The Impact of Different Filters on the Gravity Field Recovery Based on the GOCE Gradient Data
<p>The flowchart of gravity field recovery based on the GOCE SGG data.</p> "> Figure 2
<p>The time series (<b>a</b>) and amplitude spectral density (<b>b</b>) of the perturbation forces for the <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mrow> </semantics></math> component with a period of one day.</p> "> Figure 3
<p>The Amplitude Spectral Density (ASD) of the post-fit residuals after filtering by different filters designed for the low frequency <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <mi>f</mi> </mrow> </semantics></math> noise. The black dashed lines in the figure represent the MBW range.</p> "> Figure 4
<p>The degree error RMS of geoid height based on different filters designed for low-frequency <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <mi>f</mi> </mrow> </semantics></math> noise. The reference model is the TIM_R1 model. The degrees and orders affected by the polar gap have been removed (Sneeuw, et al. [<a href="#B53-remotesensing-15-05034" class="html-bibr">53</a>]).</p> "> Figure 5
<p>The ASD of the post-fit residuals before and after filtering by different filters designed for the orbital frequency errors. The black dashed lines in the figure represent the MBW range.</p> "> Figure 6
<p>The degree error RMS of geoid height based on different filters for the orbital frequency doubling errors.</p> "> Figure 7
<p>The degree error RMS of geoid height using the new version of the data based on different filters estimation frequency (1 November 2009~11 January 2010). “Whole” indicates that the filter is estimated according to the data interval; “Monthly” indicates that the filter is estimated by month; “Weekly” indicates that the filter is estimated by week.</p> "> Figure 8
<p>The degree error RMS of geoid height using the new version of the data based on different filters estimation frequency (10 November 2012~10 January 2013). “Whole” indicates that the filter is estimated according to the data interval; “Monthly” indicates that the filter is estimated by month; “Weekly” indicates that the filter is estimated by week.</p> "> Figure 9
<p>The degree error RMS of geoid height using the old version of the data based on different filters estimation frequency (10 November 2012~10 January 2013). “Whole” indicates that the filter is estimated according to the data interval; “Monthly” indicates that the filter is estimated by month; “Weekly” indicates that the filter is estimated by week.</p> ">
Abstract
:1. Introduction
2. Basic Theory of the Time-Wise Method
2.1. Gravity Field Solution Process
Force Model | Description |
---|---|
Static gravity field | TIM_R1 (Pail, et al. [2]; d/o = 224) |
Ocean tide | EOT11a (Rieser, et al. [46]; d/o = 120) |
Solid earth tide | IERS conventions (Petit, et al. [47]) |
Solid earth pole tide | IERS conventions (Petit, et al. [47]) |
Third body | DE421 (Folkner, et al. [48]) |
AOD | AOD1B RL06 (Dobslaw, et al. [49]) |
Dynamic orbit | Level 2, sampling rate 10 s |
Gravity gradient | Level 1b, sampling rate 1 s |
Attitude | Level 1b, sampling rate 1 s |
2.2. Filter Design
3. Results and Discussion
3.1. Effect of Different Filter Combinations on Gravity Field Inversion Results for Low-Frequency Errors
3.2. Effect of Different Filter Combinations on Inversion Results for Orbital Frequency Errors
3.3. Effect of Error Stability on Inversion Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Space Agency. Gravity Field and Steady-State Ocean-Circulation Mission, Report for Mission Selection of the Four Candidate Earth Explorer Missions; Tech. Rep. 1999, ESA SP-1233; ESA Publications Division: Noordwijk, The Netherlands, 1999. [Google Scholar]
- Pail, R.; Goiginger, H.; Mayrhofer, R.; Schuh, W.D.; Brockmann, J.M.; Krasbutter, I.; Fecher, T. GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method. In Proceedings of the ESA Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010; ESA Publication: Noordwijk, The Netherlands, 2010; p. SP-686. [Google Scholar]
- Pail, R.; Bruinsma, S.; Migliaccio, F.; Förste, C.; Goiginger, H.; Schuh, W.D.; Tscherning, C.C. First GOCE gravity field models derived by three different approaches. J. Geod. 2011, 85, 819–843. [Google Scholar]
- Brockmann, J.M.; Zehentner, N.; Höck, E.; Pail, R.; Loth, I.; Mayer-Gürr, T.; Schuh, W.D. EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys. Res. Lett. 2014, 41, 8089–8099. [Google Scholar]
- Brockmann, J.M.; Schubert, T.; Schuh, W.D. An improved model of the Earth’s static gravity field solely derived from reprocessed GOCE data. Surv. Geophys. 2021, 42, 277–316. [Google Scholar]
- Bruinsma, S.; Marty, J.C.; Balmino, G.; Biancale, R.; Förste, C.; Abrikosov, O.; Neumayer, H. GOCE gravity field recovery by means of the direct numerical method. In Proceedings of the 2010 ESA Living Planet Symposium, Bergen, Norway, 28 June-2 July 2010. [Google Scholar]
- Bruinsma, S.L.; Förste, C.; Abrikosov, O.; Marty, J.C.; Rio, M.H.; Mulet, S.; Bonvalot, S. The new ESA satellite-only gravity field model via the direct approach. Geophys. Res. Lett. 2013, 40, 3607–3612. [Google Scholar]
- Bruinsma, S.L.; Förste, C.; Abrikosov, O.; Lemoine, J.M.; Marty, J.C.; Mulet, S.; Bonvalot, S. ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys. Res. Lett. 2014, 41, 7508–7514. [Google Scholar] [CrossRef]
- Migliaccio, F.; Reguzzoni, M.; Gatti, A.; Sansò, F.; Herceg, M. A GOCE-only global gravity field model by the space-wise approach. In Proceedings of the 4th International GOCE User Workshop, Munich, Germany, 31 March–1 April 2011. [Google Scholar]
- Farahani, H.H.; Ditmar, P.; Klees, R.; Liu, X.; Zhao, Q.; Guo, J. The static gravity field model DGM-1S from GRACE and GOCE data: Computation, validation and an analysis of GOCE mission’s added value. J. Geod. 2013, 87, 843–867. [Google Scholar]
- Wu, H.; Müller, J.; Brieden, P. The IfE global gravity field model from GOCE-only observations. In Proceedings of the International Symposium on Gravity, Geoid and Height Systems, Thessaloníki, Greece, 19–23 September 2016. [Google Scholar]
- Schall, J.; Eicker, A.; Kusche, J. The ITG-Goce02 gravity field model from GOCE orbit and gradiometer data based on the short arc approach. J. Geod. 2014, 88, 403–409. [Google Scholar]
- Yi, W. An alternative computation of a gravity field model from GOCE. Adv. Space Res. 2012, 50, 371–384. [Google Scholar]
- Xu, X.; Zhao, Y.; Reubelt, T.; Tenzer, R. A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models. Geod. Geodyn. 2017, 8, 260–272. [Google Scholar]
- Chen, J.; Zhang, X.; Chen, Q.; Liang, J.; Shen, Y. Unconstrained gravity field model Tongji-GOGR2019S derived from GOCE and GRACE data. Chin. J. Geophys. 2020, 63, 3251–3262. [Google Scholar]
- Zhong, B.; Luo, Z.; Li, J.; Wang, H. Spectral combination method for recovering the Earth’s gravity field from High-low SST and SGG data. Acta Geod. Cartogr. Sin. 2012, 41, 735–742. [Google Scholar]
- Yu, J.; Wan, X. Recovery of the gravity field from GOCE data by using the invariants of gradient tensor. Sci. China Earth Sci. 2013, 56, 1193–1199. [Google Scholar] [CrossRef]
- Lu, B.; Luo, Z.; Zhong, B.; Zhou, H.; Flechtner, F.; Förste, C.; Zhou, R. The gravity field model IGGT_R1 based on the second invariant of the GOCE gravitational gradient tensor. J. Geod. 2018, 92, 561–572. [Google Scholar] [CrossRef]
- Rummel, R. Earth’s gravity from space. Rend. Lincei. Sci. Fis. E Nat. 2020, 31, 3–13. [Google Scholar] [CrossRef]
- Rio, M.H.; Mulet, S.; Picot, N. Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett. 2014, 41, 8918–8925. [Google Scholar] [CrossRef]
- Fuchs, M.J.; Bouman, J.; Broerse, T.; Visser, P.; Vermeersen, B. Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry. J. Geophys. Res. Solid Earth 2013, 118, 5712–5721. [Google Scholar] [CrossRef]
- Ebbing, J.; Haas, P.; Ferraccioli, F.; Pappa, F.; Szwillus, W.; Bouman, J. Earth tectonics as seen by GOCE-Enhanced satellite gravity gradient imaging. Sci. Rep. 2018, 8, 16356. [Google Scholar] [CrossRef]
- Bingham, R.J.; Haines, K.; Lea, D. A comparison of GOCE and drifter-based estimates of the North Atlantic steady-state surface circulation. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 140–150. [Google Scholar] [CrossRef]
- Álvarez, O.; Gimenez, M.; Folguera, A. Analysis of the coseismic slip behavior for the MW = 9.1 2011 Tohoku-Oki earthquake from satellite GOCE vertical gravity gradient. Front. Earth Sci. 2022; 10, 1068435. [Google Scholar]
- Becker, S.; Brockmann, J.M.; Schuh, W.D. Mean dynamic topography estimates purely based on GOCE gravity field models and altimetry. Geophys. Res. Lett. 2014, 41, 2063–2069. [Google Scholar] [CrossRef]
- Dufréchou, G.; Martin, R.; Bonvalot, S.; Bruinsma, S. Insight on the western Mediterranean crustal structure from GOCE satellite gravity data. J. Geodyn. 2019, 124, 67–78. [Google Scholar] [CrossRef]
- Michaelis, I.; Styp-Rekowski, K.; Rauberg, J.; Stolle, C.; Korte, M. Geomagnetic data from the GOCE satellite mission. Earth Planets Space 2022, 74, 135. [Google Scholar] [CrossRef]
- Frommknecht, B.; Lamarre, D.; Meloni, M.; Bigazzi, A.; Floberghagen, R. GOCE level 1b data processing. J. Geod. 2011, 85, 759–775. [Google Scholar] [CrossRef]
- Rummel, R. Preface to the special issue on “GOCE-The Gravity and Steady-state Ocean Circulation Explorer”. J. Geod. 2011, 85, 747. [Google Scholar] [CrossRef]
- Schuh, W.D. Tailored Numerical Solution Strategies for the Global Determination of the Earth’s Gravity Field. In Mitteilungen der geodätischen Institute der Technischen Universität Graz; TU Graz: Graz, Austria, 1906; Volume 81. [Google Scholar]
- Schuh, W.D. The processing of band-limited measurements; filtering techniques in the least squares context and in the presence of data gaps. Space Sci. Rev. 2003, 108, 67–78. [Google Scholar] [CrossRef]
- Schuh, W.D.; Brockmann, J.M.; Kargoll, B.; Krasbutter, I.; Pail, R. Refinement of the stochastic model of GOCE scientific data and its effect on the in-situ gravity field solution. In Proceedings of the ESA Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010; ESA Publication: Noordwijk, The Netherlands, 2010; p. SP-686. [Google Scholar]
- Klees, R.; Ditmar, P.; Broersen, P. How to handle colored observation noise in large least-squares problems. J. Geod. 2003, 76, 629–640. [Google Scholar] [CrossRef]
- Siemes, C. Digital Filtering Algorithms for Decorrelation within Large Least Squares Problems; IGG: Bonn, Germany, 2012. [Google Scholar]
- Zhu, G.; Chang, X.; Fu, X.; Qu, Q. A method for constructing the optimal ARMA filtering model on the satellite gravity gradiometry data. Chin. J. Geophys. 2018, 61, 4729–4736. [Google Scholar]
- Zhou, H.; Chuang, X.; Luo, Z.; Zhou, Z.; Zhong, B.; Wan, J. HUST-GOGRA2018s: A new gravity field model derived from the combination of GRACE and GOCE data. TAO: Terrestrial, Atmospheric and Oceanic Sciences. TAO Terr. Atmos. Ocean. Sci. 2019; 30, 9. [Google Scholar]
- Liu, T.; Zhong, B.; Li, X.; Tan, J. Filter design and comparison of gravity field inversion from GOCE satellite gravity gradient data. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 694–701. [Google Scholar]
- Wan, X.Y.; Yu, J.H.; Zeng, Y.Y. Frequency analysis and filtering processing of gravity gradients data from GOCE. Chin. J. Geophys. 2012, 55, 2909–2916. [Google Scholar] [CrossRef]
- Pitenis, E.; Mamagiannou, E.; Natsiopoulos, D.A.; Vergos, G.S.; Tziavos, I.N.; Grigoriadis, V.N.; Sideris, M.G. FIR, IIR and Wavelet Algorithms for the Rigorous Filtering of GOCE SGG Data to the GOCE MBW . Remote Sens. 2022; 14, 3024.40. [Google Scholar]
- Siemes, C.; Rexer, M.; Schlicht, A.; Haagmans, R. GOCE gradiometer data calibration. J. Geod. 2019, 93, 1603–1630. [Google Scholar] [CrossRef]
- Schubert, T.; Korte, J.; Brockmann, J.M.; Schuh, W.D. A generic approach to covariance function estimation using ARMA-models. Mathematics 2020, 8, 591. [Google Scholar] [CrossRef]
- Kern, M.; Preimesberger, T.; Allesch, M.; Pail, R.; Bouman, J.; Koop, R. Preprocessing of gravity gradients at the GOCE high-level processing facility. J. Geod. 2009, 83, 659. [Google Scholar]
- Albertella, A.; Migliaccio, F.; Sanso, F.; Tscherning, C.C. Outlier detection algorithms and their performance in GOCE gravity field processing. J. Geod. 2005, 78, 509–519. [Google Scholar]
- Albertella, A.; Migliaccio, F.; Sanss, F.; Tscherning, C.C. Scientific Data Production Quality Assessment using local space-wise preprocessing. In From Eötvös to mGal, Final Report; Sünkel, H., Ed.; ESA/ESTEC contract no. 13392/98/NL/GD; European Space Agency: Noordwijk, The Netherlands, 2000. [Google Scholar]
- Bouman, J.; Fiorot, S.; Fuchs, M.; Gruber, T.; Schrama, E.; Tscherning, C.; Visser, P. GOCE gravitational gradients along the orbit. J. Geod. 2011, 85, 791–805. [Google Scholar] [CrossRef]
- Rieser, D.; Mayer-Gürr, T.; Savcenko, R.; Bosch, W.; Wünsch, J.; Dahle, C.; Flechtner, F. The ocean tide model EOT11a in spherical harmonics representation. Tech. Note 2012. Available online: ftp://dgfi.tum.de/pub/EOT11a/doc/TN_EOT11a.pdf (accessed on 20 September 2023).
- Petit, G.; Luzum, B. IERS Conventions (2010); Bureau International des Poids et Mesures Sevres: Sèvres, France, 2010. [Google Scholar]
- Folkner, W.M.; Williams, J.G.; Boggs, D.H. The planetary and lunar ephemeris DE 421. IPN Prog. Rep. 2009, 42, 1–34. [Google Scholar]
- Dobslaw, H.; Bergmann-Wolf, I.; Dill, R.; Poropat, L.; Thomas, M.; Dahle, C.; Flechtner, F. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophys. J. Int. 2017, 211, 263–269. [Google Scholar] [CrossRef]
- Hannan, E.J. The statistical theory of linear systems. Developments in Statistics 1979, 2, 83–121. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Kim, J. Simulation Study of a Low-Low Satellite-to-Satellite Tracking Mission. Ph.D. Thesis, University of Texas, Austin, TX, USA, 2000. [Google Scholar]
- Sneeuw, N.; Gelderen, M. The polar gap. In Geodetic Boundary Value Problems in View of the One Centimeter Geoid; Springer: Berlin, Heidelberg, 1997; pp. 559–568. [Google Scholar]
- Wu, H.; Müller, J.; Brieden, P. The IfE Global Gravity Field Model Recovered from GOCE Orbit and Gradiometer Data. In Proceedings of the 5th International GOCE User Workshop, Paris, France, 25–28 November 2015; Volume 728, p. 27. [Google Scholar]
Filter Combination | Description |
---|---|
BP1 | Band-pass filter |
BP2 | Band-pass filter with a cut-off frequency |
DF | Differential filter |
ARMA | ARMA filter |
DARMA | DF + ARMA |
HARMA | High pass + ARMA |
DNARMA | DF + ARMA + Notch filter |
DARMAL | DF + ARMA + Empirical parameter |
HARMAL | High pass + ARMA + Empirical parameter |
Filter | 2~10 | 11~20 | 21~50 | 51~224 | 2~224 | |
---|---|---|---|---|---|---|
BP1 | 29.4531 | 0.0791 | 0.0169 | 0.2616 | 29.8107 | −25.193% |
BP2 | 39.4685 | 0.1007 | 0.0189 | 0.2620 | 39.8501 | |
DF | 1.2679 | 0.0342 | 0.0242 | 0.3573 | 1.6836 | −95.775% |
ARMA | 1.3099 | 0.0075 | 0.0085 | 0.2615 | 1.5874 | −96.017% |
DARMA | 1.2822 | 0.0073 | 0.0085 | 0.2616 | 1.5595 | −96.087% |
HARMA | 4.5871 | 0.0242 | 0.0101 | 0.2633 | 4.8846 | −87.743% |
Filter | 2~10 | 11~20 | 21~50 | 51~224 | 2~224 | |
---|---|---|---|---|---|---|
DARMA | 1.2822 | 0.0073 | 0.0085 | 0.2616 | 1.5596 | −68.11% |
HARMA | 4.5871 | 0.0242 | 0.0101 | 0.2633 | 4.8847 | 0.11% |
DNARMA | 1.2844 | 0.0073 | 0.0085 | 0.2618 | 1.5620 | −68.06% |
HARMAL | 4.5893 | 0.0271 | 0.0101 | 0.2634 | 4.8899 | |
DARMAL | 1.2819 | 0.0072 | 0.0085 | 0.2615 | 1.5591 | −68.12% |
Estimation Frequency | 2~10 | 11~20 | 21~50 | 51~224 | 2~224 | |
---|---|---|---|---|---|---|
Whole | 1.2822 | 0.0073 | 0.0085 | 0.2616 | 1.5595 | |
Monthly | 1.2793 | 0.0073 | 0.0085 | 0.2620 | 1.5571 | −0.154% |
Weekly | 1.2762 | 0.0075 | 0.0085 | 0.2628 | 1.5550 | −0.289% |
Estimation Frequency | 2~10 | 11~20 | 21~50 | 51~224 | 2~224 | |
---|---|---|---|---|---|---|
Whole | 1.3007 | 0.0081 | 0.0088 | 0.2207 | 1.5383 | |
Monthly | 1.3015 | 0.0080 | 0.0088 | 0.2207 | 1.5391 | +0.052% |
Weekly | 1.3032 | 0.0080 | 0.0089 | 0.2213 | 1.5415 | +0.208% |
Estimation Frequency | 2~10 | 11~20 | 21~50 | 51~224 | 2~224 | |
---|---|---|---|---|---|---|
Whole | 1.3987 | 0.0462 | 0.0208 | 0.2433 | 1.7089 | |
Monthly | 1.4674 | 0.0431 | 0.0195 | 0.2438 | 1.7738 | +3.798% |
Weekly | 1.3641 | 0.0427 | 0.0187 | 0.2441 | 1.6695 | −2.306% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, Q.; Wang, C.; Zhong, M.; Yan, Y.; Liang, L. The Impact of Different Filters on the Gravity Field Recovery Based on the GOCE Gradient Data. Remote Sens. 2023, 15, 5034. https://doi.org/10.3390/rs15205034
Mu Q, Wang C, Zhong M, Yan Y, Liang L. The Impact of Different Filters on the Gravity Field Recovery Based on the GOCE Gradient Data. Remote Sensing. 2023; 15(20):5034. https://doi.org/10.3390/rs15205034
Chicago/Turabian StyleMu, Qinglu, Changqing Wang, Min Zhong, Yihao Yan, and Lei Liang. 2023. "The Impact of Different Filters on the Gravity Field Recovery Based on the GOCE Gradient Data" Remote Sensing 15, no. 20: 5034. https://doi.org/10.3390/rs15205034
APA StyleMu, Q., Wang, C., Zhong, M., Yan, Y., & Liang, L. (2023). The Impact of Different Filters on the Gravity Field Recovery Based on the GOCE Gradient Data. Remote Sensing, 15(20), 5034. https://doi.org/10.3390/rs15205034