project. Bull. Am. Meteorol. Soc. 2012, 93, 791–796. [Google Scholar] [CrossRef]
- Pelc, R.; Fujita, R.M. Renewable Energy from the Ocean. Mar. Policy 2002, 26, 471–479. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, W.; Berrisford, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global Reanalysis: Goodbye ERA-Interim, Hello ERA5. Available online: https://www.ecmwf.int/node/19027 (accessed on 19 January 2023).
- Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis: Preliminary Extension to 1950. Q. J. R. Meteorol. Soc. 2021, 147, 4186–4227. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Chawla, A.; Spindler, D.M.; Tolman, H.L. Validation of a Thirty Year Wave Hindcast Using the Climate Forecast System Reanalysis Winds. Ocean Model. 2013, 70, 189–206. [Google Scholar] [CrossRef]
- WAMDI. The WAM Model—A Third Generation Ocean Wave Prediction Model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef]
- ECMWF. IFS Documentation CY47R3—Part VII: ECMWF Wave model. In IFS Documentation CY47R3; ECMWF: Reading, UK, 2021; pp. 1–110. Available online: https://www.ecmwf.int/node/20201 (accessed on 19 January 2023).
- Tolman, H.L. A Third-Generation Model for Wind Waves on Slowly Varying, Unsteady, and Inhomogeneous Depths and Currents. J. Phys. Oceanogr. 1991, 21, 782–797. [Google Scholar] [CrossRef]
- Tolman, H.L.; Chalikov, D. Source Terms in a Third-Generation Wind Wave Model. J. Phys. Oceanogr. 1996, 26, 2497–2518. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A Third-Generation Wave Model for Coastal Regions: 1. Model Description and Validation. J. Geophys. Res. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Ris, R.C.; Holthuijsen, L.H.; Booij, N. A Third-Generation Wave Model for Coastal Regions: 2. Verification. J. Geophys. Res. 1999, 104, 7667–7681. [Google Scholar] [CrossRef]
- Tolman, H.L. Toward a Third Release of WAVEWATCH III; a Multi-Grid Model Version. In Proceedings of the 9th International Workshop on Wave Hindcasting and Forecasting, Victoria, BC, Canada, 24 September 2006; Available online: http://www.waveworkshop.org/9thWaves/Papers/Tolman.pdf (accessed on 19 January 2023).
- Tolman, H.L. A Mosaic Approach to Wind Wave Modeling. Ocean Model. 2008, 25, 35–47. [Google Scholar] [CrossRef]
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Eake, K.; Euring, J.A.; Gicnapp, A.; Hasselmann, D.E.; Kruseman, P.; et al. Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP). Ergnzungsheft Dtsch. Hydrogr. Z. Reihe 1973, A, 95. [Google Scholar]
- Pierson, W.J.; Moskowitz, L. A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S. A. Kitaigorodskii. J. Geophys. Res. Atmos. 1964, 69, 5181–5190. [Google Scholar] [CrossRef]
- Mitsuyasu, H.; Tasai, F.; Suhara, T.; Mizuno, S.; Ohkusu, M.; Honda, T.; Rikiishi, K. Observations of the Directional Spectrum of Ocean WavesUsing a Cloverleaf Buoy. J. Phys. Oceanogr. 1975, 5, 750–760. [Google Scholar] [CrossRef]
- Lygre, A.; Krogstad, H.E. Maximum Entropy Estimation of the Directional Distribution in Ocean Wave Spectra. J. Phys. Oceanogr. 1986, 16, 2052–2060. [Google Scholar] [CrossRef]
- Vincent, L.; Soille, P. Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 583–598. [Google Scholar] [CrossRef] [Green Version]
- Hasselmann, S.; Brüning, C.; Hasselmann, K.; Heimbach, P. An Improved Algorithm for the Retrieval of Ocean Wave Spectra from Synthetic Aperture Radar Image Spectra. J. Geophys. Res. Oceans 1996, 101, 16615–16629. [Google Scholar] [CrossRef]
- Young, I.R.; Glowacki, T.J. Assimilation of Altimeter Wave Height Data into a Spectral Wave Model Using Statistical Interpolation. Ocean Eng. 1996, 23, 667–689. [Google Scholar] [CrossRef]
- Voorrips, A.C.; Makin, V.K.; Hasselmann, S. Assimilation of Wave Spectra from Pitch-and-Roll Buoys in a North Sea Wave Model. J. Geophys. Res. Oceans 1997, 102, 5829–5849. [Google Scholar] [CrossRef]
- Hanson, J.L.; Phillips, O.M. Automated Analysis of Ocean Surface Directional Wave Spectra. J. Atmos. Ocean. Technol. 2001, 18, 277–293. [Google Scholar] [CrossRef]
- Devaliere, E.-M.; Hanson, J.L.; Luettich, R. Spatial Tracking of Numerical Wave Model Output Using a Spiral Search Algorithm. In Proceedings of the 2009 WRI World Congress on Computer Science and Information Engineering, Los Angeles, CA, USA, 31 March–2 April 2009; pp. 404–408. [Google Scholar] [CrossRef]
- Release WAVEWATCH-III.v6.07. Available online: https://github.com/NOAA-EMC/WW3/releases/tag/6.07 (accessed on 19 January 2023).
- Hanson, J.L.; Jensen, R.E. Wave System Diagnostics for Numerical Wave Models. In Proceedings of the 8th International Workshop on Wave Hindcasting and Forecasting, Oahu, HI, USA, 14–19 November 2004. [Google Scholar]
- Hanson, J.L.; Tracy, B.A.; Tolman, H.L.; Scott, R.D. Pacific Hindcast Performance of Three Numerical Wave Models. J. Atmos. Ocean. Technol. 2009, 26, 1614–1633. [Google Scholar] [CrossRef]
- Kuik, A.J.; van Vledder, G.P.; Holthuijsen, L.H. A Method for the Routine Analysis of Pitch-and-Roll Buoy Wave Data. J. Phys. Oceanogr. 1988, 18, 1020–1034. [Google Scholar] [CrossRef]
- Tolman, H.L. The Numerical Model WAVEWATCH: A Third Generation Model for Hindcasting of Wind Waves on Tides in Shelf Seas; Delft University of Technology: Delft, The Netherlands, 1989; Available online: http://resolver.tudelft.nl/uuid:5d12fc8b-6fa3-4c09-826c-d6955e1d33ab (accessed on 19 January 2023).
- Hasselmann, S.; Hasselmann, K. Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Spectrum. Part I: A New Method for Efficient Computations of the Exact Nonlinear Transfer Integral. J. Phys. Oceanogr. 1985, 15, 1369–1377. [Google Scholar] [CrossRef]
- Hasselmann, S.; Hasselmann, K. Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Specturm. Part II: Parameterizations of the Nonlinear Energy Transfer for Application in Wave Models. J. Phys. Oceanogr. 1985, 15, 1378–1391. [Google Scholar] [CrossRef]
- Cavaleri, L.; Rizzoli, P.M. Wind Wave Prediction in Shallow Water: Theory and Applications. J. Geophys. Res. Oceans 1981, 86, 10961–10973. [Google Scholar] [CrossRef]
- Komen, G.J.; Hasselmann, S.; Hasselmann, K. On the Existence of a Fully Developed Wind-Sea Spectrum. J. Phys. Oceanogr. 1984, 14, 1271–1285. [Google Scholar] [CrossRef]
- Ardhuin, F.; Rogers, E.; Babanin, A.V.; Filipot, J.F.; Magne, R.; Roland, A.; van der Westhuysen, A.; Queffeulou, P.; Lefevre, J.M.; Aouf, L.; et al. Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. J. Phys. Oceanogr. 2010, 40, 1917–1941. [Google Scholar] [CrossRef] [Green Version]
- Battjes, J.A.; Janssen, J.P.F.M. Energy loss and set-up due to breaking of random waves. Coast. Eng. Proc. 1978, 32. [Google Scholar] [CrossRef] [Green Version]
- Eldeberky, Y. Nonlinear Transformation of Wave Spectra in the Nearshore Zone. Ph.D. Thesis, Delft University of Technology, Department of Civil Engineering, Delft, The Netherlands, 1996. [Google Scholar]
- National Geophysical Data Center. ETOPO1 1 Arc-Minute Global Relief Model. Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.dem:316 (accessed on 20 August 2022).
- IEC. Part 101: Wave Energy Resource Assessment and Characterization. In Marine Energy—Wave, Tidal and Other Water Current Converters; BSI Standards Limited: London, UK, 2015; ISBN 978 0 580 79774 3. [Google Scholar]
- Goda, Y. Numerical Experiments on Wave Statistics with Spectral Simulation. Rep. Port Harb. Res. Inst. 1970, 9, 3–57. Available online: https://www.pari.go.jp/search-pdf/vol009-no03-01.pdf (accessed on 19 January 2023).
- Battjes, J.A.; van Vledder, G.P. Verification of Kimura’s Theory for Wave Group Statistics. In Proceedings of the 19th International Conference on Coastal Engineering, Houston, TX, USA, 3–7 September 1984. [Google Scholar] [CrossRef]
- Portilla-Yandún, J.; Cavaleri, L.; Van Vledder, G.P. Wave Spectra Partitioning and Long Term Statistical Distribution. Ocean Model. 2015, 96, 148–160. [Google Scholar] [CrossRef]
- Portilla-Yandún, J.; Salazar, A.; Cavaleri, L. Climate Patterns Derived from Ocean Wave Spectra. Geophys. Res. Lett. 2016, 43, 11736–11743. [Google Scholar] [CrossRef]
- Portilla-Yandún, J.; Barbariol, F.; Benetazzo, A.; Cavaleri, L. On the Statistical Analysis of Ocean Wave Directional Spectra. Ocean Eng. 2019, 189, 106361. [Google Scholar] [CrossRef]
- Kitaigordskii, S.A.; Krasitskii, V.P.; Zaslavskii, M.M. On Phillips’ Theory of Equilibrium Range in the Spectra of Wind-Generated Gravity Waves. J. Phys. Oceanogr. 1975, 5, 410–420. [Google Scholar] [CrossRef]
- Bouws, E.; Günther, H.; Rosenthal, W.; Vincent, C.L. Similarity of the Wind Wave Spectrum in Finite Depth Water: 1. Spectral Form. J. Geophys. Res. Oceans 1985, 90, 975–986. [Google Scholar] [CrossRef]
- Goda, Y. A Comparative Review on the Functional Forms of Directional Wave Spectrum. Coast. Eng. J. 1999, 41, 1–20. [Google Scholar] [CrossRef]
- Portilla, J.; Ocampo-Torres, F.J.; Monbaliu, J. Spectral Partitioning and Identification of Wind Sea and Swell. J. Atmos. Ocean. Technol. 2009, 26, 107–122. [Google Scholar] [CrossRef]
Check Points | Latitude (degr. N) | Longitude (degr. E) | Depth (m) |
---|---|---|---|
B1 | 18.5 | 110.5 | 88 |
B2 | 18.5 | 111.0 | 171 |
B3 | 19.0 | 111.0 | 96 |
B4 | 19.5 | 111.0 | 41 |
O1 | 19.0 | 110.8 | 71 |
O2 | 18.6 | 110.6 | 97 |
O3 | 19.0 | 110.6 | 26 |
KPs | Definition and Calculation |
---|---|
Significant wave height, denoted as in meters, is calculated as follows: | |
where the spectral moment of order n is calculated as | |
Mean wave period based on first moment, denoted as in seconds, is calculated as follows: | |
Mean wave period based on second moment, also known as mean zero-crossing wave period (in seconds), is calculated as follows: | |
Mean wave period based on the moment of order −1, also known as wave energy period (in seconds), is calculated as follows: | |
Peak frequency (in ) is determined as the frequency bin corresponding to the maximum value of . | |
Peak wave period (in seconds) is calculated as . | |
Peak spectral density (in ), i.e., the maximum value of . | |
Wave power density [48] characterizes the time-averaged energy flux through an envisioned vertical cylinder of unit diameter; its unit is usually taken as kW/m (kilowatts per meter) or . This parameter can be estimated as follows: | |
where denotes the density of seawater, is the acceleration of gravity, and | |
is the group velocity which is associated with the water depth and wave number . | |
Mean wavelength (in meters) is defined as | |
where denotes wave number. | |
The peakedness of the wave spectrum [49] (non-dimensional), defined as follows: | |
A smaller value of indicates a wider spectrum. | |
The normalized frequency width of the spectrum (frequency spreading) is defined as [50]: | |
Where and . | |
( & | Mean wave direction (in degr. and Nautical convention) is calculated as |
where and and the x and y components of can be expressed as: and . | |
The one-side directional width of the spectrum (directional spreading or directional standard deviation, in degr.) is defined as [38] | |
KPs | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Partn | ||||||||||||||
Part0 | 1.000 | 0.961 | 0.986 | 0.955 | 0.999 | 1.000 | 0.930 | 0.999 | 0.970 | 0.972 | 1.000 | 0.999 | 0.995 | |
Part1 | 1.000 | 1.000 | 0.990 | 0.973 | 0.999 | 1.000 | 0.973 | 0.999 | 0.977 | 0.957 | 1.000 | 0.999 | 0.990 | |
Part2 | 1.000 | 1.000 | 0.996 | 0.993 | 0.999 | 1.000 | 0.991 | 0.999 | 0.985 | 0.973 | 0.998 | 0.996 | 0.982 | |
Part3 | 1.000 | 1.000 | 0.999 | 0.997 | 0.999 | 1.000 | 0.998 | 0.999 | 0.979 | 0.962 | 0.994 | 0.997 | 0.929 | |
Part4 | 1.000 | 1.000 | 0.999 | 0.998 | 1.000 | 1.000 | 0.999 | 1.000 | 0.970 | 0.936 | 0.994 | 0.991 | 0.925 | |
Part5 | 1.000 | 1.000 | 0.999 | 0.999 | 1.000 | 1.000 | 0.999 | 0.999 | 0.961 | 0.926 | 0.994 | 0.986 | 0.904 | |
Part6 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 1.000 | 0.999 | 0.996 | 0.961 | 0.923 | 0.997 | 0.996 | 0.857 |
KPs |
|
|
|
|
|
|
|
|
|
| |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Partn | |||||||||||||
Part0 | 0 | 0.0012 | 0.16 | 0.25 | 0.06 | 0.12 | 4.3 | 0.0958 | 0.0504 | 0.0167 | 0.8 | 0.6094 | |
Part1 | 0 | 0.0002 | 0.17 | 0.27 | 0.06 | 0.09 | 4.8 | 0.0779 | 0.0676 | 0.0179 | 0.9 | 0.552 | |
Part2 | 0 | 0.0001 | 0.13 | 0.2 | 0.06 | 0.05 | 4.2 | 0.0456 | 0.2108 | 0.028 | 2.2 | 1.1075 | |
Part3 | 0 | 0.0001 | 0.11 | 0.15 | 0.07 | 0 | 3.6 | 0.0054 | 0.353 | 0.0355 | 3.6 | 1.5116 | |
Part4 | 0 | 0 | 0.09 | 0.12 | 0.06 | 0 | 3.3 | 0.0027 | 0.5448 | 0.0409 | 3.4 | 1.3202 | |
Part5 | 0 | 0 | 0.09 | 0.12 | 0.06 | 0 | 3.7 | 0.0018 | 0.4985 | 0.037 | 2.9 | 1.2933 | |
Part6 | 0 | 0.0002 | 0.09 | 0.11 | 0.07 | 0 | 3.8 | 0.0017 | 0.477 | 0.0348 | 1.9 | 1.0665 |
KPs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.9997 | 0.9969 | 0.9935 | 0.9993 | 0.9999 | 0.9943 | 0.9992 | 0.9864 | 0.9756 | ||
0 | −0.0005 | 0.0001 | 0.0001 | 0.0002 | 0 | 0.0001 | 0.0006 | 0.0068 | 0.0129 | ||
0 | −0.0008 | 0.0001 | 0.0001 | 0.0002 | 0 | 0.0003 | 0.0006 | 0.0088 | 0.0150 | ||
0 | −0.0015 | −0.0141 | −0.0242 | −0.0041 | −0.0002 | −0.0187 | −0.0006 | −0.0205 | −0.0186 | ||
0 | 0.0003 | −0.0227 | −0.0367 | −0.0076 | −0.0004 | −0.0269 | −0.0032 | −0.0264 | −0.0432 |
KPs |
|
|
|
|
|
| |||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.0001 | 0.1350 | 0.2045 | 0.0603 | 0.0504 | 4.1950 | 0.0449 | 0.2209 | 0.0272 | ||
0 | 0.0001 | −0.0050 | −0.0040 | −0.0107 | −0.0052 | −0.1358 | −0.0282 | −0.0540 | −0.0067 | ||
0 | 0.0002 | −0.0060 | −0.0071 | −0.0088 | 0.0000 | −0.2797 | −0.0334 | −0.1067 | −0.0096 | ||
0 | 0.0004 | 0.2782 | 0.3811 | 0.1416 | 0.1846 | 9.0159 | 0.1148 | 0.2451 | 0.0109 | ||
0 | −0.0001 | 0.3986 | 0.5303 | 0.2180 | 0.3040 | 12.4725 | 0.2408 | 0.3731 | 0.0284 |
KPs | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Part. | ||||||||||||||
Largest3 | 0 | −0.008 | 0.000 | 0.000 | −0.001 | 0.000 | 0.000 | 0.000 | −0.003 | −0.004 | 0.000 | 0.000 | −0.002 | |
Largest6 | 0 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 |
KPs |
|
|
|
|
|
|
|
|
|
| |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Part. | |||||||||||||
Largest3 | 0 | 0.000 | 0.010 | 0.000 | 0.010 | 0.010 | 0.100 | 0.003 | 0.003 | 0.001 | 0.100 | 0.063 | |
Largest6 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | −0.001 | 0.000 | 0.000 | −0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Wang, D.; Yang, Y.; Sun, M.; He, Q. Approach for Preservation and Reconstruction of Two-Dimensional Wave Spectra and Its Application to Boundary Conditions in Nested Wave Modeling. Remote Sens. 2023, 15, 1360. https://doi.org/10.3390/rs15051360
Jiang X, Wang D, Yang Y, Sun M, He Q. Approach for Preservation and Reconstruction of Two-Dimensional Wave Spectra and Its Application to Boundary Conditions in Nested Wave Modeling. Remote Sensing. 2023; 15(5):1360. https://doi.org/10.3390/rs15051360
Chicago/Turabian StyleJiang, Xingjie, Daolong Wang, Yongzeng Yang, Meng Sun, and Qianqian He. 2023. "Approach for Preservation and Reconstruction of Two-Dimensional Wave Spectra and Its Application to Boundary Conditions in Nested Wave Modeling" Remote Sensing 15, no. 5: 1360. https://doi.org/10.3390/rs15051360