Remote Sensing Image Super-Resolution via Multi-Scale Texture Transfer Network
<p>Framework of the proposed multi-scale texture transfer network (MTTN). The specific structure of <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>B</mi> <msub> <mi>s</mi> <mi>A</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>B</mi> <msub> <mi>s</mi> <mi>B</mi> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>B</mi> <msub> <mi>s</mi> <mi>C</mi> </msub> </mrow> </semantics></math> are shown in <a href="#remotesensing-15-05503-f002" class="html-fig">Figure 2</a>.</p> "> Figure 2
<p>Illustration of the residual blocks (RBs) in the proposed MTTN model. The <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>B</mi> <msub> <mi>s</mi> <mi>A</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>B</mi> <msub> <mi>s</mi> <mi>B</mi> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>B</mi> <msub> <mi>s</mi> <mi>C</mi> </msub> </mrow> </semantics></math> represent RBs with different convolution kernel sizes.</p> "> Figure 3
<p>Selected samples of RefSR remote sensing datasets. (High-resolution image (<b>left</b>) and Reference image (<b>right</b>)).</p> "> Figure 4
<p>Subjective comparison of our method with other algorithms on the Kaggle open dataset (playgrounds, parking lots and ports). From left to right, top to bottom, they are the result of Bicubic, SRCNN [<a href="#B55-remotesensing-15-05503" class="html-bibr">55</a>], VDSR [<a href="#B21-remotesensing-15-05503" class="html-bibr">21</a>], SRResnet [<a href="#B25-remotesensing-15-05503" class="html-bibr">25</a>], SRFBN [<a href="#B56-remotesensing-15-05503" class="html-bibr">56</a>], SRRFN [<a href="#B57-remotesensing-15-05503" class="html-bibr">57</a>], SEAN [<a href="#B58-remotesensing-15-05503" class="html-bibr">58</a>]), HAN [<a href="#B59-remotesensing-15-05503" class="html-bibr">59</a>], MHAN [<a href="#B34-remotesensing-15-05503" class="html-bibr">34</a>], SRNTT [<a href="#B41-remotesensing-15-05503" class="html-bibr">41</a>], DLGNN [<a href="#B36-remotesensing-15-05503" class="html-bibr">36</a>], and HSEnet [<a href="#B60-remotesensing-15-05503" class="html-bibr">60</a>], proposed methods and HR. Best view via zoomed-in view.</p> "> Figure 5
<p>Subjective comparison of our method with other algorithms on the Kaggle open dataset (airports, buildings and roads). From left to right, top to bottom, they are the result of Bicubic, SRCNN [<a href="#B55-remotesensing-15-05503" class="html-bibr">55</a>], VDSR [<a href="#B21-remotesensing-15-05503" class="html-bibr">21</a>], SRResnet [<a href="#B25-remotesensing-15-05503" class="html-bibr">25</a>], SRFBN [<a href="#B56-remotesensing-15-05503" class="html-bibr">56</a>], SRRFN [<a href="#B57-remotesensing-15-05503" class="html-bibr">57</a>], SEAN [<a href="#B58-remotesensing-15-05503" class="html-bibr">58</a>]), HAN [<a href="#B59-remotesensing-15-05503" class="html-bibr">59</a>], MHAN [<a href="#B34-remotesensing-15-05503" class="html-bibr">34</a>], SRNTT [<a href="#B41-remotesensing-15-05503" class="html-bibr">41</a>], DLGNN [<a href="#B36-remotesensing-15-05503" class="html-bibr">36</a>], and HSEnet [<a href="#B60-remotesensing-15-05503" class="html-bibr">60</a>], proposed methods and HR. Best view via zoomed-in view.</p> "> Figure 6
<p>The MSE maps display the disparities between reconstructions and ground truths in various ablation experiments. The color of the MSE map corresponds to the magnitude of the error, which varies as the images’ dissimilarity increases or decreases.</p> "> Figure 7
<p>Performance comparison of MTTN with the number of <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>B</mi> <msub> <mi>s</mi> <mi>A</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 8
<p>The classification outcomes achieved by various algorithms using the ISODATA classification method.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. SISR of Remote Sensing Images
2.2. Reference-Based Super-Resolution
3. Method
3.1. Feature Swapping
3.2. Multi-Scale Texture Transfer
3.3. Loss Function
3.3.1. Reconstruction Loss
3.3.2. Perceptual Loss
3.3.3. Adversarial Loss
4. Experiements
4.1. Dataset
4.2. Evaluation Indicators
4.3. Experimental Details
4.4. Quantitative and Qualitative Comparison with Different Methods
4.5. Ablation Studies
4.5.1. Effectiveness of Reference Image
4.5.2. Effectiveness of Loss Function
4.5.3. Effectiveness of Residual Blocks
4.5.4. Effectiveness of Remote Sensing Scene Classification
5. Conclusions
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bredemeyer, S.; Ulmer, F.G.; Hansteen, T.H.; Walter, T.R. Radar path delay effects in volcanic gas plumes: The case of Láscar Volcano, Northern Chile. Remote Sens. 2018, 10, 1514. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Mei, X.; Liu, C.; Ma, J. Hyperspectral unmixing with robust collaborative sparse regression. Remote Sens. 2016, 8, 588. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, J.; Chen, C.; Wang, Z.; Cai, Z.; Wang, L. SuperPCA: A superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4581–4593. [Google Scholar] [CrossRef]
- He, N.; Fang, L.; Li, S.; Plaza, A.; Plaza, J. Remote sensing scene classification using multilayer stacked covariance pooling. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6899–6910. [Google Scholar] [CrossRef]
- Fang, L.; Liu, G.; Li, S.; Ghamisi, P.; Benediktsson, J.A. Hyperspectral image classification with squeeze multibias network. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1291–1301. [Google Scholar] [CrossRef]
- Li, R.; Zheng, S.; Duan, C.; Wang, L.; Zhang, C. Land cover classification from remote sensing images based on multi-scale fully convolutional network. Geo-Spat. Inf. Sci. 2022, 25, 278–294. [Google Scholar] [CrossRef]
- Zhang, S.; Shao, Z.; Huang, X.; Bai, L.; Wang, J. An internal-external optimized convolutional neural network for arbitrary orientated object detection from optical remote sensing images. Geo-Spat. Inf. Sci. 2021, 24, 654–665. [Google Scholar] [CrossRef]
- Shao, Z.; Wu, W.; Li, D. Spatio-temporal-spectral observation model for urban remote sensing. Geo-Spat. Inf. Sci. 2021, 24, 372–386. [Google Scholar] [CrossRef]
- Liu, J.; Xiang, J.; Jin, Y.; Liu, R.; Yan, J.; Wang, L. Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey. Remote Sens. 2021, 13, 4387. [Google Scholar] [CrossRef]
- Ren, J.; Wang, R.; Liu, G.; Wang, Y.; Wu, W. An SVM-Based Nested Sliding Window Approach for Spectral–Spatial Classification of Hyperspectral Images. Remote Sens. 2021, 13, 114. [Google Scholar] [CrossRef]
- Bai, T.; Wang, L.; Yin, D.; Sun, K.; Chen, Y.; Li, W.; Li, D. Deep learning for change detection in remote sensing: A review. Geo-Spat. Inf. Sci. 2022, 26, 262–288. [Google Scholar] [CrossRef]
- Yu, X.; Pan, J.; Wang, M.; Xu, J. A curvature-driven cloud removal method for remote sensing images. Geo-Spat. Inf. Sci. 2023, 1–22. [Google Scholar] [CrossRef]
- Li, X.; Hu, Y.; Gao, X.; Tao, D.; Ning, B. A multi-frame image super-resolution method. Signal Process. 2010, 90, 405–414. [Google Scholar] [CrossRef]
- Wang, J.; Shao, Z.; Huang, X.; Lu, T.; Zhang, R.; Ma, J. Enhanced image prior for unsupervised remoting sensing super-resolution. Neural Netw. 2021, 143, 400–412. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, Z.; Lu, T.; Liu, L.; Huang, X.; Wang, J.; Jiang, K.; Zeng, K. A lightweight distillation CNN-transformer architecture for remote sensing image super-resolution. Int. J. Digit. Earth 2023, 16, 3560–3579. [Google Scholar] [CrossRef]
- Zhihui, Z.; Bo, W.; Kang, S. Single remote sensing image super-resolution and denoising via sparse representation. In Proceedings of the 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping, Xiamen, China, 10–12 January 2011; pp. 1–5. [Google Scholar]
- Hou, B.; Zhou, K.; Jiao, L. Adaptive super-resolution for remote sensing images based on sparse representation with global joint dictionary model. IEEE Trans. Geosci. Remote Sens. 2017, 56, 2312–2327. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, W.; Dai, Y.; Yang, X.; Yan, B.; Lu, W. Remote sensing images super-resolution based on sparse dictionaries and residual dictionaries. In Proceedings of the 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing, Chengdu, China, 21–22 December 2013; pp. 318–323. [Google Scholar]
- Wu, W.; Yang, X.; Liu, K.; Liu, Y.; Yan, B. A new framework for remote sensing image super-resolution: Sparse representation-based method by processing dictionaries with multi-type features. J. Syst. Archit. 2016, 64, 63–75. [Google Scholar] [CrossRef]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep laplacian pyramid networks for fast and accurate super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 624–632. [Google Scholar]
- Luo, Y.; Zhou, L.; Wang, S.; Wang, Z. Video satellite imagery super resolution via convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2398–2402. [Google Scholar] [CrossRef]
- Wang, Z.; Yi, P.; Jiang, K.; Jiang, J.; Han, Z.; Lu, T.; Ma, J. Multi-memory convolutional neural network for video super-resolution. IEEE Trans. Image Process. 2018, 28, 2530–2544. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein gans. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5767–5777. [Google Scholar]
- Lei, S.; Shi, Z.; Zou, Z. Super-resolution for remote sensing images via local–global combined network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1243–1247. [Google Scholar] [CrossRef]
- Xu, W.; Guangluan, X.; Wang, Y.; Sun, X.; Lin, D.; Yirong, W. High quality remote sensing image super-resolution using deep memory connected network. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8889–8892. [Google Scholar]
- Lu, T.; Wang, J.; Zhang, Y.; Wang, Z.; Jiang, J. Satellite image super-resolution via multi-scale residual deep neural network. Remote Sens. 2019, 11, 1588. [Google Scholar] [CrossRef]
- Jiang, K.; Wang, Z.; Yi, P.; Wang, G.; Lu, T.; Jiang, J. Edge-enhanced GAN for remote sensing image superresolution. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5799–5812. [Google Scholar] [CrossRef]
- Dong, X.; Xi, Z.; Sun, X.; Gao, L. Transferred multi-perception attention networks for remote sensing image super-resolution. Remote Sens. 2019, 11, 2857. [Google Scholar] [CrossRef]
- Haut, J.M.; Paoletti, M.E.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.; Li, J. Remote sensing single-image superresolution based on a deep compendium model. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1432–1436. [Google Scholar] [CrossRef]
- Qin, M.; Mavromatis, S.; Hu, L.; Zhang, F.; Liu, R.; Sequeira, J.; Du, Z. Remote sensing single-image resolution improvement using a deep gradient-aware network with image-specific enhancement. Remote Sens. 2020, 12, 758. [Google Scholar] [CrossRef]
- Zhang, D.; Shao, J.; Li, X.; Shen, H.T. Remote sensing image super-resolution via mixed high-order attention network. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5183–5196. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Z.; Mo, W. Transformer-Based Multistage Enhancement for Remote Sensing Image Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5615611. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, R.; Wang, L.; Han, W.; Zeng, T. Dual Learning-Based Graph Neural Network for Remote Sensing Image Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5628614. [Google Scholar] [CrossRef]
- Liu, C.; Sun, D. A bayesian approach to adaptive video super resolution. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 209–216. [Google Scholar]
- Caballero, J.; Ledig, C.; Aitken, A.; Acosta, A.; Totz, J.; Wang, Z.; Shi, W. Real-time video super-resolution with spatio-temporal networks and motion compensation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4778–4787. [Google Scholar]
- Wang, Y.; Lu, T.; Xu, R.; Zhang, Y. Face Super-Resolution by Learning Multi-view Texture Compensation. In MultiMedia Modeling, Proceedings of the 26th International Conference, MMM 2020, Daejeon, Republic of Korea, 5–8 January 2020, Proceedings, Part II 26; Springer: Berlin/Heidelberg, Germany, 2020; pp. 350–360. [Google Scholar]
- Zheng, H.; Ji, M.; Wang, H.; Liu, Y.; Fang, L. Crossnet: An end-to-end reference-based super resolution network using cross-scale warping. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 88–104. [Google Scholar]
- Zhang, Z.; Wang, Z.; Lin, Z.; Qi, H. Image super-resolution by neural texture transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7982–7991. [Google Scholar]
- Xie, Y.; Xiao, J.; Sun, M.; Yao, C.; Huang, K. Feature representation matters: End-to-end learning for reference-based image super-resolution. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 230–245. [Google Scholar]
- Yang, F.; Yang, H.; Fu, J.; Lu, H.; Guo, B. Learning Texture Transformer Network for Image Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5791–5800. [Google Scholar]
- Huang, Y.; Zhang, X.; Fu, Y.; Chen, S.; Zhang, Y.; Wang, Y.F.; He, D. Task Decoupled Framework for Reference-Based Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5931–5940. [Google Scholar]
- Dong, R.; Zhang, L.; Fu, H. RRSGAN: Reference-based super-resolution for remote sensing image. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–17. [Google Scholar] [CrossRef]
- Cai, D.; Zhang, P. T3SR: Texture Transfer Transformer for Remote Sensing Image Superresolution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7346–7358. [Google Scholar] [CrossRef]
- Jolicoeur-Martineau, A. The relativistic discriminator: A key element missing from standard GAN. arXiv 2018, arXiv:1807.00734. [Google Scholar]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef]
- Sheikh, H.R.; Bovik, A.C. Image information and visual quality. IEEE Trans. Image Process. 2006, 15, 430–444. [Google Scholar] [CrossRef]
- Ranchin, T.; Wald, L. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation. Photogramm. Eng. Remote Sens. 2000, 66, 49–61. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556 2014. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Computer Vision—ECCV 2014, Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014, Proceedings, Part IV 13; Springer: Berlin/Heidelberg, Germany, 2014; pp. 184–199. [Google Scholar]
- Li, Z.; Yang, J.; Liu, Z.; Yang, X.; Jeon, G.; Wu, W. Feedback network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3867–3876. [Google Scholar]
- Li, J.; Yuan, Y.; Mei, K.; Fang, F. Lightweight and Accurate Recursive Fractal Network for Image Super-Resolution. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019; pp. 3814–3823. [Google Scholar]
- Fang, F.; Li, J.; Zeng, T. Soft-Edge Assisted Network for Single Image Super-Resolution. IEEE Trans. Image Process. 2020, 29, 4656–4668. [Google Scholar] [CrossRef]
- Niu, B.; Wen, W.; Ren, W.; Zhang, X.; Yang, L.; Wang, S.; Zhang, K.; Cao, X.; Shen, H. Single image super-resolution via a holistic attention network. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 191–207. [Google Scholar]
- Lei, S.; Shi, Z. Hybrid-scale self-similarity exploitation for remote sensing image super-resolution. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5401410. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, Z.; Lu, T.; Wu, C.; Wang, J. Remote sensing image super-resolution via multiscale enhancement network. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5000905. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, T.; Wu, Z.; Wu, Y.; Zhang, Y. Face super-resolution via hierarchical multi-scale residual fusion network. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2021, 104, 1365–1369. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Fang, H.; Zhong, S.; Liao, W. HSI-DeNet: Hyperspectral image restoration via convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2018, 57, 667–682. [Google Scholar] [CrossRef]
Algorithm/Metrics | PSNR/dB ↑ | SSIM ↑ | FSIM ↑ | VIF ↑ | ERGAS ↓ |
---|---|---|---|---|---|
Bicubic | 24.73 | 0.6972 | 0.7544 | 0.2558 | 2.7915 |
SRCNN | 26.56 | 0.7675 | 0.8292 | 0.3368 | 2.2890 |
VDSR | 27.20 | 0.8001 | 0.8461 | 0.3759 | 2.1461 |
SRResnet | 26.42 | 0.7790 | 0.8480 | 0.3634 | 2.3560 |
SRFBN | 28.02 | 0.8264 | 0.8617 | 0.4121 | 1.9713 |
SRRFN | 28.61 | 0.8415 | 0.8794 | 0.4350 | 1.8559 |
SEAN | 28.41 | 0.8374 | 0.8716 | 0.4261 | 1.8852 |
HAN | 28.02 | 0.8259 | 0.8743 | 0.4157 | 1.9714 |
MHAN | 27.86 | 0.8265 | 0.8687 | 0.4106 | 2.0071 |
SRNTT | 30.28 | 0.8983 | 0.9243 | 0.6207 | 1.5731 |
DLGNN | 28.04 | 0.8246 | 0.8609 | 0.4106 | 1.9688 |
HSEnet | 28.42 | 0.8357 | 0.8746 | 0.4275 | 1.8907 |
MTTN (Ours) | 30.48 | 0.9020 | 0.9333 | 0.6352 | 1.5355 |
Algorithm/Metrics | PSNR/dB ↑ | SSIM ↑ | FSIM ↑ | VIF ↑ | ERGAS ↓ |
---|---|---|---|---|---|
MTTN without Ref images | 30.31 | 0.8977 | 0.9319 | 0.6319 | 1.5866 |
MTTN without texture loss | 30.10 | 0.8958 | 0.9314 | 0.6259 | 1.6130 |
MTTN without perceptual loss | 29.73 | 0.8919 | 0.9268 | 0.6311 | 1.7056 |
MTTN (Ours) | 30.48 | 0.9020 | 0.9333 | 0.6352 | 1.5355 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Shao, Z.; Lu, T.; Huang, X.; Wang, J.; Chen, X.; Huang, H.; Zuo, X. Remote Sensing Image Super-Resolution via Multi-Scale Texture Transfer Network. Remote Sens. 2023, 15, 5503. https://doi.org/10.3390/rs15235503
Wang Y, Shao Z, Lu T, Huang X, Wang J, Chen X, Huang H, Zuo X. Remote Sensing Image Super-Resolution via Multi-Scale Texture Transfer Network. Remote Sensing. 2023; 15(23):5503. https://doi.org/10.3390/rs15235503
Chicago/Turabian StyleWang, Yu, Zhenfeng Shao, Tao Lu, Xiao Huang, Jiaming Wang, Xitong Chen, Haiyan Huang, and Xiaolong Zuo. 2023. "Remote Sensing Image Super-Resolution via Multi-Scale Texture Transfer Network" Remote Sensing 15, no. 23: 5503. https://doi.org/10.3390/rs15235503
APA StyleWang, Y., Shao, Z., Lu, T., Huang, X., Wang, J., Chen, X., Huang, H., & Zuo, X. (2023). Remote Sensing Image Super-Resolution via Multi-Scale Texture Transfer Network. Remote Sensing, 15(23), 5503. https://doi.org/10.3390/rs15235503